Higgs mediated FCNC in the MSSM

Sebastian Jäger (TU München)

Ringberg Workshop on New Physics, Flavors and Jets 30.04.2009

in collaboration with M. Gorbahn, U. Nierste, S. Trine (0901.2065)

Outline

MSSM at large $tan\beta$

Symmetry & renormalization issues

Results & Conclusions

MSSM

	Q	$ ilde q \qquad q$	(3, 2; 1/6)
There are 5 types of	U^{c}	${ ilde u}^c = u^c$	$(\bar{3}, 1; -2/3)$
fermionic gauge multiplets.	D^{c}	$\widetilde{d}^c_{\widetilde{}} d^c$	$(\overline{3},1;1/3)$
in 2 generations	L	\tilde{l} l	(1, 2; -1/2)
in 5 generations,	E^{c}	$ ilde{e}^c e^c$	(1,1;1)
and a Higgs doublet	H_d	h_d $ ilde{h}_d$	(1, 2; -1/2)
	H_u	h_u $ ilde{h}_u$	(1, 2; 1/2)

Their supersymmetric non-gauge interactions derive from a (holomorphic) superpotential

$$W = \mu H_u \cdot H_d + Y_{ij}^U Q_i \cdot H_u U_j^c + Y_{ij}^D H_d \cdot Q_i D_j^c + Y_{ij}^E H_d \cdot L_i E_j^c$$

Holomorphy of W required two Higgs doublets H_u, H_d One couples to up-type quarks, the other to down-type quarks: a two-higgs doublet model of "type II"

Soft SUSY breaking

For phenomenological reasons, supersymmetry must be broken. Soft breaking (i.e. breaking that preserves absence of quadratic cutoff dependence) by explicit scalar masses and self-interactions

$$\mathcal{L}_{\text{soft}} = -m_{\tilde{q}ij}^2 \tilde{q}_i^{\dagger} \tilde{q}_j - m_{\tilde{u}ij}^2 \tilde{u}^{c\dagger} \tilde{u}^c - m_{\tilde{d}ij}^2 \tilde{d}^{c\dagger} \tilde{d}^c \qquad (18)$$
$$-m_{\tilde{l}ij}^2 \tilde{l}^{\dagger} \tilde{l} - m_{\tilde{e}ij}^2 \tilde{e}^{c\dagger} \tilde{e}^c - m_{h_U}^2 h_u^{\dagger} h_u - m_{h_d}^2 h_d^{\dagger} h_d$$
$$- \left[m_1 \tilde{b} \tilde{b} + m_2 \tilde{w}^A \tilde{w}^A + m_3 \tilde{g}^A \tilde{g}^A + B_\mu h_u \cdot h_d \right]$$
$$+ T_{ij}^U \tilde{q}_i \cdot h_u \tilde{u}_j^c + T_{ij}^D h_d \cdot \tilde{q}_i \tilde{d}_j^c + T_{ij}^E h_d \cdot \tilde{l}_i \tilde{e}_j^c + \text{h.c.} \right]$$

(in the MSSM) arbitrary bilinear and trilinear interactions are soft, but usually one restricts them to the above set (closed under renormalization) which corresponds 1:1 to the superpotential (Yukawa + mu-term)

Sflavour

Masses & trilinear soft terms are 3x3 matrices in flavour space: Many flavour and CP-violating parameters

Minimal flavour violation: Only Yukawas violate flavour

$$m_{\tilde{q}ij}^2 = m_0^2 \mathbf{1} + c_1 Y^{U^*} Y^{U^T} + c_2 Y^{D^*} Y^{D^T} + \dots$$

even simpler form (assumed below, valid at most at one scale)

$$m_{\tilde{q}ij}^2 = m_{\tilde{t}_L}^2 \mathbf{1}, \quad m_{\tilde{u}ij}^2 = m_{\tilde{t}_R}^2 \mathbf{1}, \quad \dots$$

$$T^U = a_t Y^U, \dots$$

approximately true at M_W in low-scale gauge mediation, at M_{Pl} in gravity mediation models with dilaton dominance

