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MSSM

There are 5 types of
fermionic gauge multiplets,
in 3 generations,
and a Higgs doublet

Their supersymmetric non-gauge interactions derive from a 
(holomorphic) superpotential

Holomorphy of W required two Higgs doublets Hu, Hd 
One couples to up-type quarks, the other to down-type quarks:
      a two-higgs doublet model of “type II”
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loop suppression as in the Standard Model. This is the case
in the MSSM. Nevertheless, present flavour-physics data
imposes strong constraints on the SUSY flavour structure.
Finally, the data do show certain patterns that are consis-
tent with deviations from the SM in “reasonable places”,
i.e. NP-sensitive loop-dominated processes, albeit the sig-
nificance is not (yet?) very high.

The remainder of this article is organized as follows.
Section 2 deals with sources of SUSY flavour violation, the
connection with supersymmetry breaking, the generic pat-
terns that are expected depending on how SUSY is broken
(and mediated), and constraints from internal consistency
of the MSSM. Section 3 is devoted to the most important
observables that either impose constraints on the MSSM
flavour parameters at present or are likely to show sig-
nals in the future. We review and in some cases update
bounds on “mass-insertion” parameters commonly used
in the literature. There exist a number of articles devoted
to this issue, foremost of all we would like to mention the
original work of Gabbiani et al. [1] and the review article
of Misiak, Pokorski, and Rosiek [2], on both of which we
have drawn considerably. We next discuss, in Section 4,
some correlation patterns that one may expect in certain
SUSY GUTs, which illustrates the power to probe very
high scales by combining information from different indi-
rect observables. Finally, in Section 5 we mention several
cases of observables where presently patterns of (mild) de-
viations from the SM are seen. All of them involve b → s
transitions, which are precisely the domain of the LHCb
experiment at CERN.

2 SUSY flavour violation

2.1 The unbroken MSSM is minimally flavour-violating

The MSSM (see [3,4,5] for reviews) stabilizes the weak
scale by pairing bosons and fermions and relating their
couplings to ensure a systematic Bose-Fermi cancellation,
eliminating quadratic sensitivity to the cutoff (or scale
of UV completion). In the MSSM, each chiral fermion is
accompanied by a complex scalar “sfermion”, each gauge
boson by a Weyl “gaugino”, and each of two higgs scalar(s)
by “higgsinos” (see Table 1).

With new flavoured degrees of freedom, one generi-
cally expects modified flavour physics. However, the super-
symmetrization itself does not introduce any new flavour
structures. Indeed, in the limit where supersymmetry break-
ing is switched off, all flavour violation resides in the super-
potential (a·b = a1b2−a2b1 is the invariant SU(2) bilinear;
our notation for the couplings conforms to the SUSY Les
Houches accord conventions [6] wherever it overlaps):

W = µHu · Hd + Y U
ij Qi · HuU c

j

+Y D
ij Hd · QiD

c
j + Y E

ij Hd · LiE
c
j . (1)

Two higgs doublets Hu, Hd are required by gauge anomaly
cancellation in the presence of the higgsinos. They are also
necessary for fermion mass generation, as supersymmetry

Table 1. Supermultiplets in the MSSM (only propagating
component fields are listed). Superpartners are denoted by a
tilde. The last column denotes how often a multiplet appears.

multiplet components SM gauge group R-parity #
of spin

0 1
2 1 representation

Q q̃ q (3, 2; 1/6) − (−,+) 3
Uc ũc uc (3̄, 1;−2/3) − (−,+) 3
Dc d̃c dc (3̄, 1; 1/3) − (−,+) 3
L l̃ l (1, 2;−1/2) −(−,+) 3
Ec ẽc ec (1, 1; 1) −(−,+) 3
Hd hd h̃d (1, 2;−1/2) +(+,−) 1
Hu hu h̃u (1, 2; 1/2) +(+,−) 1
VG g̃ G (8, 1; 0) +(−,+) 1
VW w̃ W (1, 3; 0) +(−,+) 1
VB b̃ B (1, 1; 0) +(−,+) 1

implies that each doublet has a well-defined (sign of the)
hypercharge, hence can give mass to either T3 = +1/2 or
to T3 = −1/2 SM fermions but not both. Thus in spite
of the extra doublet, there are only three Yukawa terms,
as many and as fundamental as in the SM. This relegates
the origin of flavour breaking to more fundamental scales
(an important difference to technicolour theories or extra-
dimensional setups with bulk fermions).

Unlike in the SM, B and L are not accidental sym-
metries at the renormalizable level. In writing (1) we have
omitted additional B or L-violating terms such as U c

i Dc
jD

c
k

or Ec
i Lj · Lk. The former, for example, generically medi-

ates proton decay at unacceptably large rates. The extra
terms are absent from (1) if R-parity is conserved. This
also makes the lightest superpartner stable and restricts
superpartners to only appear in loops in low-energy pro-
cesses that involve only external SM particles.1

The Lagrangian follows from the superpotential as

L =

∫

d4θK(φ, φ∗) +
{

∫

d2θ W (φ) + h.c.
}

+gauge kinetic terms. (2)

At the renormalizable level, the Kähler potential K is fixed
to the form

K(φ, φ∗) =
∑

i

φ∗
i e

2gaVaφi. (3)

The interactions among the fermions and sfermions are
then given in terms of W and gauge couplings as

LYukawa =
1

2

∑

ij

∂2W

∂φi∂φj
ψT

i Cψj + h.c., (4)

V ({φi}) =
∑

i

∣

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

∣

2

+
1

2

∑

aA

g2
a(

∑

i

φ†
iT

A
a φi)

2, (5)

1 The behaviour of the fields under an R-parity transfor-
mation (reflection of superspace coordinates) is shown in the
fourth column of Table 1. All “SM” particles (including both
scalar higgs doublets) are even, all superpartners odd.

2 S. Jäger: Supersymmetry beyond minimal flavour violation

loop suppression as in the Standard Model. This is the case
in the MSSM. Nevertheless, present flavour-physics data
imposes strong constraints on the SUSY flavour structure.
Finally, the data do show certain patterns that are consis-
tent with deviations from the SM in “reasonable places”,
i.e. NP-sensitive loop-dominated processes, albeit the sig-
nificance is not (yet?) very high.

The remainder of this article is organized as follows.
Section 2 deals with sources of SUSY flavour violation, the
connection with supersymmetry breaking, the generic pat-
terns that are expected depending on how SUSY is broken
(and mediated), and constraints from internal consistency
of the MSSM. Section 3 is devoted to the most important
observables that either impose constraints on the MSSM
flavour parameters at present or are likely to show sig-
nals in the future. We review and in some cases update
bounds on “mass-insertion” parameters commonly used
in the literature. There exist a number of articles devoted
to this issue, foremost of all we would like to mention the
original work of Gabbiani et al. [1] and the review article
of Misiak, Pokorski, and Rosiek [2], on both of which we
have drawn considerably. We next discuss, in Section 4,
some correlation patterns that one may expect in certain
SUSY GUTs, which illustrates the power to probe very
high scales by combining information from different indi-
rect observables. Finally, in Section 5 we mention several
cases of observables where presently patterns of (mild) de-
viations from the SM are seen. All of them involve b → s
transitions, which are precisely the domain of the LHCb
experiment at CERN.

2 SUSY flavour violation

2.1 The unbroken MSSM is minimally flavour-violating

The MSSM (see [3,4,5] for reviews) stabilizes the weak
scale by pairing bosons and fermions and relating their
couplings to ensure a systematic Bose-Fermi cancellation,
eliminating quadratic sensitivity to the cutoff (or scale
of UV completion). In the MSSM, each chiral fermion is
accompanied by a complex scalar “sfermion”, each gauge
boson by a Weyl “gaugino”, and each of two higgs scalar(s)
by “higgsinos” (see Table 1).

With new flavoured degrees of freedom, one generi-
cally expects modified flavour physics. However, the super-
symmetrization itself does not introduce any new flavour
structures. Indeed, in the limit where supersymmetry break-
ing is switched off, all flavour violation resides in the super-
potential (a·b = a1b2−a2b1 is the invariant SU(2) bilinear;
our notation for the couplings conforms to the SUSY Les
Houches accord conventions [6] wherever it overlaps):

W = µHu · Hd + Y U
ij Qi · HuU c

j

+Y D
ij Hd · QiD

c
j + Y E

ij Hd · LiE
c
j . (1)

Two higgs doublets Hu, Hd are required by gauge anomaly
cancellation in the presence of the higgsinos. They are also
necessary for fermion mass generation, as supersymmetry

Table 1. Supermultiplets in the MSSM (only propagating
component fields are listed). Superpartners are denoted by a
tilde. The last column denotes how often a multiplet appears.

multiplet components SM gauge group R-parity #
of spin

0 1
2 1 representation

Q q̃ q (3, 2; 1/6) − (−,+) 3
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Soft SUSY breaking

For phenomenological reasons, supersymmetry must be broken.
Soft breaking (i.e. breaking that preserves absence of quadratic cutoff 
dependence) by explicit scalar masses and self-interactions

(in the MSSM) arbitrary bilinear and trilinear interactions are soft, but 
usually one restricts them to the above set (closed under 
renormalization) which corresponds 1:1 to the superpotential (Yukawa + 
mu-term)
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to the trilinear scalar coupling (traditionally called “A-
term”). On the other hand, (14) generates gaugino masses,
while (15) gives rise to extra contributions

∆Lm2 = m2
q̃ij q̃†i q̃j ,

m2
q̃ij =

F 2
X

M2
KQ

ij (17)

to the masses of the sfermions (relative to those of their
fermionic partners).

The crucial point for flavour is the following: Barring
any supplement of the MSSM by a theory of flavour, natu-
ralness dictates that the flavour structures of m2

q̃ij and T U

should be assumed generic numbers O(1) and, in particu-
lar, independent of Y U . Hence the SUSY-breaking, renor-
malizable (masses and) interactions among the sfermions
provide a generically nonminimal source of flavour viola-
tion. What can one say about the mass scale M? First,
(17) shows that the effective SUSY-breaking mass scale is
set by

mSUSY = FX/M

which should be of O(TeV) to preserve SUSY as a solution
to the hierarchy problem, thus M can in principle range
from not far beyond the SUSY scale. On the other hand,
any global flavour symmetries which would forbid or re-
strict the nonrenormalizable terms of the gauge sector are
expected to be broken (nonminimally) by gravitational
physics, such that M < MPl.

Generalizing (13) and (15) and including operators as
in (14) that give rise to gaugino masses induces the fol-
lowing set of dimensionful SUSY-breaking terms:

Lsoft = −m2
q̃ij q̃

†
i q̃j − m2

ũij ũ
c†ũc − m2

d̃ij
d̃c†d̃c (18)

−m2
l̃ij

l̃†l̃ − m2
ẽij ẽ

c†ẽc − m2
hU

h†
uhu − m2

hd
h†

dhd

−
[

m1b̃b̃ + m2w̃
Aw̃A + m3g̃

Ag̃A + Bµhu · hd

+T U
ij q̃i · huũc

j + T D
ij hd · q̃id̃

c
j + T E

ij hd · l̃iẽc
j + h.c.

]

.

Lsoft does not introduce any quadratic divergences. In par-
ticular, the soft-breaking terms themselves are only log-
arithmically sensitive to heavy scales such as the seesaw
scale.

From a purely phenomenological point of view, the su-
persymmetry breaking can simply be introduced explicitly
according to the structure of Lsoft. In this case, the hierar-
chy is stabilized but not explained: all dimensionful terms
in Lsoft have to simply happen to be of order the weak
scale. Indeed, often the MSSM is defined as the super-
symmetrized SM with explicit soft breaking. There are,
in fact, additional dimensionful couplings that one could
write, such as

cu
ij(h

†
dq̃i)ũ

c
j + cd

ij(h
†
uq̃i)d̃

c
j + ce

ij(h
†
u l̃i)ẽ

c
j . (19)

In the case of the MSSM, these terms do not reintroduce
quadratic divergences either and are not generated by ra-
diative corrections from Lsoft. Hence, it is consistent to

set them to zero. In an expansion in 1/M , where M is the
“messenger” scale, they are generated at higher orders.

