Ringberg April 28, 2009 Lattice QCD in Flavour Physics

Fundamentals of Lattice QCD: Precision Era Status of Lattice calculations of flavour observables

Some fundamentals of Lattice QCD

Lattice QCD: V non-perturbative approach (path-integral method) V only the QCD parameters V theory regularization X discrete space and finite volume

Path Integral Method:

Green functions ≡ derivatives of the generator functional

$$Z(J_{\mu},\eta,\eta) = \int \delta A \,\delta \,\overline{q} \,\delta q \ e^{-S(A,q,\overline{q}) + \int J_{\mu}A_{\mu} + \int \eta q + \int \overline{q}\eta}$$

In the era of precision Flavour Physics

ε _κ	(2.280 ± 0.013) 10 ⁻³	0.6%
Δm _d	(0.507 ± 0.005) ps ⁻¹	1%
Δm _s	(17.77 ± 0.12) ps ⁻¹	0.7%
Sin2β	0.672 ± 0.024	3%
V _{us} f ₊ (0)	0.21664 ± 0.00048	0.2%

we are also entering the era of

Precision LATTICE QCD

Unquenched calculations with relatively low quark masses are now being performed by several groups using different approaches (lattice action, renormalization, ...). Crucial when aiming at a percent precision.

A comment on the results presented below, taken into account in estimating averages

V. Lubicz, C.T. 0807.4605

•The quenched approximation introduces a systematic uncertainty which depends on the observable and is difficult to estimate

HOWEVER

•Unquenched simulations are more "expensive" and some unquenched calculations have not reached yet the same accuracy in controlling other systematics as (cheaper) quenched calculations (e.g. continuum extrapolation, non-perturbative renormalization)

•For some observables only few unquenched determinations are available

We will mainly present unquenched (N_f=2, 2+1) results, but without *forgetting* accurate quenched calculations !

V_{us} from KI3 decays

$$\Gamma_{K \to \pi l \nu} = C_K^2 \frac{G_F^2 m_K^5}{192\pi^2} I S_{\text{EW}} [1 + \Delta_{SU(2)} + 2\Delta_{\text{EM}}] \times [V_{us}|^2 |f_+^{K\pi}(0)|^2]$$

Ademollo-Gatto: $f_+(0) = 1 - O(m_s - m_u)^2$

O(1%). But represents the largest theoret. uncertainty

Lattice QCD

THE O(1%) PRECISION CAN BE REACHED

D.Becirevic, G.Isidori, V.Lubicz, G.Martinelli, F.Mescia, S.Simula, C.T., G.Villadoro. [NPB 705,339,2005]

The basic ingredient is a double ratio of correlation functions [FNAL for $B \rightarrow D, D^*$]

- Good agreement between Nf=2 and 2+1 calculations and the first quenched result
- The error on $\Delta f = f_+(0)$ -1- f_2 quoted in the original calculation was 50%
- A new precise Nf=2+1 calculation by RBC/UKQCD

- Analytical (model dependent) results slightly higher than Lattice QCD

Flavianet Kaon WG

The lattice determination of f_K/f_π , together with the experimental measurement of the leptonic decay Br's, and with $|V_{ud}|$ from nucleon beta decays, allows to extract $|V_{us}|$

Status of the UTA within the Standard Model (SM)

M. Ciuchini et al., hep-ph/0012308

M. Bona et al. [UTfit Collaboration], hep-ph/0501199

The experimental constraints:

 $\sin 2\beta$, $\cos 2\beta$, α , γ ($2\beta + \gamma$) independent from theoretical calculations of hadronic parameters

overconstrain the CKM parameters consistently

The UTA has established that the CKM matrix is the dominant source of flavour mixing and CP violation

UT-ANGLES

Recent unquenched results (so far at fixed lattice spacing)
Quenched calculations: O(a)-improved, multiplicative renormal., continuum limit
No evidence of quenching

•Discretization effects could similarly affect quenched and unquenched results

 $\hat{B}_{K} = 0.75 \pm 0.07$ ($B_{K}^{\overline{M}\overline{\$}}$ 2GeV) = 0.55 ± 0.05) V. Lubicz, C.T. 0807.4605 Unquenched simulations at several Lattice spacings are in progress !!

•B_{Bs} ≈ B_{Bd}
 •Chiral logs are unimportant in the B-parameters

$$\hat{B}_{B_s} = \hat{B}_{B_d} = 1.22 \pm 0.12$$
 V. Lubicz, C.T. 0807.4605
 $B_s \sqrt{\hat{B}_{B_s}} = 270 \pm 30 \text{MeV}$, $f_B \sqrt{\hat{B}_{B_d}} = 225 \pm 25 \text{MeV}$
 $\xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_B \sqrt{\hat{B}_{B_d}}} = 1.21 \pm 0.04$

QCD Sum Rules provide well compatible results (see talk by Patricia Ball)

Further improvements in Lattice calculations of B_K and ξ are looked forward to increase the UTA accuracy

New accurate studies are in progress!!