Scharged current

The brothers and sisters of the W^{+/-} couplings:

in minimal flavour violation, these are the only flavour violating vertices involving quarks

MSSM Higgs potential

Superpotential and soft terms contribute just mass terms to the Higgs self-interactions, rest fixed by SUSY gauge invariance

$$\begin{aligned} \mathcal{L}_{h} &= |D_{\mu}h_{u}|^{2} + |D_{\mu}h_{d}|^{2} - (|\mu|^{2} + m_{h_{u}}^{2})h_{u}^{\dagger}h_{u} - (|\mu|^{2} + m_{h_{d}}^{2})h_{d}^{\dagger}h_{d} - [B_{\mu}h_{u} \cdot h_{d} + \text{h.c.}] \\ &- \frac{g^{2} + g'^{2}}{8}(h_{u}^{\dagger}h_{u} - h_{d}^{\dagger}h_{d}^{2})^{2} - \frac{g^{2}}{2}(h_{u}^{\dagger}h_{d})(h_{d}^{\dagger}h_{u}) \end{aligned}$$

compare to most general renormalizable case

MSSM Higgs potential

Superpotential and soft terms contribute just mass terms to the Higgs self-interactions, rest fixed by SUSY gauge invariance

$$\mathcal{L}_{h} = |D_{\mu}h_{u}|^{2} + |D_{\mu}h_{d}|^{2} - (|\mu|^{2} + m_{h_{u}}^{2})h_{u}^{\dagger}h_{u} - (|\mu|^{2} + m_{h_{d}}^{2})h_{d}^{\dagger}h_{d} - [B_{\mu}h_{u} \cdot h_{d} + \text{h.c.}]$$
$$-\frac{g^{2} + g^{\prime 2}}{8}(h_{u}^{\dagger}h_{u} - h_{d}^{\dagger}h_{d}^{2})^{2} - \frac{g^{2}}{2}(h_{u}^{\dagger}h_{d})(h_{d}^{\dagger}h_{u})$$

compare to most general renormalizable case

$$V = m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u} + \left\{ m_{12}^{2} H_{u} \cdot H_{d} + h.c. \right\}$$

+ $\frac{\lambda_{1}}{2} (H_{d}^{\dagger} H_{d})^{2} + \frac{\lambda_{2}}{2} (H_{u}^{\dagger} H_{u})^{2} + \lambda_{3} (H_{u}^{\dagger} H_{u}) (H_{d}^{\dagger} H_{d}) + \lambda_{4} (H_{u}^{\dagger} H_{d}) (H_{d}^{\dagger} H_{u})$
+ $\left\{ \frac{\lambda_{5}}{2} (H_{u} \cdot H_{d})^{2} - \lambda_{6} (H_{d}^{\dagger} H_{d}) (H_{u} \cdot H_{d}) - \lambda_{7} (H_{u}^{\dagger} H_{u}) (H_{u} \cdot H_{d}) + \text{h.c.} \right\}$

not present in tree-level MSSM

MSSM Higgs potential

Superpotential and soft terms contribute just mass terms to the Higgs self-interactions, rest fixed by SUSY gauge invariance

$$\mathcal{L}_{h} = |D_{\mu}h_{u}|^{2} + |D_{\mu}h_{d}|^{2} - (|\mu|^{2} + m_{h_{u}}^{2})h_{u}^{\dagger}h_{u} - (|\mu|^{2} + m_{h_{d}}^{2})h_{d}^{\dagger}h_{d} - [B_{\mu}h_{u} \cdot h_{d} + \text{h.c.}]$$
$$-\frac{g^{2} + g'^{2}}{8}(h_{u}^{\dagger}h_{u} - h_{d}^{\dagger}h_{d}^{2})^{2} - \frac{g^{2}}{2}(h_{u}^{\dagger}h_{d})(h_{d}^{\dagger}h_{u})$$

compare to most general renormalizable case

$$V = m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u} + \left\{ m_{12}^{2} H_{u} \cdot H_{d} + h.c. \right\}$$