Finally, let us remark that the soft masses m2
hu

, m2
hd

,
and Bµ provide (for suitable values) for electroweak sym-
metry breaking, while the hierarchy MW ∼ MSUSY #
MX , where MX denotes one of the large scales Mseesaw,
MGUT, MPl, is stabilized by the softly broken supersym-
metry. More fundamentally, the vacuum expectation val-
ues 〈X〉 may be due to dynamical supersymmetry break-
ing in the hidden sector, which can naturally generate the
large hierarchy MSUSY # MX by dimensional transmuta-
tion [24].

2.3 Patterns of SUSY breaking and their flavour

This section describes the expected flavour structure and
mass spectrum in the two most popular mediation schemes.
The first is gravity mediation, where the fact that SUSY is
broken in the hidden sector is communicated to the MSSM
particles by their gravitational interactions, which are al-
ways present [25,26,27,28,29,30,31,32,33,34]. These ef-
fects include “anomaly-mediated” contributions as a sub-
set. The second scheme is gauge mediation, where there
is an additional “messenger” sector containing (supersym-
metrically) heavy particles charged under the SM gauge
group and with direct couplings to the hidden sector SUSY-
breaking field(s) X . Here the flavour structure is very non-
generic, being flavour-blind at the messenger scale.

2.3.1 Gravity mediation

Coupling a supersymmetric theory to Einstein gravity im-
plies invariance under local supersymmetry transforma-
tion and the presence of a spin-3/2 gravitino field, as
well as certain auxiliary fields for the gravitational su-
permultiplet. Apart from that, the theory is specified by a
Kähler potential K, a superpotential W , plus a gauge ki-
netic function f , as in the nongravitational case. Since the
SUSY-mediating effects are themselves 1/MPl-suppressed,
nonrenormalizable terms have to be kept in all three func-
tions. Upon integrating out the supergravity auxiliary fields,
couplings beetween the hidden- and visible-sector fields
are generated. If K, W , and f are generic functions of
φi/MPl, subject only to constraints from the gauge sym-
metry, substituting expectation values for the SUSY-break-
ing vevs 〈X〉 leads to non-universal SUSY-breaking scalar
masses. For instance, in the case of a single hidden-sector
F -term expectation value 〈X〉 = 〈FX〉θ2, there will be a
contribution

∆Vsoft = φiφ
∗
j

∂2k

∂φiφ∗
j

∣

∣

∣

φ=0
, (20)

where

k =
∂2K

∂X∂X∗

∣

∣

∣

X=0
.

This contribution to scalar soft masses arises from quartic
terms in the Kähler potential, which are 1/M2

Pl-suppressed,



Sflavour

Masses & trilinear soft terms are 3x3 matrices in flavour space: Many 
flavour and CP-violating parameters

Minimal flavour violation: Only Yukawas violate flavour

even simpler form (assumed below, valid at most at one scale)

approximately true at MW in low-scale gauge mediation,
at MPl in gravity mediation models with dilaton dominance

m
2
q̃ij = m

2
01 + c1Y

U ∗

Y
U T

+ c2Y
D∗

Y
DT

+ . . .

m
2

q̃ij = m
2

t̃L
1, m

2

ũij = m
2

t̃R
1, . . .

TU
= atY

U , . . .



Scharged current

The brothers and sisters of the W+/- couplings:

in minimal flavour violation, these are the only flavour violating vertices 
involving quarks
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uLi

dLj

W± i Vij g γµPL

uLi

d̃Lj

w̃+ i Vij

√
2g PR

ũLi

dLj

w̃− i Vij

√
2g PL

ui

dj

H± i Vij (cosβ yujPL+sinβ ydjPR)

uLi

d̃Rj

h̃+ i Vij sinβ ydjPR

ũRi

dLj

h̃− i Vij cosβ yuiPL

Fig. 1. Flavour-changing vertices involving fermions in the
super-CKM basis.

for small to moderate (< 30) values of tanβ but can give
rise to a distinctive pattern at larger values even for mini-
mal flavour violation. We will not discuss these effects; for
a recent review see [20]. Most of the constraints discussed
below still apply in that case, but there may be stronger
ones.

2.2 Origin of (new) flavour violation: supersymmetry
breaking

The superpotential (1) does not break supersymmetry spon-
taneously at tree level. Because of supersymmetric non-
renormalization theorems [21,22,23], this remains true to
all orders in perturbation theory. Neither is electroweak
symmetry broken, at any order.

Observations exclude the presence of mass-degenerate
superpartners for many of the SM particles, which tells
us that supersymmetry is broken. The standard picture
is that supersymmetry breaking occurs in a hidden sector
of SM gauge singlets, via the condensation of an auxiliary
(F or D) component of one or more superfields X . Gauge
symmetry then requires any superpotential couplings be-
tween the visible and hidden sectors to be nonrenormaliz-
able.5 In many cases of interest, all low-energy effects of
supersymmetry breaking can be represented by such effec-
tive nonrenormalizable superpotential, gauge-kinetic, and
Kähler terms, as in

Wbreak = AU
ij
〈X〉
M

UC
i Hu · Qj, (13)

fbreak = Ma
〈X〉
M

WA
a WA

a , (14)

and

Kbreak = KQ
ij

〈XX†〉
M2

Q†
ie

2gaVaQj . (15)

Here AU
ij , Ma, and KQ

ij are dimensionless coefficients. 〈X〉 =

θ2FX is the vacuum expectation value of a hidden-sector
superfield, and the SUSY-breaking terms in the Lagrangian
are found by replacing K → K + Kbreak and W → W +
Wbreak + fbreak in (2). This can be illustrated as follows.
The MSSM, by assumption, does not have any direct renor-
malizable couplings to the hidden sector. Assume then
that the lightest “messenger”, i.e., degree of freedom that
couples both to the field X and to the MSSM fields, has
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12, λ5, λ6, and λ7 are a priori complex, yet the vevs vu,d can be made real by

a U(1) transformation on the Higgs fields. The m2
ij and λi in Eq. (12) coincide with those

of [11] except for λ3 and λ4, where we associate a different operator with λ4 to eliminate λ4
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Figure 1: Vertex corrections in the SU(2)×U(1) symmetry limit. Diagrams a) and b) give

rise to corrections (∆uYd)JI , diagrams c) and d) to corrections (∆dYu)JI .

3 Effective Parameters and Couplings

The mass matrices of the down- and up-type quarks can be obtained by replacing the

neutral scalar fields in (2.1) and (2.2) by their vacuum expectation values. One finds

that the down-type-quark mass matrix M̂d receives tanβ enhanced corrections both to

the diagonal and non-diagonal entries, whereas the corresponding corrections to M̂u are

negligible. M̂d is then diagonalized by the appropriate rotations of the dL and dR fields.

Except for the charged Higgs boson H+ couplings in which loop correction ∆dYu matters,

the four effects listed in the Introduction result from performing these rotations on the dL

and dR fields in the interaction vertices in (2.1) and (2.2).

In the full approach that goes beyond the SU(2) × U(1) symmetry limit [13], the

corrections to M̂d are found by calculating directly the self-energy diagrams of the down-

type-quarks. The resulting formulae are rather complicated and are presented in [13] where

also the derivation of the formulae in the SU(2) × U(1) limit is described in detail.

Below we give the formulae that summarize the effects 1)–4) in the SU(2) × U(1)

symmetry limit. The quark fields in these formulae are mass eigenstates of the one-loop

4
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Yukawa becomes 
flavour-violating

relevant hadronic matrix elements [20]. Details are given in [6, 13, 17]. CLR
2 in (4.3) agrees

with the corrected version of [12].

For large tanβ one has MH0 ≈ MA0 , cos2(α − β) ≈ 0 and sin2(α − β) ≈ 1 and we find
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[

tanβ

50

]4 [

P LR
2

2.50

]

[

FBs

230 MeV

]2
[

|Vts|
0.040

]2

×
[

mb(µt)

3.0GeV

] [

ms(µt)

0.06GeV

] [

m4
t (µt)

M2
W M2

A

]

ε2
Y (16π2)2

(1 + ε̃3 tan β)2(1 + ε0 tan β)2
. (4.4)

We recall that for large tanβ the H0 and A0 contributions to the first two diagrams in

fig. 2 cancel each other [1, 6] and as the contribution of h0 can be neglected in this limit,

the total contributions of these two diagrams are very small.

2. At large tan β the branching ratios BR(B0
s,d → µ+µ−) are fully dominated by the

diagrams in fig. 3 [1, 2, 3, 4]. Following [21] we find

BR(B0
s → µ+µ−) = 2.32 × 10−6

[
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|V eff
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. (4.5)

Here c̃S and c̃P are the dimensionless Wilson coefficients c̃S = MBscS and c̃P = MBscP

with cS and cP being properly normalized (see [21]) Wilson coefficients of the operators

OS = mb(bRsL)(l̄l), OP = mb(bRsL)(l̄γ5l). (4.6)
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Figure 3: Dominant diagrams contributing to B0
s,d → l+l− decays at large tanβ.

Using the vertices in (3.5) one finds from the diagrams of fig. 3 [12, 13]
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experiments will be in a position to provide a measurement of the branching ratio of Bs → µ+µ−.
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Structure of the coupling

assume  MSUSY  ≫  MH,A,h ~ v=246 GeV ; effective 2HDM description

diagonalization of Md rotates Yd out of diagonal form:

                     

M
d
ij = vdY

d
ij + vu∆ij parametrically large if tan β ≫ 1

large tan(!)

induces

1)                                          2)

[figures from Buras et al 02]
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Figure 1: Vertex corrections in the SU(2)×U(1) symmetry limit. Diagrams a) and b) give

rise to corrections (∆uYd)JI , diagrams c) and d) to corrections (∆dYu)JI .

3 Effective Parameters and Couplings

The mass matrices of the down- and up-type quarks can be obtained by replacing the

neutral scalar fields in (2.1) and (2.2) by their vacuum expectation values. One finds

that the down-type-quark mass matrix M̂d receives tanβ enhanced corrections both to

the diagonal and non-diagonal entries, whereas the corresponding corrections to M̂u are

negligible. M̂d is then diagonalized by the appropriate rotations of the dL and dR fields.

Except for the charged Higgs boson H+ couplings in which loop correction ∆dYu matters,

the four effects listed in the Introduction result from performing these rotations on the dL

and dR fields in the interaction vertices in (2.1) and (2.2).

In the full approach that goes beyond the SU(2) × U(1) symmetry limit [13], the

corrections to M̂d are found by calculating directly the self-energy diagrams of the down-

type-quarks. The resulting formulae are rather complicated and are presented in [13] where

also the derivation of the formulae in the SU(2) × U(1) limit is described in detail.

Below we give the formulae that summarize the effects 1)–4) in the SU(2) × U(1)

symmetry limit. The quark fields in these formulae are mass eigenstates of the one-loop
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(H±, G±) exchanges and (∆Ms)χ±

is the contribution of box diagrams with chargino and

squarks. Finally, (∆Ms)DP results from double Higgs penguin diagrams of fig. 2.