BACKUP

		$\langle \bar{K}^0 O_1(\mu$	$ K^{0}\rangle = \frac{8}{3}M_{F}^{2}$	$f_K^2 B_1^{sd}(\mu)$,		
		$\langle \bar{K}^0 O_2(\mu$	$ K^{0}\rangle = -\frac{5}{3}\left($	$\left(\frac{M_K}{m_s(\mu)+m}\right)$	$\frac{1}{n_d(\mu)}$ $\Big)^2 M_K^2$	$f_K^2 B_2^{sd}(\mu) \; ,$	
		$\langle \bar{K}^0 O_3(\mu$	$ K^{0}\rangle = \frac{1}{3}\left(\frac{1}{r}\right)$	$\frac{M_K}{m_s(\mu) + m_d}$	$\overline{(\mu)}$ $\Big)^2 M_K^2 f_F^2$	${}^{2}_{\mathcal{K}}B^{sd}_{3}(\mu)$,	
		$\langle \bar{K}^0 O_4(\mu$	$ K^{0}\rangle = 2\left(\frac{1}{n}\right)$	$\frac{M_K}{n_s(\mu) + m_d(\mu)}$	$\overline{\mu}$) ² $M_K^2 f_K^2$	$B_4^{sd}(\mu)$,	
		$\langle \bar{K}^0 O_5(\mu$	$ K^{0}\rangle = \frac{2}{3}\left(\frac{1}{r}\right)$	$\frac{M_K}{m_s(\mu) + m_d}$	$\overline{(\mu)}$ $\Big)^2 M_K^2 f_F^2$	$^{2}_{C}B^{sd}_{5}(\mu)$,	RI-MOM (2 GeV)
			B_1^{sd}	B_2^{sd}	B_3^{sd}	B_4^{sd}	B_5^{sd}
All	hep-lat/9 hep-lat/0	9920027 0605016	0.68(21) 0.56(6)	0.67(7) 0.87(8)	0.95(15) 1.41(16)	1.00(9) 0.94(6)	0.66(11) 0.62(8)
	han lat/	1610075	0 50(1)	0.54(0)	0 71(0)	0.50(1)	0.69(1)

•New studies are needed

V. Lubicz, C.T. 0807.4605

 $B_2^{sd} = 0.7(2) \quad , \quad B_3^{sd} = 1.0(4) \quad , \quad B_4^{sd} = 0.9(2) \quad , \quad B_5^{sd} = 0.6(1)$

B0-	B ₀	mi	xin	g:	t he	CO	m <mark>plet e</mark>	oper	at or	basis	
I	l										
	_								RI-MO (2 Ge	OM V)	
				B_1^{bs}		B ₂ ^{bs}	B_3^{bs}	B_4^{bs}	RI-MO (2 Ge	OM V) 3 ^{bs}	

V. Lubicz, C.T. 0807.4605

$$B_2^{bq} = 0.85(10) \quad , \quad B_3^{bq} = 0.90(13) \quad , \quad B_4^{bq} = 1.15(13) \quad , \quad B_5^{bq} = 1.74(19)$$

New unquenched studies are looked forward

V. Lubicz@SuperB workshop, 2007 @2007 V Lubicz

Hadronic	Current	60 TFlop	1-10 PFlop
matrix	lattice	Year	Year
element	error	[2011 LHCb]	[2015 SuperB]
$f^{K\pi}(0)$	0.9%	0.4%	< 0.1%
-+ (0)	(22% on 1-f ₊)	(10% on 1-f ₊)	(2.4% on 1-f ₊)
Âκ	11%	3%	1%
\mathbf{f}_{B}	14%	2.5 - 4.0%	1-1.5%
$f_{\mathtt{B}\mathtt{s}} \mathtt{B}_{\mathtt{B}\mathtt{s}}^{1/2}$	13%	3 - 4%	1-1.5%
بر	5%	1.5 - 2 %	0.5-0.8 %
5	(26% on ξ-1)	(9-12% on ξ-1)	(3-4% on §-1)
Τ	4%	1.2%	0.5%
$\int B \rightarrow D/D*1v$	(40% on 1-F)	(13% on 1-F)	(5% on 1-F)
$f_{+}^{B\pi},\ldots$	11%	4 - 5%	2-3%
$T_1^{B \rightarrow K * / \rho}$	13%		3 - 4%

S Sharpe @ Lattice QCD: Present and Future, Orsay, 2004 and report of the U.S. Lattice QCD Executive Committee

Trying to predict

the future...

C. Davies@SuperB workshop, 2009

What can we achieve in five years?

For calcs required to extract CKM, progress required is clear

process/ latt. calc.	K mixing	$egin{array}{c} K ightarrow \ \pi l u \ f_+(0) \end{array}$	$egin{aligned} rac{K o l u}{\pi o l u} \ (f_K/f_\pi) \end{aligned}$	$egin{array}{c} D, D_s \ o l \mathbf{v} \ (f_{D_{(s)}}) \end{array}$	$egin{array}{c} B, ``B_s`' \ ightarrow l u \ (f_{B_{(s)}}) \end{array}$	$egin{array}{c} B ightarrow \ D, \pi l u \ f_+(q^2) \end{array}$	B _s ,B _d mixing	\sqrt{ratio} (ξ)
current lattice error	7% disc.	0.5% chiral	0.6% volume	2% a	6% normln	4-10% stat. chiral normln	6% normln stat.	3% chiral stat.
current exptl error	0.5%	0.2%	0.2%	4%	30%	4%	١%	0.5%
future lattice error	2%	0.2%	0.3%	0.5%	2%	2-4%	3%	١%

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.