+ $\frac{\lambda_{1}}{2} (H_{d}^{\dagger} H_{d})^{2} + \frac{\lambda_{2}}{2} (H_{u}^{\dagger} H_{u})^{2} + \lambda_{3} (H_{u}^{\dagger} H_{u}) (H_{d}^{\dagger} H_{d}) + \lambda_{4} (H_{u}^{\dagger} H_{d}) (H_{d}^{\dagger} H_{u})$
+ $\left\{ \frac{\lambda_{5}}{2} (H_{u} \cdot H_{d})^{2} - \lambda_{6} (H_{d}^{\dagger} H_{d}) (H_{u} \cdot H_{d}) - \lambda_{7} (H_{u}^{\dagger} H_{u}) (H_{u} \cdot H_{d}) + h.c. \right\}$

not present in tree-level MSSM

n.b. model II (H_d->-H_d invariance) would allow λ_5 , forbid $\lambda_{6,7}$

In SM, higgs couplings flavour diagonal (proportional mass matrix)

$$M_{ij}^d = v \ Y_{ij}^d$$

In SM, higgs couplings flavour diagonal (proportional mass matrix)

 $M_{ij}^d = v_d Y_{ij}^d + v_u \Delta_{ij}$

In MSSM, 3 neutral higgses, 2 vevs v_u, v_d

In SM, higgs couplings flavour diagonal (proportional mass matrix)

In MSSM, 3 neutral higgses, 2 vevs v_u , v_d tan $\beta = v_u/v_d$

5σ sensitivity

3σ sensitivity BG only, 90%CL

20

Integrated Luminosity, fb⁻¹

30

 B_s

BR(B_s→μμ)x10⁻⁹)

10

1

0

SM

10

ATLAS/CMS

 $BR(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.5 \pm 0.5) \times 10^{-9}$

(normalize to ΔM_s)

Buras 03

B mixing at large tan (β)

$$\propto \kappa^2 y_b^2 \Big[\frac{\sin^2(\alpha - \beta)}{M_H^2} + \frac{\cos^2(\alpha - \beta)}{M_h^2} - \frac{1}{M_A^2} \Big] = 0$$

[LO higgs masses & mixing angle α]

Flipping the chirality of one b (hence one s) quark,

$$B_{s} \stackrel{b_{L}}{\underset{b_{R}}{A^{0} | h^{0}, H^{0}}} \overline{B}_{s} \propto |\kappa^{2}|y_{b}y_{s} \Big[\frac{\sin^{2}(\alpha - \beta)}{M_{H}^{2}} + \frac{\cos^{2}(\alpha - \beta)}{M_{h}^{2}} + \frac{1}{M_{A}^{2}} \Big] \neq 0$$

costs a factor m_s/m_b (in $B_d - B_d$ mixing: m_d/m_b - negligible)

But this is only one of several small parameters!

 $1/(16\pi^2) \sim m_s/m_b \sim 1/\tan\beta \sim 10^{-2}$

B mixing at large tan (β)

$$\propto \kappa \frac{y_b^2}{M_H^2} \left[\frac{\sin^2(\alpha - \beta)}{M_H^2} + \frac{\cos^2(\alpha - \beta)}{M_h^2} - \frac{1}{M_A^2} \right] = 0$$

[LO higgs masses & mixing angle α]

Flipping the chirality of one b (hence one s) quark,

$$B_{s} A^{0} h^{0} h^{0} H^{0} \overline{B}_{s} \propto |\kappa^{2}|y_{b}y_{s} \Big[\frac{\sin^{2}(\alpha - \beta)}{M_{H}^{2}} + \frac{\cos^{2}(\alpha - \beta)}{M_{h}^{2}} + \frac{1}{M_{A}^{2}} \Big] \neq 0$$

costs a factor m_s/m_b (in $B_d - B_d$ mixing: m_d/m_b - negligible)

But this is only one of several small parameters!