Explicit expressions for different contributions in terms of the Wilson coefficients of

contributing operators and hadronic matrix elements can be found in [6, 13, 17]. With

respect to our previous analysis in [6] we have now included all resummed large tanβ

corrections to the relevant couplings as discussed in the previous section.
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In the scenario considered in [6] and here supersymmetric particles are heavier than

the Higgs particles and the chargino box contribution (∆Ms)χ±

is small. At large tanβ

the double penguin contribution (∆Ms)DP is the dominant correction to (∆Ms)SM but the

charged Higgs box contribution can also be significant [6]. Both contributions have signs

opposite to (∆Ms)SM. Consequently for large tan β one finds (1 + fs) < 1 independently

of the other supersymmetric parameters. For not too large values of tanβ <
∼ 50 and of the

stop mixing parameter At
<
∼ MSUSY the contributions (∆Ms)DP and (∆Ms)H+

are smaller

than (∆Ms)SM and one gets 0 < (1 + fs) < 1. Of interest is also the case (1 + fs) < 0

corresponding to a very large negative (∆Ms)DP that can be realized for some special

values of supersymmetric parameters - large tan β >
∼ 50 and/or At ! MSUSY. We will

include this possibility in our analysis as it has quite different implications than the case

0 < (1 + fs) < 1.

The double penguin diagrams of fig. 2 give O(tan4 β) correction to ∆Ms. The leading

contribution comes from the last diagram that contributes to the Wilson coefficient CLR
2

of the operator QLR
2 = (bRsL)(bLsR). Using the vertices of eq. (3.5) we find [13]
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We recall that for large tanβ the H0 and A0 contributions to the first two diagrams in

fig. 2 cancel each other [1, 6] and as the contribution of h0 can be neglected in this limit,

the total contributions of these two diagrams are very small.

2. At large tan β the branching ratios BR(B0
s,d → µ+µ−) are fully dominated by the

diagrams in fig. 3 [1, 2, 3, 4]. Following [21] we find
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Here c̃S and c̃P are the dimensionless Wilson coefficients c̃S = MBscS and c̃P = MBscP

with cS and cP being properly normalized (see [21]) Wilson coefficients of the operators

OS = mb(bRsL)(l̄l), OP = mb(bRsL)(l̄γ5l). (4.6)
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Using the vertices in (3.5) one finds from the diagrams of fig. 3 [12, 13]

cS ≈ −
mµm2

t

4M2
W

16π2εY tan3 β

(1 + ε̃3 tan β)(1 + ε0 tanβ)

[

−
sin(α − β) cos α

M2
H0

+
cos(α − β) sin α

M2
h0

]

. (4.7)

cP ≈ −
mµm2

t

4M2
W

16π2εY tan3 β

(1 + ε̃3 tan β)(1 + ε0 tanβ)

[

1

M2
A0

]

. (4.8)

9

[Hamzaoui, Pospelov, Toharia 98; 
Babu, Kolda 99; Buras et al 02] [Buras et al 02]

(H±, G±) exchanges and (∆Ms)χ±

is the contribution of box diagrams with chargino and

squarks. Finally, (∆Ms)DP results from double Higgs penguin diagrams of fig. 2.

Explicit expressions for different contributions in terms of the Wilson coefficients of

contributing operators and hadronic matrix elements can be found in [6, 13, 17]. With

respect to our previous analysis in [6] we have now included all resummed large tanβ

corrections to the relevant couplings as discussed in the previous section.

h0,H0,A0

bR sL

bRsL

h0,H0,A0

bL sR

bLsR

h0,H0,A0

bR sL

bLsR

Figure 2: Double penguin diagrams contributing to ∆Ms.

In the scenario considered in [6] and here supersymmetric particles are heavier than

the Higgs particles and the chargino box contribution (∆Ms)χ±

is small. At large tanβ

the double penguin contribution (∆Ms)DP is the dominant correction to (∆Ms)SM but the
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∼ 50 and of the
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corresponding to a very large negative (∆Ms)DP that can be realized for some special
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∼ 50 and/or At ! MSUSY. We will

include this possibility in our analysis as it has quite different implications than the case

0 < (1 + fs) < 1.
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∆MBs
BR(Bs → µ+µ−)

Figure 4: Correlation between ∆Ms and B0
s,d → µ+µ− in the MSSM with flavour violation

ruled by the CKM matrix. Lower (upper) branches of points correspond to 0 < 1 + fs < 1

(1 + fs < 0). Current experimental bounds: BR(B0
s → µ+µ−) < 2 · 10−6 (CDF) [24] and

BR(B0
d → µ+µ−) < 2.1 · 10−7 (BaBar) [25] are shown by the horizontal solid lines.

tion. For sparticles heavier than 500 GeV the contribution of chargino-stop boxes to the

formula (4.13) is negligible, (∆Ms)χ±

/(∆Ms)SM <
∼ 0.03. On the other hand, the contribu-

tion of the H± boxes can be substantial, |(∆Ms)H±|/(∆Ms)SM can reach 0.65 due to the

corrections εHL(R) described in section 3. This is contrary to the claim made in ref. [12]

that the εHL(R) corrections are not important. We have checked that for charginos and

stops as light as 150 GeV, (∆Ms)χ±

/(∆Ms)SM <
∼ 0.2 whereas |(∆Ms)H± |/(∆Ms)SM can

reach 0.3. Also, as follows from the scan based on the complete calculation, the typical

values of |(∆Ms)DP| are smaller for lighter sparticles.

For values of MA and tanβ shown in fig. 4 all points corresponding to the rather unlikely

scenario with 1 + fs < 0 are eliminated by the combination of the lower limit (4.14) and

the CDF upper bound BR(B0
s → µ+µ−) < 2×10−6 [24] but this is not the case for heavier

A0 and/or smaller tanβ values. Therefore for such points we can only use (4.10) to find

BR(B0
d → µ+µ−) < 3.6 (3.1) · 10−8

[

1.15

FBs/FBd

]2 [

BR(B0
s → µ+µ−)exp

10−6

]

(4.15)

with the numerical factor corresponding to the analyses in [6] and [23], respectively. With
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Can more loops or 1/tan(β) corrections remove              suppression?
claims of large effects from Higgs self-energies
both in            and            in recent literature∆Ms

ms/mb

[Buras et al 02]

[Parry 06; Freitas,Gasser,Haisch 07]

CDF 07 
upper limit      

(∆Ms)exp = (17.77 ± 0.12)ps−1

∆M
SM
s

≈ 16 . . . 27 ps−1

suppression 
predicted     S

M
   

   

∆Ms/∆MSM
s

(recent claims of CP violation,
~ zero in SM)

A (naively) subleading effect:
arises at first order in ms/mb

∆Md

Strong correlation between
           and



“Subleading” contributions to ΔMs

The nonvanishing “effective” tree diagram (double penguin from MSSM 
viewpoint) is ms/mb suppressed over the naive expectation.

Do higher loop corrections remove this
suppression and give O(1) corrections?

bs{h,H,A} vertex derived in limit v << MSUSY,
what about v/M corrections?

Is the cancellation broken at (1/tan β)n level for some n?

tan β is renormalization scheme dependent, impact on ΔMs ? More 
generally, on flavour physics?

...                

D/ Weak scale loop contribution

Higgs-FCNC are always of the type                               
for large tanβ, no matter the number of Higgs field insertions
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Figure 2: Upper row: A subset of one-loop diagrams for Bq − B̄q mixing in the effective two-

Higgs-doublet model. Lower row: Tree and one-loop diagrams contributing at large tan β when
employing the Lagrangian Lltb and tree-level couplings. The crosses denote the flavor-changing

neutral Higgs couplings and (in diagrams (f) and (g)) loop-suppressed Higgs mass terms. On the

lower row, arrows designate the flow of the conserved U(1) charge discussed in the text.

∆CVLL = −
1

4

m2
b

v2 cos2 β(1 + ε̃∗3 tanβ)2

κ2
bq

G2
F M2

Wλ2
qb

C0(M
2
A, M2

A, 0) , (38)

∆CVRR = −
1

4

m2
b

v2 cos2 β(1 + ε̃3 tanβ)2

κ∗2
qb

G2
F M2

Wλ2
qb

C0(M
2
A, M2

A, 0) . (39)

In expressing ∆CVLL and ∆CVRR, we have neglected the small Yukawa coupling yq and em-

ployed tree-level MSSM mass relations, in agreement with our approximation of working to

leading order in small parameters (in the present case, the loop factor 1/(16π2)). ∆CVRR is

suppressed by two powers of mq/mb inside κ∗2
qb in the MFV case, hence beyond our accuracy.

The results Eqs. (38) and (39) involve a great deal of cancellation, which can be understood

in terms of symmetry arguments, as explained in Section 2.3 below. We note the absence of

charged-Higgs contributions in the approximation considered here.

v/M -suppressed effects All of the couplings given in Eq. (11) correspond to zeroth order

in the expansion in v/MSUSY, or equivalently to the level of dimension-four operators. Gauge

invariance forbids any dimension-five operators built from quark and Higgs fields, so the leading

higher-dimensional operators are of dimension six. This can lead to more general Higgs-fermion

couplings than what one gets from the peculiar structure of in Eq. (11) and, in consequence, the

cancellation leading to CRR = 0might be broken. To see that this is indeed the case, consider an



Plan of attack

Assume hierarchy MSUSY  ≫  MH,A,h ~ v=246 GeV

Integrate out all superpartners. Since M ≫ v, this can be done in the 
“symmetric phase”, ie without shifting Higgs fields by v 

then shift Higgs fields and compute loops with Higgs particles

V =
g2 + g′2

8
(h†

uhu − h
†
d
hd)

2 +
g2

2
(h†

uhd)(h
†
d
hu) Veff =

∑
λiQi[hu, hd]

=

∫
D[A, ψ, hi]e

i
∫

d4x(Lgauge−kin[A,ψ,hi]−Veff(hi))

∫
D[g̃, f̃ , h̃]D[A, ψ, hi]e

i
∫

d4x(Lgauge+kin[g̃,f̃ ,h̃,A,ψ,hi]−V (hi))

⇒



Introduction Higgs Contributions to ∆M Effective Theory for the Higgs Sector Numerics and Results Conclusions

Effective Theory for the Higgs Sector: Quartic Sector

We need the Higgs potential for small momenta.

Use effective theory framework for MSUSY > M2HDM

The effective Higgs potential is a type-III 2HDM

Q̃

ũ
Hu

ũ

Q̃

Hu

Hd Hd

Match the 4 point functions:

λ1

2
(H†

dHd)2 +
λ2

2
(H†

uHu)
2+

λ3(H
†
uHu)(H

†
dHd) + λ4(H

†
uHd)(H†

dHu)+{
λ5

2
(Hu · Hd)2 − λ6(H

†
dHd) (Hu · Hd)−

λ7(H
†
uHu) (Hu · Hd) + h.c.

}

λ5(HuεHd)2/2 breaks PQ (Q(H2
d) = 2)

[Haber et al., Carena et al. . . . ]

Loop-corrected Higgs potential

                              Sparticle loops generate most general quartics

                              break tree-level relation giving zero O(1) amplitude

4

where we have employed the notation a · b ≡ aT εb. By construction, the vev of Φ′ vanishes,

whereas Φ has 〈Φ〉 = (0, v/
√

2)T and contains all three Goldstone bosons. Hence only Φ con-

tributes to fermion masses and only Φ′ can have flavour-violating neutral couplings. Diagonal-

izing the down-quark mass matrix Md defines the flavour basis, and FCNC Higgs couplings to

b-quarks will be governed by κbq or κqb (q=d or s).
The Higgs self-interactions are comprised in the most general gauge-invariant dimension-

four two-Higgs-doublet potential [11],

V = m2
11H

†
dHd + m2

22H
†
uHu +

{
m2

12Hu · Hd + h.c.
}

+
λ1

2
(H†

dHd)
2 +

λ2

2
(H†

uHu)
2 + λ3(H

†
uHu)(H

†
dHd) + λ4(H
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†
dHu)

+

{
λ5

2
(Hu · Hd)

2 − λ6(H
†
dHd) (Hu · Hd) − λ7(H

†
uHu) (Hu · Hd) + h.c.