 $1/(16\pi^2) \sim m_s/m_b \sim 1/\tan\beta \sim 10^{-2}$

B mixing at large tan (β)

$$\propto \kappa y_b^2 \Big[\frac{\sin^2(\alpha - \beta)}{M_H^2} + \frac{\cos^2(\alpha - \beta)}{M_h^2} - \frac{1}{M_A^2} \Big] = 0$$

[LO higgs masses & mixing angle α]

Flipping the chirality of one b (hence one s) quark,

$$B_{s} A^{0} h^{0} H^{0} \overline{B}_{s} \propto |\kappa^{2} y_{b} y_{s}| \left[\frac{\sin^{2}(\alpha - \beta)}{M_{H}^{2}} + \frac{\cos^{2}(\alpha - \beta)}{M_{h}^{2}} + \frac{1}{M_{A}^{2}} \right] \neq 0$$

costs a factor m_s/m_b (in $B_d - B_d$ mixing: m_d/m_b - negligible)

But this is only one of several small parameters!

 $1/(16\pi^2) \sim m_s/m_b \sim 1/\tan\beta \sim 10^{-2}$

Can more loops or $1/tan(\beta)$ corrections remove m_s/m_b suppression? claims of large effects from Higgs self-energies both in ΔM_d and ΔM_s in recent literature [Parry 06; Freitas, Gasser, Haisch 07]

"Subleading" contributions to ΔM_s

The nonvanishing "effective" tree diagram (double penguin from MSSM viewpoint) is m_s/m_b suppressed over the naive expectation.

Do higher loop corrections remove this suppression and give O(1) corrections?

bs{h,H,A} vertex derived in limit v << M_{SUSY}, what about v/M corrections?

Is the cancellation broken at $(1/\tan \beta)^n$ level for some n?

tan β is renormalization scheme dependent, impact on ΔM_s ? More generally, on flavour physics?

 y_{h} m_h

Plan of attack

Assume hierarchy $M_{SUSY} \gg M_{H,A,h} \sim v=246 \text{ GeV}$

Integrate out all superpartners. Since $M \gg v$, this can be done in the "symmetric phase", ie without shifting Higgs fields by v

$$\begin{split} \int D[\tilde{g},\tilde{f},\tilde{h}]D[A,\psi,h_i]e^{i\int d^4x(\mathcal{L}_{gauge+kin}[\tilde{g},\tilde{f},\tilde{h},A,\psi,h_i]-V(h_i))} \\ &= \int D[A,\psi,h_i]e^{i\int d^4x(\mathcal{L}_{gauge-kin}[A,\psi,h_i]-V_{\text{eff}}(h_i))} \end{split}$$

$$V = \frac{g^2 + g'^2}{8} (h_u^{\dagger} h_u - h_d^{\dagger} h_d)^2 + \frac{g^2}{2} (h_u^{\dagger} h_d) (h_d^{\dagger} h_u) \implies V_{\text{eff}} = \sum \lambda_i Q_i [h_u, h_d]$$

then shift Higgs fields and compute loops with Higgs particles

Loop-corrected Higgs potential

Sparticle loops generate most general quartics

break tree-level relation giving zero O(1) amplitude

previous calculations [Haber, Hempfling unpublished; Carena et al.; ...?] in the context of Higgs masses & mixings here: complete computation including arbitrary MSSM flavour structure

$$\begin{split} V &= m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u} + \left\{ m_{12}^{2} H_{u} \cdot H_{d} + h.c. \right\} \\ &+ \frac{\lambda_{1}}{2} (H_{d}^{\dagger} H_{d})^{2} + \frac{\lambda_{2}}{2} (H_{u}^{\dagger} H_{u})^{2} + \lambda_{3} (H_{u}^{\dagger} H_{u}) (H_{d}^{\dagger} H_{d}) + \lambda_{4} (H_{u}^{\dagger} H_{d}) (H_{d}^{\dagger} H_{u}) \\ &+ \left\{ \frac{\lambda_{5}}{2} (H_{u} \cdot H_{d})^{2} - \lambda_{6} (H_{d}^{\dagger} H_{d}) (H_{u} \cdot H_{d}) - \lambda_{7} (H_{u}^{\dagger} H_{u}) (H_{u} \cdot H_{d}) + h.c. \right\} \begin{array}{l} \text{+higher-dimonstance} \\ \text{operators} \\ \text{(v/M corrections)} \end{array}$$

Loop-corrected Higgs potential

Sparticle loops generate most general quartics

break tree-level relation giving zero O(1) amplitude

previous calculations [Haber, Hempfling unpublished; Carena et al.; ...?] in the context of Higgs masses & mixings here: complete computation including arbitrary MSSM flavour structure

$$V = m_{11}^2 H_d^{\dagger} H_d + m_{22}^2 H_u^{\dagger} H_u + \left\{ m_{12}^2 H_u \cdot H_d + h.c. \right\} + \frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + higher-dimonant + \left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + h.c. \right\}$$

$$\left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + h.c. \right\}$$

$$\left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + h.c. \right\}$$

$$\left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + h.c. \right\}$$

not present in tree-level MSSM

$$\lambda_1^{(0)} = \lambda_2^{(0)} = -\lambda_3^{(0)} = (g^2 + g'^2)/4 \equiv \tilde{g}^2/4, \quad \lambda_4^{(0)} = g^2/2$$

Loop-corrected Higgs potential

Sparticle loops generate most general quartics

break tree-level relation giving zero O(1) amplitude

previous calculations [Haber, Hempfling unpublished; Carena et al.; ...?] in the context of Higgs masses & mixings here: complete computation including arbitrary MSSM flavour structure

$$V = m_{11}^2 H_d^{\dagger} H_d + m_{22}^2 H_u^{\dagger} H_u + \left\{ m_{12}^2 H_u \cdot H_d + h.c. \right\} + \frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + \text{higher-dimonsol} + \left\{ \frac{\lambda_5}{2} (H_u \cdot H_d)^2 - \lambda_6 (H_d^{\dagger} H_d) (H_u \cdot H_d) - \lambda_7 (H_u^{\dagger} H_u) (H_u \cdot H_d) + \text{h.c.} \right\}$$

allowed in a model II

not present in tree-level MSSM

$$\lambda_1^{(0)} = \lambda_2^{(0)} = -\lambda_3^{(0)} = (g^2 + g'^2)/4 \equiv \tilde{g}^2/4, \quad \lambda_4^{(0)} = g^2/2$$

$$\mathcal{F}^{-} = -\frac{v^4}{m_h^2 m_H^2 m_A^2} \times \left[\left(\lambda_2 \lambda_5^* - \lambda_7^{*2} \right) s_\beta^4 + 2 \left(\lambda_2 \lambda_6^* - \lambda_3 \lambda_7^* + \lambda_5^* \lambda_7 \right) s_\beta^3 c_\beta + \left(\lambda_1 \lambda_2 - \lambda_3^2 + |\lambda_5|^2 - 2\lambda_6 \lambda_7^* + 4\lambda_6^* \lambda_7 \right) s_\beta^2 c_\beta^2 + 2 \left(\lambda_5 \lambda_6^* - \lambda_3 \lambda_6 + \lambda_1 \lambda_7 \right) s_\beta c_\beta^3 + \left(\lambda_1 \lambda_5 - \lambda_6^2 \right) c_\beta^4 \right]$$

 $= (V_{tb}^* V_{ts})^2 \times (\text{fermion coupling}) \times \mathcal{F}^-$

$$\mathcal{F}^{-} = -\frac{v^4}{m_h^2 m_H^2 m_A^2} \times \begin{bmatrix} (\lambda_2 \lambda_5^* - \lambda_7^{*2}) s_\beta^4 + 2 (\lambda_2 \lambda_6^* - \lambda_3 \lambda_7^* + \lambda_5^* \lambda_7) s_\beta^3 c_\beta \\ + (\lambda_1 \lambda_2 - \lambda_3^2 + |\lambda_5|^2 - 2\lambda_6 \lambda_7^* + 4\lambda_6^* \lambda_7) s_\beta^2 c_\beta^2 \\ + 2(\lambda_5 \lambda_6^* - \lambda_3 \lambda_6 + \lambda_1 \lambda_7) s_\beta c_\beta^3 + (\lambda_1 \lambda_5 - \lambda_6^2) c_\beta^4 \end{bmatrix}$$

only contribution with tree-level matching is down by two powers of 1/tan β in fact $\lambda_1 \lambda_2 - \lambda_3^2 = 0$, but cancellation removed by leading logs(v/M)