}
. (12)

The couplings m2
12, λ5, λ6, and λ7 are a priori complex, yet the vevs vu,d can be made real by

a U(1) transformation on the Higgs fields. The m2
ij and λi in Eq. (12) coincide with those

of [11] except for λ3 and λ4, where we associate a different operator with λ4 to eliminate λ4

from tree-level neutral Higgs phenomenology. We have instead: λ3 = λRef. [11]3 + λRef. [11]4 and

λ4 = −λRef. [11]4 .

Expanding V in Eq. (12) about(note) the vevs (which we require to correspond to the mimimumabout→ around

as usual) determines the charged and neutral Higgs-boson mass matrices and interactions. Denot-

ing h0
i = 1/

√
2(vi+φi+iχi), where i = u, d, the neutral mass matrix in the basis (φu, φd, χu, χd)

can be written

M2
0 =

(
M2

R M2
RI

M2T
RI M2

I

)

. (13)

The non-standard effective operators QLR
2 , QSLL

1 , and QSRR
1 are then generated at tree-level via

the exchange of neutral Higgs bosons (see Fig. 1) with Wilson coefficients

CLR
2 = −

8π2

G2
F M2

W λ2
qb

(
κ∗

qb κbq

)
F+, CSLL

1 = −
4π2

G2
F M2

W λ2
qb

(κbq)
2 F−. (14)

We find that, in the general case,

F+ =
det

(
M2

R + M2
I + iM2

RI − iM2T
RI

)

m2
1m

2
2m

2
3
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det B

m2
1m
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, (15)

F− = −
det

(
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RI − iM2T
RI

)

m2
1m

2
2m

2
3

≡ −
det A

m2
1m

2
2m

2
3

, (16)

where the denominator contains the product of the three nonzero eigenvalues of M2
0 . In the

CP-conserving caseM2
RI = 0, and Eqs. (15) and (16) reduce to the well-known expressions

F± =
sin2(α − β)

M2
H

+
cos2(α − β)

M2
h

±
1

M2
A

. (17)

previous calculations [Haber, Hempfling unpublished; Carena et al. ;  ...?]
in the context of Higgs masses & mixings
here: complete computation including arbitrary MSSM flavour structure

+higher-dim
operators              

(v/M corrections)
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a U(1) transformation on the Higgs fields. The m2
ij and λi in Eq. (12) coincide with those

of [11] except for λ3 and λ4, where we associate a different operator with λ4 to eliminate λ4

from tree-level neutral Higgs phenomenology. We have instead: λ3 = λRef. [11]3 + λRef. [11]4 and

λ4 = −λRef. [11]4 .

Expanding V in Eq. (12) about(note) the vevs (which we require to correspond to the mimimumabout→ around

as usual) determines the charged and neutral Higgs-boson mass matrices and interactions. Denot-

ing h0
i = 1/

√
2(vi+φi+iχi), where i = u, d, the neutral mass matrix in the basis (φu, φd, χu, χd)

can be written

M2
0 =

(
M2

R M2
RI

M2T
RI M2

I

)

. (13)

The non-standard effective operators QLR
2 , QSLL

1 , and QSRR
1 are then generated at tree-level via

the exchange of neutral Higgs bosons (see Fig. 1) with Wilson coefficients

CLR
2 = −

8π2

G2
F M2

W λ2
qb

(
κ∗

qb κbq

)
F+, CSLL

1 = −
4π2

G2
F M2

W λ2
qb

(κbq)
2 F−. (14)

We find that, in the general case,

F+ =
det

(
M2

R + M2
I + iM2

RI − iM2T
RI

)

m2
1m

2
2m

2
3

≡
det B

m2
1m

2
2m

2
3

, (15)

F− = −
det

(
M2

R − M2
I − iM2

RI − iM2T
RI

)

m2
1m

2
2m

2
3

≡ −
det A

m2
1m

2
2m

2
3

, (16)

where the denominator contains the product of the three nonzero eigenvalues of M2
0 . In the

CP-conserving caseM2
RI = 0, and Eqs. (15) and (16) reduce to the well-known expressions

F± =
sin2(α − β)

M2
H

+
cos2(α − β)

M2
h

±
1

M2
A

. (17)
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Here α is the mixing angle diagonalizing the mass matrix M2
R ( [11] and Section 3 MG: do we

have to give this reference?) of the CP-even Higgs bosons h and H with corresponding mass

eigenvalues Mh and MH as defined in Eq. (82), while MA denotes the CP-odd Higgs-boson

mass. The Wilson coefficient CSRR
1 is obtained from CSLL

1 through the replacement κbq → κ∗
qb.

The discussion so far has been completely general. Particularizing to the MSSM, a perturba-

tive matching calculation relates the two theories. At tree level this trivially results in

Md(0) =
v√
2

cos βYd, Mu(0) =
v√
2

sin βYu,

κ(0) = − sin βYd, κ̃(0) = cos βYu

m2(0)

11 = |µ|2 + m2
Hd

≡ m2
1, λ(0)

1 = λ(0)
2 = −λ(0)

3 = (g2 + g′2)/4 ≡ g̃2/4,

m2(0)

22 = |µ|2 + m2
Hu

≡ m2
2, λ(0)

4 = g2/2,

m2(0)

12 = Bµ, λ(0)
5 = λ(0)

6 = λ(0)
7 = 0.

(18)

At this order κ and κ̃ do not induce FCNC, as it must be in a model II. At one loop, all couplings
in Eq. (12) are generated. Moreover, the corrections to the Yukawa couplings have the more

general form

Md(1) =
v√
2

cos β
[
∆Yd + tan β ∆K

]
, κ(1) = − sin β

[
∆Yd − cot β∆K

]
, (19)

where∆Ydij and∆Kij parameterize one-loop vertices d̄RiHd ·QLj and d̄RiH†
uQLj in theHu, Hd

basis, respectively. Diagonalizing Md rotates κ(0), giving rise to a flavour-violating coupling

∝ Yd tanβ/(16 π2), which can be O(1).
The origin of this explicit tanβ enhancement (in addition to the mere presence of large down-

type Yukawa couplings), which can compensate the loop factor 1/(16 π2), is the replacement of
vd by vu & vd in Md [1].

1 This removal of a vd suppression can happen only in dimensionful

quantities. In the fermion mass terms, only one power of tan β can appear because there was
only one power of vd to begin with. This is in agreement with the finding in [6]. Our approach us-

ing un-shifted Higgs (“unbroken theory”) fields makes particularly evident that this result holds

to all orders, as the Yukawa Lagrangian only involves dimensionless couplings and there are no

hidden factors of tan β. Although we have integrated out only the sparticles – as we assume a
hierarchy v, MA ' MSUSY – the argument will continue to hold if we also integrate over the

Higgs fields, keeping only slowly varying background values of Φ, Φ′ (spurions). The reason

is that for determining the mass matrices, the relevant external four-momenta are O(mq), pro-
viding an expansion parameter mq/v or mq/MA. Hence the Higgs contributions to the effective

potential (which on general grounds respects the electroweak symmetry) can be organized into a

(local) effective Lagrangian, withmq-suppressed corrections to the the form Eq. (11) encoded in

higher-dimensional operators with additional derivatives acting on dRi or QLj. The contribution

from both Higgs and sparticle loops to Md is then simply obtained upon substituting for Φ, Φ′

1We tacitly assume that the fermion kinetic terms in the effective 2HDM have been made canonical. Such a field

renormalization does not contribute factors of tan β because it is determined by dimensionless couplings. Our∆K
and∆Yd correspond to∆uYd and −∆dYd, respectively, in the first paper of [8].

previous calculations [Haber, Hempfling unpublished; Carena et al. ;  ...?]
in the context of Higgs masses & mixings
here: complete computation including arbitrary MSSM flavour structure

︸ ︷︷ ︸

.

not present in tree-level MSSM
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Here α is the mixing angle diagonalizing the mass matrix M2
R ( [11] and Section 3 MG: do we

have to give this reference?) of the CP-even Higgs bosons h and H with corresponding mass

eigenvalues Mh and MH as defined in Eq. (82), while MA denotes the CP-odd Higgs-boson

mass. The Wilson coefficient CSRR
1 is obtained from CSLL

1 through the replacement κbq → κ∗
qb.

The discussion so far has been completely general. Particularizing to the MSSM, a perturba-

tive matching calculation relates the two theories. At tree level this trivially results in

Md(0) =
v√
2

cos βYd, Mu(0) =
v√
2

sin βYu,

κ(0) = − sin βYd, κ̃(0) = cos βYu

m2(0)

11 = |µ|2 + m2
Hd

≡ m2
1, λ(0)

1 = λ(0)
2 = −λ(0)

3 = (g2 + g′2)/4 ≡ g̃2/4,

m2(0)

22 = |µ|2 + m2
Hu

≡ m2
2, λ(0)

4 = g2/2,

m2(0)

12 = Bµ, λ(0)
5 = λ(0)

6 = λ(0)
7 = 0.

(18)

At this order κ and κ̃ do not induce FCNC, as it must be in a model II. At one loop, all couplings
in Eq. (12) are generated. Moreover, the corrections to the Yukawa couplings have the more

general form

Md(1) =
v√
2

cos β
[
∆Yd + tan β ∆K

]
, κ(1) = − sin β

[
∆Yd − cot β∆K

]
, (19)

where∆Ydij and∆Kij parameterize one-loop vertices d̄RiHd ·QLj and d̄RiH†
uQLj in theHu, Hd

basis, respectively. Diagonalizing Md rotates κ(0), giving rise to a flavour-violating coupling

∝ Yd tanβ/(16 π2), which can be O(1).
The origin of this explicit tanβ enhancement (in addition to the mere presence of large down-

type Yukawa couplings), which can compensate the loop factor 1/(16 π2), is the replacement of
vd by vu & vd in Md [1].

1 This removal of a vd suppression can happen only in dimensionful

quantities. In the fermion mass terms, only one power of tan β can appear because there was
only one power of vd to begin with. This is in agreement with the finding in [6]. Our approach us-

ing un-shifted Higgs (“unbroken theory”) fields makes particularly evident that this result holds

to all orders, as the Yukawa Lagrangian only involves dimensionless couplings and there are no

hidden factors of tan β. Although we have integrated out only the sparticles – as we assume a
hierarchy v, MA ' MSUSY – the argument will continue to hold if we also integrate over the

Higgs fields, keeping only slowly varying background values of Φ, Φ′ (spurions). The reason

is that for determining the mass matrices, the relevant external four-momenta are O(mq), pro-
viding an expansion parameter mq/v or mq/MA. Hence the Higgs contributions to the effective

potential (which on general grounds respects the electroweak symmetry) can be organized into a

(local) effective Lagrangian, withmq-suppressed corrections to the the form Eq. (11) encoded in

higher-dimensional operators with additional derivatives acting on dRi or QLj. The contribution

from both Higgs and sparticle loops to Md is then simply obtained upon substituting for Φ, Φ′

1We tacitly assume that the fermion kinetic terms in the effective 2HDM have been made canonical. Such a field

renormalization does not contribute factors of tan β because it is determined by dimensionless couplings. Our∆K
and∆Yd correspond to∆uYd and −∆dYd, respectively, in the first paper of [8].
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Effective Theory for the Higgs Sector: Quartic Sector

We need the Higgs potential for small momenta.

Use effective theory framework for MSUSY > M2HDM

The effective Higgs potential is a type-III 2HDM

Q̃

ũ
Hu

ũ

Q̃

Hu

Hd Hd

Match the 4 point functions:

λ1

2
(H†

dHd)2 +
λ2

2
(H†

uHu)
2+

λ3(H
†
uHu)(H

†
dHd) + λ4(H

†
uHd)(H†

dHu)+{
λ5

2
(Hu · Hd)2 − λ6(H

†
dHd) (Hu · Hd)−

λ7(H
†
uHu) (Hu · Hd) + h.c.