 $= (V_{tb}^* V_{ts})^2 \times (\text{fermion coupling}) \times \mathcal{F}^-$

$$\mathcal{F}^{-} = -\frac{v^4}{m_h^2 m_H^2 m_A^2} \times \begin{bmatrix} \lambda_2 \lambda_5^* - \lambda_7^{*2} \right] s_{\beta}^4 + 2 \left(\lambda_2 \lambda_6^* - \lambda_3 \lambda_7^* + \lambda_5^* \lambda_7 \right) s_{\beta}^3 c_{\beta} \\ + \left(\lambda_1 \lambda_2 - \lambda_3^2 \right) \left| \lambda_5 \right|^2 - 2\lambda_6 \lambda_7^* + 4\lambda_6^* \lambda_7 \right) s_{\beta}^2 c_{\beta}^2 \\ + 2 \left(\lambda_5 \lambda_6^* - \lambda_3 \lambda_6 + \lambda_1 \lambda_7 \right) s_{\beta} c_{\beta}^3 + \left(\lambda_1 \lambda_5 - \lambda_6^2 \right) c_{\beta}^4 \end{bmatrix}$$

only contribution with tree-level matching is down by two powers of 1/tan β in fact $\lambda_1 \lambda_2 - \lambda_3^2 = 0$, but cancellation removed by leading logs(v/M)

New contribution at one loop matching neither m_s/m_b nor tan β suppressed

$U(I)_{PQ}$ symmetry at large tan (β)

What is the reason for the leading-order cancellation?

cannot be model-II restrictions, because λ_5 is allowed by these

The relevant symmetry is continuous and of the Peccei-Quinn type:

 $h_d \rightarrow e^{i\alpha} h_d$ + suitable (chiral) transformations $h_u \rightarrow h_u$ of fermion

broken in MSSM only by the μ parameter

This is a symmetry which forbids $\lambda_{5,6,7}$ but allows $\lambda_{1...4}$

The useful aspect is that it is not spontaneously broken in the large $tan\beta$ limit $h_d >= 0$

Large tan (β) effective Lagrangian

- leading-order Higgs potential invariant under $h_d \rightarrow e^{i\alpha}h_d$ even if electroweak symmetry broken, at $\tan \beta = \infty$ loop-corrected potential still approximately invariant, at

$$\begin{split} V_{\rm ltb}^{(2)} &= \left[m_A^2 + \frac{\lambda_5^r}{2} v^2 \right] H_d^{\dagger} H_d + \frac{\lambda_4}{2} v^2 |h_d^-|^2 + \frac{\lambda_2}{2} v^2 \phi_u^2 \quad \text{preserves U(1)} \\ &+ \left[\frac{\lambda_5}{4} (h_d^{0*})^2 + \frac{\lambda_7}{\sqrt{2}} \phi_u h_d^{0*} + \text{h.c.} \right] v^2, \quad \text{breaks U(1) but loop suppressed} \end{split}$$

- For the fermions assign charge only to $b_R: b_R \rightarrow e^{i\alpha}b_R$

$$\mathcal{L}_{\text{eff}} \supset \kappa (\cos\beta h_u^{0*} - \sin\beta h_d^0) [y_b \bar{b}_R s_L + y_s \bar{s}_R b_L]$$
preserves breaks U(1)

All U(1) breaking in EFT proportional to small parameters $\lambda_{5,7}$, y_s, 1/tan β

Effective loops

Large tan(beta) effective Lagrangian allows to compute in terms of complex fields and symmetry-breaking insertions