}

λ5(HuεHd)2/2 breaks PQ (Q(H2
d) = 2)

[Haber et al., Carena et al. . . . ]

Loop-corrected Higgs potential

                              Sparticle loops generate most general quartics

                              break tree-level relation giving zero O(1) amplitude
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where we have employed the notation a · b ≡ aT εb. By construction, the vev of Φ′ vanishes,

whereas Φ has 〈Φ〉 = (0, v/
√

2)T and contains all three Goldstone bosons. Hence only Φ con-

tributes to fermion masses and only Φ′ can have flavour-violating neutral couplings. Diagonal-

izing the down-quark mass matrix Md defines the flavour basis, and FCNC Higgs couplings to

b-quarks will be governed by κbq or κqb (q=d or s).
The Higgs self-interactions are comprised in the most general gauge-invariant dimension-

four two-Higgs-doublet potential [11],

V = m2
11H

†
dHd + m2

22H
†
uHu +

{
m2

12Hu · Hd + h.c.
}

+
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2
(H†
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2
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†
uHu)(H

†
dHd) + λ4(H

†
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†
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+
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λ5

2
(Hu · Hd)

2 − λ6(H
†
dHd) (Hu · Hd) − λ7(H

†
uHu) (Hu · Hd) + h.c.

}
. (12)

The couplings m2
12, λ5, λ6, and λ7 are a priori complex, yet the vevs vu,d can be made real by

a U(1) transformation on the Higgs fields. The m2
ij and λi in Eq. (12) coincide with those

of [11] except for λ3 and λ4, where we associate a different operator with λ4 to eliminate λ4

from tree-level neutral Higgs phenomenology. We have instead: λ3 = λRef. [11]3 + λRef. [11]4 and

λ4 = −λRef. [11]4 .

Expanding V in Eq. (12) about(note) the vevs (which we require to correspond to the mimimumabout→ around

as usual) determines the charged and neutral Higgs-boson mass matrices and interactions. Denot-

ing h0
i = 1/

√
2(vi+φi+iχi), where i = u, d, the neutral mass matrix in the basis (φu, φd, χu, χd)

can be written

M2
0 =

(
M2

R M2
RI

M2T
RI M2

I

)

. (13)

The non-standard effective operators QLR
2 , QSLL

1 , and QSRR
1 are then generated at tree-level via

the exchange of neutral Higgs bosons (see Fig. 1) with Wilson coefficients

CLR
2 = −

8π2

G2
F M2

W λ2
qb

(
κ∗

qb κbq

)
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1 = −
4π2
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We find that, in the general case,
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(
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)
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where the denominator contains the product of the three nonzero eigenvalues of M2
0 . In the

CP-conserving caseM2
RI = 0, and Eqs. (15) and (16) reduce to the well-known expressions

F± =
sin2(α − β)

M2
H

+
cos2(α − β)

M2
h

±
1

M2
A

. (17)
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Here α is the mixing angle diagonalizing the mass matrix M2
R ( [11] and Section 3 MG: do we

have to give this reference?) of the CP-even Higgs bosons h and H with corresponding mass

eigenvalues Mh and MH as defined in Eq. (82), while MA denotes the CP-odd Higgs-boson

mass. The Wilson coefficient CSRR
1 is obtained from CSLL

1 through the replacement κbq → κ∗
qb.

The discussion so far has been completely general. Particularizing to the MSSM, a perturba-

tive matching calculation relates the two theories. At tree level this trivially results in

Md(0) =
v√
2

cos βYd, Mu(0) =
v√
2

sin βYu,

κ(0) = − sin βYd, κ̃(0) = cos βYu

m2(0)

11 = |µ|2 + m2
Hd

≡ m2
1, λ(0)

1 = λ(0)
2 = −λ(0)

3 = (g2 + g′2)/4 ≡ g̃2/4,

m2(0)

22 = |µ|2 + m2
Hu

≡ m2
2, λ(0)

4 = g2/2,

m2(0)

12 = Bµ, λ(0)
5 = λ(0)

6 = λ(0)
7 = 0.

(18)

At this order κ and κ̃ do not induce FCNC, as it must be in a model II. At one loop, all couplings
in Eq. (12) are generated. Moreover, the corrections to the Yukawa couplings have the more

general form

Md(1) =
v√
2

cos β
[
∆Yd + tan β ∆K

]
, κ(1) = − sin β

[
∆Yd − cot β∆K

]
, (19)

where∆Ydij and∆Kij parameterize one-loop vertices d̄RiHd ·QLj and d̄RiH†
uQLj in theHu, Hd

basis, respectively. Diagonalizing Md rotates κ(0), giving rise to a flavour-violating coupling

∝ Yd tanβ/(16 π2), which can be O(1).
The origin of this explicit tanβ enhancement (in addition to the mere presence of large down-

type Yukawa couplings), which can compensate the loop factor 1/(16 π2), is the replacement of
vd by vu & vd in Md [1].

1 This removal of a vd suppression can happen only in dimensionful

quantities. In the fermion mass terms, only one power of tan β can appear because there was
only one power of vd to begin with. This is in agreement with the finding in [6]. Our approach us-

ing un-shifted Higgs (“unbroken theory”) fields makes particularly evident that this result holds

to all orders, as the Yukawa Lagrangian only involves dimensionless couplings and there are no

hidden factors of tan β. Although we have integrated out only the sparticles – as we assume a
hierarchy v, MA ' MSUSY – the argument will continue to hold if we also integrate over the

Higgs fields, keeping only slowly varying background values of Φ, Φ′ (spurions). The reason

is that for determining the mass matrices, the relevant external four-momenta are O(mq), pro-
viding an expansion parameter mq/v or mq/MA. Hence the Higgs contributions to the effective

potential (which on general grounds respects the electroweak symmetry) can be organized into a

(local) effective Lagrangian, withmq-suppressed corrections to the the form Eq. (11) encoded in

higher-dimensional operators with additional derivatives acting on dRi or QLj. The contribution

from both Higgs and sparticle loops to Md is then simply obtained upon substituting for Φ, Φ′

1We tacitly assume that the fermion kinetic terms in the effective 2HDM have been made canonical. Such a field

renormalization does not contribute factors of tan β because it is determined by dimensionless couplings. Our∆K
and∆Yd correspond to∆uYd and −∆dYd, respectively, in the first paper of [8].

previous calculations [Haber, Hempfling unpublished; Carena et al. ;  ...?]
in the context of Higgs masses & mixings
here: complete computation including arbitrary MSSM flavour structure

allowed in a model II

︸ ︷︷ ︸
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Here α is the mixing angle diagonalizing the mass matrix M2
R ( [11] and Section 3 MG: do we

have to give this reference?) of the CP-even Higgs bosons h and H with corresponding mass

eigenvalues Mh and MH as defined in Eq. (82), while MA denotes the CP-odd Higgs-boson

mass. The Wilson coefficient CSRR
1 is obtained from CSLL

1 through the replacement κbq → κ∗
qb.

The discussion so far has been completely general. Particularizing to the MSSM, a perturba-

tive matching calculation relates the two theories. At tree level this trivially results in

Md(0) =
v√
2

cos βYd, Mu(0) =
v√
2

sin βYu,

κ(0) = − sin βYd, κ̃(0) = cos βYu

m2(0)

11 = |µ|2 + m2
Hd

≡ m2
1, λ(0)

1 = λ(0)
2 = −λ(0)

3 = (g2 + g′2)/4 ≡ g̃2/4,

m2(0)

22 = |µ|2 + m2
Hu

≡ m2
2, λ(0)

4 = g2/2,

m2(0)

12 = Bµ, λ(0)
5 = λ(0)

6 = λ(0)
7 = 0.

(18)

At this order κ and κ̃ do not induce FCNC, as it must be in a model II. At one loop, all couplings
in Eq. (12) are generated. Moreover, the corrections to the Yukawa couplings have the more

general form

Md(1) =
v√
2

cos β
[
∆Yd + tan β ∆K

]
, κ(1) = − sin β

[
∆Yd − cot β∆K

]
, (19)

where∆Ydij and∆Kij parameterize one-loop vertices d̄RiHd ·QLj and d̄RiH†
uQLj in theHu, Hd

basis, respectively. Diagonalizing Md rotates κ(0), giving rise to a flavour-violating coupling

∝ Yd tanβ/(16 π2), which can be O(1).
The origin of this explicit tanβ enhancement (in addition to the mere presence of large down-

type Yukawa couplings), which can compensate the loop factor 1/(16 π2), is the replacement of
vd by vu & vd in Md [1].

1 This removal of a vd suppression can happen only in dimensionful

quantities. In the fermion mass terms, only one power of tan β can appear because there was
only one power of vd to begin with. This is in agreement with the finding in [6]. Our approach us-

ing un-shifted Higgs (“unbroken theory”) fields makes particularly evident that this result holds

to all orders, as the Yukawa Lagrangian only involves dimensionless couplings and there are no

hidden factors of tan β. Although we have integrated out only the sparticles – as we assume a
hierarchy v, MA ' MSUSY – the argument will continue to hold if we also integrate over the

Higgs fields, keeping only slowly varying background values of Φ, Φ′ (spurions). The reason

is that for determining the mass matrices, the relevant external four-momenta are O(mq), pro-
viding an expansion parameter mq/v or mq/MA. Hence the Higgs contributions to the effective

potential (which on general grounds respects the electroweak symmetry) can be organized into a

(local) effective Lagrangian, withmq-suppressed corrections to the the form Eq. (11) encoded in

higher-dimensional operators with additional derivatives acting on dRi or QLj. The contribution

from both Higgs and sparticle loops to Md is then simply obtained upon substituting for Φ, Φ′

1We tacitly assume that the fermion kinetic terms in the effective 2HDM have been made canonical. Such a field

renormalization does not contribute factors of tan β because it is determined by dimensionless couplings. Our∆K
and∆Yd correspond to∆uYd and −∆dYd, respectively, in the first paper of [8].
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Effective tree diagram (loop-corrected)

(H±, G±) exchanges and (∆Ms)χ±

is the contribution of box diagrams with chargino and

squarks. Finally, (∆Ms)DP results from double Higgs penguin diagrams of fig. 2.

Explicit expressions for different contributions in terms of the Wilson coefficients of

contributing operators and hadronic matrix elements can be found in [6, 13, 17]. With

respect to our previous analysis in [6] we have now included all resummed large tanβ

corrections to the relevant couplings as discussed in the previous section.

h0,H0,A0

bR sL

bRsL

h0,H0,A0

bL sR

bLsR

h0,H0,A0

bR sL

bLsR

Figure 2: Double penguin diagrams contributing to ∆Ms.

In the scenario considered in [6] and here supersymmetric particles are heavier than

the Higgs particles and the chargino box contribution (∆Ms)χ±

is small. At large tanβ

the double penguin contribution (∆Ms)DP is the dominant correction to (∆Ms)SM but the

charged Higgs box contribution can also be significant [6]. Both contributions have signs

opposite to (∆Ms)SM. Consequently for large tan β one finds (1 + fs) < 1 independently

of the other supersymmetric parameters. For not too large values of tanβ <
∼ 50 and of the

stop mixing parameter At
<
∼ MSUSY the contributions (∆Ms)DP and (∆Ms)H+

are smaller

than (∆Ms)SM and one gets 0 < (1 + fs) < 1. Of interest is also the case (1 + fs) < 0

corresponding to a very large negative (∆Ms)DP that can be realized for some special

values of supersymmetric parameters - large tan β >
∼ 50 and/or At ! MSUSY. We will

include this possibility in our analysis as it has quite different implications than the case

0 < (1 + fs) < 1.

The double penguin diagrams of fig. 2 give O(tan4 β) correction to ∆Ms. The leading

contribution comes from the last diagram that contributes to the Wilson coefficient CLR
2

of the operator QLR
2 = (bRsL)(bLsR). Using the vertices of eq. (3.5) we find [13]

(∆Ms)
DP =
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W

24π2
MBsF

2
Bs
|V eff

ts |2P LR
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2 (4.2)

where
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]

(4.3)

and P LR
2 ≈ 2.5 includes the short distance NLO QCD corrections [17, 18, 19] and the

8

= (V ∗

tbVts)
2
× (fermion coupling) ×F

−
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β = 0, reproducing the known vanishing of F−

employing the tree-levelMSSMHiggs sector. The cancellation is removed already at the leading-

logarithmic level. For instance, λ2 alone receives a large additive correction ∝ y4
t due to top-

quark loops, which is also responsible for the most important correction to the tree-level mass

of h. The corresponding corrections could be computed by RG-evolving the tree-level couplings
in the effective 2HDM. However, as we are considering large tanβ, we expect (and find below)
the most important effect to be due to λ5 and λ7, which remove the O(c2

β) suppression of the
leading-log result, as anticipated above.

2.2 The case of minimal flavour violation

From the discussion so far it follows that |F+| = O(1/M2
A) # |F−| = O(1/(16π2M2

A)) for
generic κij ,

2 such that the motivation to consider F− at all is not very strong. The situation

is fundamentally different for minimal flavour violation (MFV), because then F+ turns out to

be suppressed by a light quark mass, introducing a further small parameter mq/mb, which is

comparable to 1/(16π2) or 1/ tanβ for q = s and negligible if q = d. For simplicity, in this
paper we consider the simplest version of minimal flavour violation, which assumes flavour-

universal soft breaking terms m̃2
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u and m̃2

d and trilinear SUSY-breaking terms Tuij
, Tdij

which

are proportional to the Yukawa matrices and therefore diagonal in the super-CKM basis (denoted

with a hat): T̂uij
= atyui

δij and T̂dij
= abydi

δij, see Sect. A of the appendix for details of our

notation. The structure of the results, however, does not depend on these additional assumptions.
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in practice. Indeed, many of the analyses in the literature have dealt with the caseMA ∼ 200 GeV.

= (V ∗

tbVts)
2
× (fermion coupling) ×F

−

F
−

= −
v
4

m
2

h
m

2
H

m
2
A

×



Effective tree diagram (loop-corrected)

(H±, G±) exchanges and (∆Ms)χ±

is the contribution of box diagrams with chargino and

squarks. Finally, (∆Ms)DP results from double Higgs penguin diagrams of fig. 2.

Explicit expressions for different contributions in terms of the Wilson coefficients of

contributing operators and hadronic matrix elements can be found in [6, 13, 17]. With

respect to our previous analysis in [6] we have now included all resummed large tanβ
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the double penguin contribution (∆Ms)DP is the dominant correction to (∆Ms)SM but the
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U(1)PQ symmetry at large tan (β)

What is the reason for the leading-order cancellation?

cannot be model-II restrictions, because λ5 is allowed by these

The relevant symmetry is continuous and of the Peccei-Quinn type:

broken in MSSM only by the µ parameter

This is a symmetry which forbids λ5,6,7 but allows λ1...4 

The useful aspect is that it is not spontaneously broken in the large tanβ 
limit <hd>=0

hd → e
iα

hd + suitable (chiral) transformations 
of fermion  

hu → hu



Large tan (β) effective Lagrangian

- leading-order Higgs potential invariant under
  even if electroweak symmetry broken, at
 loop-corrected potential still approximately invariant, at 

(have shifted                                ) 

- For the fermions assign charge only to bR: 

preserves U(1)

Leff ⊃ κ(cos βh0∗
u − sinβh0

d)[ybb̄RsL + yss̄RbL]

12

the other hand, as (42) shows, the higher-dimensional operators do have an impact on the redi-

agonalization of the quark mass matrices and, consequently, on the size of the FCNC couplings

κbq. These effects preserve the cancellations in F− discussed above but may be numerically of

O(10%) or larger in F+ (see the second paper in [8]). SJ: Revisit that paper to see if really true,

or if it is the effect of g, g′ that gives the large corrections. Btw: Does the same argument (loop

suppression) apply to higher-dim operators in the Higgs potential? I think so.

2.3 Symmetries at large tanβ

To better understand the various types of cancellations inF− and in the Higgs-loop contributions

to CVLL, as well as the suppression of F+, one can use an effective 2HDM Lagrangian at large

tan β. Besides clarifying the role of the parameters λ5 and λ7, this allows understanding the

structure of Eqs. (15), (16), and (24), as well as the its vanishing at leading order in 1/ tanβ,
on the basis of symmetry arguments. Moreover, it allows to compute loop diagrams involving

Higgses efficiently.

Eliminatingm2
11 andm2

22 by the minimization conditions and trading (m2
12)

r forM2
A defined

in Eq. (22), the Lagrangian (12) simplifies – for spontaneously broken electroweak symmetry –

in the limit tan β ! 1. To be precise, we take the limit

vd → 0, vu → v, M2
A fixed, λi fixed, (43)

in the broken phase. We will also keep the Yukawa couplings fixed in this limit when considering

couplings to fermions. Here we implicitly assume that the tan β → ∞ limit is well defined – a

point we will return to in Subsection 3.1. We then have Φ = Hu, Φ′ = εH∗
d , and

h0
u =

1√
2
(φu + i G0), h0

d =
1√
2
(φd − i A0), h+

u = G+, h+
d = H+. (44)

If there were no mixing among neutral Higgses, we would have φu = h and φd = H , and A0

would be a mass eigenstate. The mass matrices are compactly expressed in terms of the quadratic

Lagrangian

V (2)
ltb =

[
m2

A +
λr

5

2
v2

]
H†

dHd +
λ4

2
v2|h−

d |
2 +

λ2

2
v2φ2

u

+
[λ5

4
(h0∗

d )2 +
λ7√

2
φuh

0∗
d + h.c.

]
v2, (45)

valid up to corrections of order cos β ∼ 1/ tanβ ' 1. Note that the first line of Eq. (45) is
symmetric under the Peccei-Quinn transformation

h0
d → e−iδh0

d, h−
d → eiδh−

d , or equivalently, Hd → eiδHd, (46)

while the second line is not. In the MSSM case, only the invariant terms are present at the tree

level. It is also evident that in the CP-conserving case, α = O(λ7), while λ5 gives the leading

breaks U(1) but 
loop suppressed

All U(1) breaking in EFT proportional to small parameters λ5,7, ys, 1/tanβ

hd → e
iα

hd

tanβ = ∞

h0

u
=

1
√

2
(vu + φu)

bR → e
iα

bR

preserves breaks   U(1)



Effective loops

Large tan(beta) effective Lagrangian allows to compute in terms of 
complex fields and symmetry-breaking insertions 11
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Figure 2: Upper row: A subset of one-loop diagrams for Bq − B̄q mixing in the effective two-

Higgs-doublet model. Lower row: Tree and one-loop diagrams contributing at large tan β when
employing the Lagrangian Lltb and tree-level couplings. The crosses denote the flavor-changing

neutral Higgs couplings and (in diagrams (f) and (g)) loop-suppressed Higgs mass terms. On the

lower row, arrows designate the flow of the conserved U(1) charge discussed in the text.

v/M -suppressed effects All of the couplings given in Eq. (11) correspond to zeroth order

in the expansion in v/MSUSY, or equivalently to the level of dimension-four operators. Gauge

invariance forbids any dimension-five operators built from quark and Higgs fields, so the leading

higher-dimensional operators are of dimension six. This can lead to more general Higgs-fermion

couplings than what one gets from the peculiar structure of in Eq. (11) and, in consequence, the

cancellation leading to CRR = 0might be broken. To see that this is indeed the case, consider an
operator

Q(6) =
1

M2
SUSY

(H†
uHu)(b̄RH†

uQ2L), (41)

which gives rise, inter alia, to effective dimension-three and -four couplings

2
√

2 v3
u

M2
SUSY

b̄RsL +
2 v2

u

M2
SUSY

(b̄RsLh0
u + 2 b̄RsLh0∗

u ). (42)

The first term is removed by a rediagonalization of the quark mass matrices, but the two remain-

ing terms, in general, are not. The appearance of h0
u in addition to h0∗

u will lead to a contribution

to CSLL
1 proportional to κbq C(6). However, because of R-parity, in the MSSM Q(6) and any

other dimension-six operators are only induced at loop level, and the loop-suppression factor is

not cancelled by factors of tanβ. (Recall that the O(1) FCNC couplings at dimension four are
nothing but rotated tree-level Yukawa couplings.) Hence any v/M corrections that break the

cancellation in F− imply an additional loop suppression, and we do not consider them here. On

hd = H0 − iA0 + O(loop; 1/ tanβ)

small subset
of diagrams
that                   cancel 
due to the 
symmetry                    

U(1) breaking couplings
(sfermion-loop suppressed)

U(1) preserving
Higgs loop

O(b̄RsLb̄RsL) O(b̄LsLb̄LsL)

only one loop 
diagram remains
(3-loop in MSSM)         



Effective hamiltonian
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3.1.3 Lower scales

In a purely leptonic decay such as τ → µγ, the matrix
element of the weak hamiltonian can be simply calculated
in perturbation theory. (In fact, in this case the use of the
weak Hamiltonian is not very essential due to the absence
of large radiative corrections.) For the large amount of
data that involve hadrons, one has only

A(i → f) =
∑

k

Ck(µ)〈f |Qk(µ)|i〉 ≡
∑

k

Ck(µ)Bk(i, f),

(49)
where µ is optimally chosen of order of the mass of i. The
hadronic matrix elements 〈f |Qk(µ)|i〉 are usually nonper-
turbative and only calculable in some cases. The latter in-
clude matrix elements for meson-antimeson mixing, which
can be obtained using numerical lattice QCD methods.
Other methods include QCD sum rules based on the op-
erator product expansions (for inclusive and some exclu-
sive B, as well as hadronic τ decays) and collinear expan-
sions (for some exclusive B decays), chiral perturbation
theory in K decays, and the use of approximate flavour
symmetries of QCD to reduce the number of independent
hadronic matrix elements; all of these have systematics
controlling which is a theoretical challenge.

3.2 K0 − K̄0, B0 − B̄0, Bs − B̄s, and D0 − D̄0 mixing

Meson mixings are ∆F = 2 processes. At one loop, the
effective ∆F = 2 hamiltonian to meson-antimeson oscil-
lations is solely due to box diagrams. Complete operator
bases have been given in [1,47]. For ∆B = ∆S = 2 tran-
sitions (Bs − B̄s mixing), one choice consists of the five
operators

Q1 = (s̄a
Lγµba

L)(s̄b
Lγµbb

L), (50)

Q2 = (s̄a
Rba

L)(s̄b
Rbb

L), (51)

Q3 = (s̄a
Rbb

L)(s̄b
Rba

L), (52)

Q4 = (s̄a
Rba

L)(s̄b
Lbb

R), (53)

Q5 = (s̄a
Rbb

L)(s̄b
Lba

R) (54)

(a, b colour indices), plus operators Q̃1,2,3 obtained by flip-
ping the chiralities of all fermions in Q̃1,2,3. The operator
basis for Bd− B̄d, D0− D̄0, and K0−K̄0 mixing are iden-
tical up to obvious substitutions of quark flavours (in the
case of K0−K̄0 and D0−D̄0 mixing, there are also sizable
“long-distance” contributions which cannot be written in
terms of local four-quark operators at the weak scale).

Only Q1 is generated in the SM (to excellent approxi-
mation), following from W − t boxes (Fig. 2.) This results
in

CSM
1 =

G2
F M2

W

16π2
(VtbV

∗
ts)

24 S(xt), (55)

where S [48] is listed in appendix A. SM NLO QCD cor-
rections are reviewed in [46].