$h_d = H Effective hamiltonian$

U(I) classification of mixing amplitudes						
$\mathcal{A}(B \to \bar{B}) = \sum_{i} C$	$C_i \langle \bar{B} \mathcal{O}_i B angle$	weak hamiltonian (4-quark o	operators)		
i operator(s)	U(1) charge	suppression of lea Higgs contribution	ading			
$\mathcal{O}(\overline{b}_R s_L \overline{b}_R s_L)$	$\Delta Q = 2$	λ_5 / sparticle loop	new			
$\mathcal{O}(ar{b}_R s_L ar{b}_L s_R)$	$\Delta Q = 1$	Уs	known	formally of same		
$\mathcal{O}(\overline{b}_L s_L \overline{b}_L s_L)$ (SM)	$\Delta Q = 0$	2HDM loop (no scalar tree)	new	SIZe		
$\mathcal{O}(\overline{b}_R s_R \overline{b}_R s_R)$	$\Delta Q = 2$	(y _s) ² and 2HDM loop		tiny, ignore		
$\mathcal{O}(ar{b}_L s_R ar{b}_L s_R)$	$\Delta Q = 0$	$(y_s)^2$ and λ_5 /sparticle loop				
	$[\Delta Q' = -2]$	<i>(</i> 7				
[modified assignment]						

v/M_{SUSY} corrections

consider a higher-dimensional higgs-fermion coupling

contributes, but is loop-suppressed (with no compensating tan β factor)

do not consider higher-dimensional Higgs self couplings, as all possible amplitudes are already generated at dimension-4 level

tanß scheme dependence

 \mathcal{F}^- first arises at this order, scheme independent up to higher orders.

However, higher orders in relation defining tanβ can in principle be themselves tanβ enhanced! [see also Freitas, Stöckinger 03; Beneke et al 08]

1-loop effective action due to heavy particles, for DRbar fields:

$$S_{gh} = \int d^4x \left[(1 + \Delta Z_W)(-\frac{1}{4}) W^A_{\mu\nu} W^{\mu\nu A} + (1 + \Delta Z_B)(-\frac{1}{4}) B_{\mu\nu} B^{\mu\nu} + (\delta_{ij} + \Delta Z_{ij}) (D_\mu H_i)^{\dagger} (D^\mu H_j) - \hat{m}_{ij}^2 H_i^{\dagger} H_j - \sum_{k=1}^7 \hat{\lambda}_k O_k + \dots \right]$$

can directly interpreted as effective Lagrangian for non-canonical fields

many ways to make $\begin{pmatrix} -\epsilon H_d^{DR} \\ H_u^{DR} \end{pmatrix}$

$$\begin{pmatrix} -\epsilon H_d^{\overline{\mathrm{DR}}} \\ H_u^{\overline{\mathrm{DR}}} \end{pmatrix} = \begin{pmatrix} Z_{dd} & Z_{du} \\ Z_{ud} & Z_{uu} \end{pmatrix} \begin{pmatrix} H_1^{\mathrm{eff}} \\ H_2^{\mathrm{eff}} \end{pmatrix}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \underset{L}{\overset{b_{R}}}{\overset{b_{R}}{\overset{b_{R}}{\overset{b_{R}}}{\overset{b_{R$$

Phenomenology

$$(\Delta M - \Delta M_{\rm SM})_{s/d} = \left\{ \begin{array}{c} -14 \text{ps}^{-1} \\ \sim 0 \text{ps}^{-1} \end{array} \right\} X \left[\frac{m_s}{0.06 \text{GeV}} \right] \left[\frac{m_b}{3 \text{GeV}} \right] \left[\frac{P_2^{\rm LR}}{2.56} \right] \text{ known effect} \\ + \left\{ \begin{array}{c} 4.4 \text{ps}^{-1} \\ .13 \text{ps}^{-1} \end{array} \right\} X \left[\frac{M_W^2 \left(-\lambda_5 + \frac{\lambda_7^2}{\lambda_2} \right) 16\pi^2}{M_A^2} \right] \left[\frac{m_b}{3 \text{GeV}} \right]^2 \left[\frac{P_1^{\rm SLL}}{-1.06} \right] \text{ new effect} \\ \text{new effect} \\ X = \frac{m_t^4}{M_W^2 M_A^2} \frac{\left(\epsilon_{\rm Y} 16\pi^2\right)^2}{\left(1 + \tilde{\epsilon}_3 \tan \beta\right)^2 \left(1 + \epsilon_0 \tan \beta\right)^2} \left[\frac{\tan \beta}{50} \right]^4 \qquad \begin{array}{c} \text{numerically small} \end{array}$$