Supersymmetric contributions have been computed in
[1,49,50,51,52,53,54,55,56]. Since each δ changes flavour
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dLidLj
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u, c, t

W W

Fig. 2. SM diagram for neutral meson-antimeson mixing. (Di-
agrams including Goldstone bosons in Rξ gauge not shown.)

by one unit, the leading contributions are of second or-
der in these parameters. The simplest way to obtain the
second-order terms is to work in the “mass-insertion ap-
proximation”, where the off-diagonal sfermion-mass-matrix
elements are treated as perturbations (Fig. 3). For in-
stance, for two LL mass insertions, diagram 3 (a) (to ze-
roth order in external momenta, and neglecting mass dif-
ferences between the squarks in the loop) is proportional
to

∫

d4k
k2(M2

d̃LL
)2sb

(k2 − m2
g̃)

2(k2 − m2
q̃)

4

=
(δd̃

sb)
2
LL

6

(m2
q̃)

2d2

(dm2
q̃)

2

∫

d4k
k2

(k2 − m2
g̃)

2(k2 − m2
q̃)

2
.(56)

The full result for the gluino-squark contributions reads [1]

C1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
LL, (57)

C̃1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
RR, (58)

C2 = −ε 204xf6(x) (δd̃
sb)

2
RL, (59)

C̃2 = −ε 204xf6(x) (δd̃
sb)

2
LR, (60)

C3 = ε 36xf6(x) (δd̃
sb)

2
RL, (61)

C̃3 = ε 36xf6(x) (δd̃
sb)

2
LR, (62)

C4 = −ε[504xf6(x) − 72f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 132f̃6(x) (δd
sb)LR(δd̃

sb)RL, (63)

C5 = −ε[24xf6(x) + 120f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 180f̃6(x) (δd̃
sb)LR(δd̃

sb)RL. (64)

Here (δd̃
ij)RL ≡ (δd̃

ji)
∗
LR, ε = α2

s/(216 m2
q̃) , x = m2

g̃/m2
q̃,

and f6(x), f̃6(x) are dimensionless loop functions (ap-
pendix A)

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
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3.1.3 Lower scales

In a purely leptonic decay such as τ → µγ, the matrix
element of the weak hamiltonian can be simply calculated
in perturbation theory. (In fact, in this case the use of the
weak Hamiltonian is not very essential due to the absence
of large radiative corrections.) For the large amount of
data that involve hadrons, one has only

A(i → f) =
∑

k

Ck(µ)〈f |Qk(µ)|i〉 ≡
∑

k

Ck(µ)Bk(i, f),

(49)
where µ is optimally chosen of order of the mass of i. The
hadronic matrix elements 〈f |Qk(µ)|i〉 are usually nonper-
turbative and only calculable in some cases. The latter in-
clude matrix elements for meson-antimeson mixing, which
can be obtained using numerical lattice QCD methods.
Other methods include QCD sum rules based on the op-
erator product expansions (for inclusive and some exclu-
sive B, as well as hadronic τ decays) and collinear expan-
sions (for some exclusive B decays), chiral perturbation
theory in K decays, and the use of approximate flavour
symmetries of QCD to reduce the number of independent
hadronic matrix elements; all of these have systematics
controlling which is a theoretical challenge.

3.2 K0 − K̄0, B0 − B̄0, Bs − B̄s, and D0 − D̄0 mixing

Meson mixings are ∆F = 2 processes. At one loop, the
effective ∆F = 2 hamiltonian to meson-antimeson oscil-
lations is solely due to box diagrams. Complete operator
bases have been given in [1,47]. For ∆B = ∆S = 2 tran-
sitions (Bs − B̄s mixing), one choice consists of the five
operators

Q1 = (s̄a
Lγµba

L)(s̄b
Lγµbb

L), (50)

Q2 = (s̄a
Rba

L)(s̄b
Rbb

L), (51)

Q3 = (s̄a
Rbb

L)(s̄b
Rba

L), (52)

Q4 = (s̄a
Rba

L)(s̄b
Lbb

R), (53)

Q5 = (s̄a
Rbb

L)(s̄b
Lba

R) (54)

(a, b colour indices), plus operators Q̃1,2,3 obtained by flip-
ping the chiralities of all fermions in Q̃1,2,3. The operator
basis for Bd− B̄d, D0− D̄0, and K0−K̄0 mixing are iden-
tical up to obvious substitutions of quark flavours (in the
case of K0−K̄0 and D0−D̄0 mixing, there are also sizable
“long-distance” contributions which cannot be written in
terms of local four-quark operators at the weak scale).

Only Q1 is generated in the SM (to excellent approxi-
mation), following from W − t boxes (Fig. 2.) This results
in

CSM
1 =

G2
F M2

W

16π2
(VtbV

∗
ts)

24 S(xt), (55)

where S [48] is listed in appendix A. SM NLO QCD cor-
rections are reviewed in [46].

Supersymmetric contributions have been computed in
[1,49,50,51,52,53,54,55,56]. Since each δ changes flavour
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Fig. 2. SM diagram for neutral meson-antimeson mixing. (Di-
agrams including Goldstone bosons in Rξ gauge not shown.)

by one unit, the leading contributions are of second or-
der in these parameters. The simplest way to obtain the
second-order terms is to work in the “mass-insertion ap-
proximation”, where the off-diagonal sfermion-mass-matrix
elements are treated as perturbations (Fig. 3). For in-
stance, for two LL mass insertions, diagram 3 (a) (to ze-
roth order in external momenta, and neglecting mass dif-
ferences between the squarks in the loop) is proportional
to

∫
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=
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2
.(56)

The full result for the gluino-squark contributions reads [1]

C1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
LL, (57)

C̃1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
RR, (58)

C2 = −ε 204xf6(x) (δd̃
sb)

2
RL, (59)

C̃2 = −ε 204xf6(x) (δd̃
sb)

2
LR, (60)

C3 = ε 36xf6(x) (δd̃
sb)

2
RL, (61)

C̃3 = ε 36xf6(x) (δd̃
sb)

2
LR, (62)

C4 = −ε[504xf6(x) − 72f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 132f̃6(x) (δd
sb)LR(δd̃

sb)RL, (63)

C5 = −ε[24xf6(x) + 120f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 180f̃6(x) (δd̃
sb)LR(δd̃

sb)RL. (64)

Here (δd̃
ij)RL ≡ (δd̃

ji)
∗
LR, ε = α2

s/(216 m2
q̃) , x = m2

g̃/m2
q̃,

and f6(x), f̃6(x) are dimensionless loop functions (ap-
pendix A)

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
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Figure 2: Upper row: A subset of one-loop diagrams for Bq − B̄q mixing in the effective two-

Higgs-doublet model. Lower row: Tree and one-loop diagrams contributing at large tan β when
employing the Lagrangian Lltb and tree-level couplings. The crosses denote the flavor-changing

neutral Higgs couplings and (in diagrams (f) and (g)) loop-suppressed Higgs mass terms. On the

lower row, arrows designate the flow of the conserved U(1) charge discussed in the text.

v/M -suppressed effects All of the couplings given in Eq. (11) correspond to zeroth order

in the expansion in v/MSUSY, or equivalently to the level of dimension-four operators. Gauge

invariance forbids any dimension-five operators built from quark and Higgs fields, so the leading

higher-dimensional operators are of dimension six. This can lead to more general Higgs-fermion

couplings than what one gets from the peculiar structure of in Eq. (11) and, in consequence, the

cancellation leading to CRR = 0might be broken. To see that this is indeed the case, consider an
operator

Q(6) =
1

M2
SUSY

(H†
uHu)(b̄RH†

uQ2L), (41)

which gives rise, inter alia, to effective dimension-three and -four couplings

2
√

2 v3
u

M2
SUSY

b̄RsL +
2 v2

u

M2
SUSY

(b̄RsLh0
u + 2 b̄RsLh0∗

u ). (42)

The first term is removed by a rediagonalization of the quark mass matrices, but the two remain-

ing terms, in general, are not. The appearance of h0
u in addition to h0∗

u will lead to a contribution

to CSLL
1 proportional to κbq C(6). However, because of R-parity, in the MSSM Q(6) and any

other dimension-six operators are only induced at loop level, and the loop-suppression factor is

not cancelled by factors of tanβ. (Recall that the O(1) FCNC couplings at dimension four are
nothing but rotated tree-level Yukawa couplings.) Hence any v/M corrections that break the

cancellation in F− imply an additional loop suppression, and we do not consider them here. On

hd = H0 − iA0 + O(loop; 1/ tanβ)

small subset

of diagrams

that                   cancel 

due to the 

symmetry                    

U(1) breaking couplings
(sfermion-loop suppressed)

U(1) preserving
Higgs loop
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3.1.3 Lower scales

In a purely leptonic decay such as τ → µγ, the matrix
element of the weak hamiltonian can be simply calculated
in perturbation theory. (In fact, in this case the use of the
weak Hamiltonian is not very essential due to the absence
of large radiative corrections.) For the large amount of
data that involve hadrons, one has only

A(i → f) =
∑

k

Ck(µ)〈f |Qk(µ)|i〉 ≡
∑

k

Ck(µ)Bk(i, f),

(49)
where µ is optimally chosen of order of the mass of i. The
hadronic matrix elements 〈f |Qk(µ)|i〉 are usually nonper-
turbative and only calculable in some cases. The latter in-
clude matrix elements for meson-antimeson mixing, which
can be obtained using numerical lattice QCD methods.
Other methods include QCD sum rules based on the op-
erator product expansions (for inclusive and some exclu-
sive B, as well as hadronic τ decays) and collinear expan-
sions (for some exclusive B decays), chiral perturbation
theory in K decays, and the use of approximate flavour
symmetries of QCD to reduce the number of independent
hadronic matrix elements; all of these have systematics
controlling which is a theoretical challenge.

3.2 K0 − K̄0, B0 − B̄0, Bs − B̄s, and D0 − D̄0 mixing

Meson mixings are ∆F = 2 processes. At one loop, the
effective ∆F = 2 hamiltonian to meson-antimeson oscil-
lations is solely due to box diagrams. Complete operator
bases have been given in [1,47]. For ∆B = ∆S = 2 tran-
sitions (Bs − B̄s mixing), one choice consists of the five
operators

Q1 = (s̄a
Lγµba

L)(s̄b
Lγµbb

L), (50)

Q2 = (s̄a
Rba

L)(s̄b
Rbb

L), (51)

Q3 = (s̄a
Rbb

L)(s̄b
Rba

L), (52)

Q4 = (s̄a
Rba

L)(s̄b
Lbb

R), (53)

Q5 = (s̄a
Rbb

L)(s̄b
Lba

R) (54)

(a, b colour indices), plus operators Q̃1,2,3 obtained by flip-
ping the chiralities of all fermions in Q̃1,2,3. The operator
basis for Bd− B̄d, D0− D̄0, and K0−K̄0 mixing are iden-
tical up to obvious substitutions of quark flavours (in the
case of K0−K̄0 and D0−D̄0 mixing, there are also sizable
“long-distance” contributions which cannot be written in
terms of local four-quark operators at the weak scale).

Only Q1 is generated in the SM (to excellent approxi-
mation), following from W − t boxes (Fig. 2.) This results
in

CSM
1 =

G2
F M2

W

16π2
(VtbV

∗
ts)

24 S(xt), (55)

where S [48] is listed in appendix A. SM NLO QCD cor-
rections are reviewed in [46].