All new effects numerically somewhat (accidentally) suppressed

$$(\Delta M_s)_{\rm exp} = (17.77 \pm 0.12) {\rm ps}^{-1}$$

 $\Delta M_s^{\rm SM} \approx 16 \dots 27 {\rm ps}^{-1}$

 $(\Delta M_d)_{\rm exp} = (0.507 \pm 0.005) \rm ps^{-1}$

main features - and correlations - of ΔM_{B_s} and $BR(B_s \to \mu^+ \mu^-)$ are preserved

tanß scheme conversion

We have seen that no extra enhanced terms appear in B-physics observables if expressed through $\tan \beta^{\overline{\text{DR}}}$.

Not so for other schemes: We show that different schemes in the literature differ by $\tan\beta$ -enhanced terms. Start with:

$$\tan \beta^{0} \equiv \frac{v_{u}^{0}}{v_{d}^{0}} \stackrel{1-\text{loop}}{=} \tan \beta \left(1 + \frac{1}{2} \delta Z_{u} - \frac{1}{2} \delta Z_{d} - \frac{\delta v_{u}}{v_{u}} + \frac{\delta v_{d}}{v_{d}} \right) \equiv \tan \beta + \delta \tan \beta$$

$$\langle h_{i}^{0} - \frac{1}{\sqrt{2}} v_{i}^{0} \rangle \stackrel{!}{=} 0 \qquad v_{i}^{0} = Z_{i}^{1/2} (v_{i} - \delta v_{i})$$

$$\tan \beta^{R} - \tan \beta^{R'} = \delta \tan \beta^{R'} - \delta \tan \beta^{R}$$

$$\overline{\text{DR}} \qquad Z_{i} = \delta v_{i} = \text{minimal} \implies \delta \tan \beta = \text{pure divergence}$$
"DCPR" set of on-shell conditions; vanishing A⁰-Z⁰ mixing and
$$\frac{\delta v_{u}}{v_{u}} = \frac{\delta v_{d}}{v_{d}}$$

$tan\beta$ scheme conversion

Now interpet
$$S_{gh} = \int d^4x \left[(1 + \Delta Z_W)(-\frac{1}{4})W^A_{\mu\nu}W^{\mu\nu A} + (1 + \Delta Z_B)(-\frac{1}{4})B_{\mu\nu}B^{\mu\nu} + (\delta_{ij} + \Delta Z_{ij})(D_\mu H_i)^{\dagger}(D^\mu H_j) - \hat{m}_{ij}^2 H_i^{\dagger} H_j - \sum_{k=1}^7 \hat{\lambda}_k O_k + \dots \right]$$

within the MSSM. The Higgs kinetic operator contributes to A^0 - Z^0 mixing as:

const $\Delta Z_{21}(1 + \mathcal{O}(\cos \beta))$

However, only "diagonal" wave-function renormalizations $\delta Z_{ii} |D_{\mu}H_i|^2$ are allowed in the MSSM, contributing:

const $\sin\beta\cos\beta(\delta Z_{uu} - \delta Z_{dd})$ Cancelling A⁰Z⁰ mixing implies

$$\tan\beta^{\overline{\mathrm{DR}}} - \tan\beta^{\mathrm{DCPR}} = \frac{\tan^2\beta}{2} \operatorname{Re}\Delta_{12}(1 + \mathcal{O}(\cos\beta))$$

Conclusions/outlook

- First systematic study of all "subleading" Higgs-mediated effects in Delta F=2 processes in the large tan(beta) MSSM
- Approximate symmetry allows for transparent & efficient treatment.
- We computed "zero", i.e. no large corrections from Higgs loops. Correlations and phenomenology of e.g. Buras et al remain valid, no relevant corrections at even higher orders expected
- Parametrically large shifts between tanβ schemes in the literature exist