Supersymmetric contributions have been computed in
[1,49,50,51,52,53,54,55,56]. Since each δ changes flavour
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Fig. 2. SM diagram for neutral meson-antimeson mixing. (Di-
agrams including Goldstone bosons in Rξ gauge not shown.)

by one unit, the leading contributions are of second or-
der in these parameters. The simplest way to obtain the
second-order terms is to work in the “mass-insertion ap-
proximation”, where the off-diagonal sfermion-mass-matrix
elements are treated as perturbations (Fig. 3). For in-
stance, for two LL mass insertions, diagram 3 (a) (to ze-
roth order in external momenta, and neglecting mass dif-
ferences between the squarks in the loop) is proportional
to

∫
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The full result for the gluino-squark contributions reads [1]

C1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
LL, (57)

C̃1 = −ε[24xf6(x) + 66f̃6(x)] (δd̃
sb)

2
RR, (58)

C2 = −ε 204xf6(x) (δd̃
sb)

2
RL, (59)

C̃2 = −ε 204xf6(x) (δd̃
sb)

2
LR, (60)

C3 = ε 36xf6(x) (δd̃
sb)

2
RL, (61)

C̃3 = ε 36xf6(x) (δd̃
sb)

2
LR, (62)

C4 = −ε[504xf6(x) − 72f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 132f̃6(x) (δd
sb)LR(δd̃

sb)RL, (63)

C5 = −ε[24xf6(x) + 120f̃6(x)] (δd̃
sb)LL(δd̃

sb)RR

+ε 180f̃6(x) (δd̃
sb)LR(δd̃

sb)RL. (64)

Here (δd̃
ij)RL ≡ (δd̃

ji)
∗
LR, ε = α2

s/(216 m2
q̃) , x = m2

g̃/m2
q̃,

and f6(x), f̃6(x) are dimensionless loop functions (ap-
pendix A)

There are also chargino-up-squark contributions. These
can be competitive with the gluino-squark contributions
if the charginos are lighter than the gluinos, as tends to
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U(1) classification of mixing amplitudes
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v/MSUSY corrections

consider a higher-dimensional higgs-fermion coupling

   

contributes, but is loop-suppressed (with no compensating tanβ factor)

do not consider higher-dimensional Higgs self couplings, as all 
possible amplitudes are already generated at dimension-4 level
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Figure 2: Upper row: A subset of one-loop diagrams for Bq − B̄q mixing in the effective two-

Higgs-doublet model. Lower row: Tree and one-loop diagrams contributing at large tan β when
employing the Lagrangian Lltb and tree-level couplings. The crosses denote the flavor-changing

neutral Higgs couplings and (in diagrams (f) and (g)) loop-suppressed Higgs mass terms. On the

lower row, arrows designate the flow of the conserved U(1) charge discussed in the text.

v/M -suppressed effects All of the couplings given in Eq. (11) correspond to zeroth order

in the expansion in v/MSUSY, or equivalently to the level of dimension-four operators. Gauge

invariance forbids any dimension-five operators built from quark and Higgs fields, so the leading

higher-dimensional operators are of dimension six. This can lead to more general Higgs-fermion

couplings than what one gets from the peculiar structure of in Eq. (11) and, in consequence, the

cancellation leading to CRR = 0might be broken. To see that this is indeed the case, consider an
operator

Q(6) =
1

M2
SUSY

(H†
uHu)(b̄RH†

uQ2L), (41)

which gives rise, inter alia, to effective dimension-three and -four couplings
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u ). (42)

The first term is removed by a rediagonalization of the quark mass matrices, but the two remain-

ing terms, in general, are not. The appearance of h0
u in addition to h0∗

u will lead to a contribution

to CSLL
1 proportional to κbq C(6). However, because of R-parity, in the MSSM Q(6) and any

other dimension-six operators are only induced at loop level, and the loop-suppression factor is

not cancelled by factors of tanβ. (Recall that the O(1) FCNC couplings at dimension four are
nothing but rotated tree-level Yukawa couplings.) Hence any v/M corrections that break the

cancellation in F− imply an additional loop suppression, and we do not consider them here. On
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Figure 2: Upper row: A subset of one-loop diagrams for Bq − B̄q mixing in the effective two-

Higgs-doublet model. Lower row: Tree and one-loop diagrams contributing at large tan β when
employing the Lagrangian Lltb and tree-level couplings. The crosses denote the flavor-changing

neutral Higgs couplings and (in diagrams (f) and (g)) loop-suppressed Higgs mass terms. On the

lower row, arrows designate the flow of the conserved U(1) charge discussed in the text.

v/M -suppressed effects All of the couplings given in Eq. (11) correspond to zeroth order

in the expansion in v/MSUSY, or equivalently to the level of dimension-four operators. Gauge

invariance forbids any dimension-five operators built from quark and Higgs fields, so the leading

higher-dimensional operators are of dimension six. This can lead to more general Higgs-fermion

couplings than what one gets from the peculiar structure of in Eq. (11) and, in consequence, the

cancellation leading to CRR = 0might be broken. To see that this is indeed the case, consider an
operator

Q(6) =
1

M2
SUSY

(H†
uHu)(b̄RH†

uQ2L), (41)

which gives rise, inter alia, to effective dimension-three and -four couplings

2
√

2 v3
u

M2
SUSY

b̄RsL +
2 v2

u

M2
SUSY

(b̄RsLh0
u + 2 b̄RsLh0∗

u ). (42)

The first term is removed by a rediagonalization of the quark mass matrices, but the two remain-

ing terms, in general, are not. The appearance of h0
u in addition to h0∗

u will lead to a contribution

to CSLL
1 proportional to κbq C(6). However, because of R-parity, in the MSSM Q(6) and any

other dimension-six operators are only induced at loop level, and the loop-suppression factor is

not cancelled by factors of tanβ. (Recall that the O(1) FCNC couplings at dimension four are
nothing but rotated tree-level Yukawa couplings.) Hence any v/M corrections that break the

cancellation in F− imply an additional loop suppression, and we do not consider them here. On

⇒
U(1)-breaking



tanβ scheme dependence

       first arises at this order, scheme independent up to higher orders.

However, higher orders in relation defining tanβ can in principle be 
themselves tanβ enhanced!

1-loop effective action due to heavy particles, for DRbar fields:

can directly interpreted as effective Lagrangian for non-canonical fields

many ways to make
EFT fields MSbar:

F
−

[see also Freitas, Stöckinger 03; Beneke et al 08]



tanβ scheme dependence

choose

relation between MSSM and EFT tanβ

where             renormalizes tadpole (                         , any field)

had we chosen                    , a term proportional tanβ would appear                            

tanβ = tanβDR + small (i.e. not tan β enhanced) shift

δv
tad
i

v + δv = 〈φ〉
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Effective Theory for the Higgs Sector: Quadratic Sector

Specify the scheme of the full theory

Zero tadpoles for sparticles: Fix m11 and m22

DR for tan β M2
A onshell fixes m2

12 or Bµ

Decouple α MW and MZ : vu/d + δvu/d = v eff
u/d

Hd

Hd

sLbR

bRsL

vuvu

Effective theory: Kinetic term

Redefine the kinetic term, i.e.
∂µHu∂µHd → Zud∂µHu∂µHd

(
v eff
u

v eff
d

)
=

(
1 + δZuu/2 δZud/2

0 1 + δZdd/2

) (
vu

vd

)

tanβfull " tanβeff

Compute ∆M in the broken theory:
λ5 gives the leading contribution

δZdu != 0



Phenomenology
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Results for ∆Ms/d

Approximate formula for ∆M
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≈ 16 . . . 27 ps−1

known effect

new effect
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All new effects numerically somewhat (accidentally) suppressed

nonperturbative 
QCD effects      

numerically 
small     

(∆Md)exp = (0.507 ± 0.005)ps−1



                                                                      

main features - and correlations - of              and                              
are preserved

ms/mb
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Figure 3: Left: constraint from B(Bs → µ+µ−) on ∆Ms. The dark gray (blue) line is the

theoretical prediction for Rs ≡ log10[B(Bs → µ+µ−)/∆Ms], the light gray (red) lines indi-
cate the size of SUSY effects in ∆Ms, and the gray band shows the values of Rs excluded

experimentally [?]. The dashed line corresponds to ∆Ms = ∆MSM
s + ∆MLR

s , while the plain

line also takes ∆MRR
s into account. Supersymmetric parameters have been fixed as follows:

tβ = 40, at,b = 2000GeV, Meg = µ = 1500GeV, Meq = M2 = 1000GeV, M1 = 500GeV.
Right: Analogue for the correlation between ∆Md and B(Bd → µ+µ−) (experimental val-
ues from [?, ?]). The bound on B(Bd → µ+µ−) is at present not as efficient as the bound on
B(Bs → µ+µ−) to exclude Higgs-mediated effects on the mass differences, and Rs (# Rd) is

preferably used.

with CRR
s = +4.4 ps−1 and CRR

d = +0.13 ps−1. The numbers in Eqs.(??) and (??) have been

obtained using |VtsV ∗
tb| = 0.041 [?], |VtdV ∗

tb| = 0.0086 [?], FBs = 0.24GeV and FBd
= 0.2GeV.

These values suffer from large uncertainties, and are given here for the purpose of illustration

(ratios are defined for actual numerical studies, see Fig.3). They correspond to the Standard

Model central values∆MSM
s = 20 ps−1 and ∆MSM

d = 0.59 ps−1.

A first observation is that the typical effect of ∆MRR
s is suppressed with respect to that of

∆MLR
s , which is due to a 1/2 symmetry factor and the small value of P SLL

1 . The effective

couplings in Eq.(91) are also not very large. To get an idea of their size, the residual λ5 value for

MSUSY → ∞ is given by

λ5 → −1
2(y

4
t + y4

b + y4
τ

3 − g4) 1
16π2 . (92)

The “non-flipped” contribution ∆MRR
q can still be relevant for small MA (i.e., < 200GeV).

However, in that case, the experimental upper bound on B(Bs → µ+µ−) [?, ?, ?, ?, ?] imposes
tough constraints on X and tβ ,

B(Bq → µ+µ−) = CqX
M2

W

M2
A

[
tβ
50

]2

(93)

with Cs = 3.9 10−5 and Cd = 1.2 10−6, suppressing the overall effect in ∆Mq (see Fig.3). In

other words, the correlation between B(Bq → µ+µ−) and ∆Mq can be modified, but this does

not spoil the conclusion derived in Refs. [?] that the present data on B(Bs → µ+µ−) already
exclude visible effects in ∆Ms (it actually reinforces it, see Fig.3), while a similar conclusion

can be reached for ∆Md.

[Gorbahn, SJ, Nierste, 
Trine, in progress]

∆MBs
BR(Bs → µ+µ−)

∆Ms/∆MSM
s
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tanβ = 40

                  excluding
                  including
     new corrections

Rs = log10[BR(Bs → µ+µ−)/∆MBs
ps]

Zero! (Almost)



tanβ scheme conversion

We have seen that no extra enhanced terms appear in B-physics 
observables if expressed through                .

Not so for other schemes: We show that different schemes in the 
literature differ by tanβ-enhanced terms. Start with:

“DCPR”        set of on-shell conditions; vanishing A0-Z0 mixing and
                     

tanβDR

DR Zi = δvi = minimal ⇒ δ tanβ = pure divergence



tanβ scheme conversion

Now interpet

within the MSSM. The Higgs kinetic operator contributes to A0-Z0 
mixing as:

    const 

However, only “diagonal” wave-function renormalizations 
are allowed in the MSSM, contributing:                    

    const
Cancelling A0Z0 mixing implies

∆Z21(1 + O(cos β)

δZii|DµHi|
2

tanβDR
− tanβDCPR =

tan2 β

2
Re∆12(1 + O(cos β))



Conclusions/outlook
• First systematic study of all “subleading” Higgs-mediated effects 

in Delta F=2 processes in the large tan(beta) MSSM

• Approximate symmetry allows for transparent & efficient 
treatment.

• We computed “zero”, i.e. no large corrections from Higgs loops. 
Correlations and phenomenology of e.g. Buras et al remain 
valid, no relevant corrections at even higher orders expected

• Parametrically large shifts between tanβ schemes in the 
literature exist


