Flavor Phyics in the Littlest Higgs model with T-parity

Toru Goto (KEK)

Ringberg Workshop, 28 April 2009

T. Goto, Y. Okada and Y. Yamamoto, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] $+\alpha$.

1

Ringberg Workshop, 28 April 2009

Introduction

Little Higgs models atract interests in recent years.

• Possible solution to *little hiearchy problem*.

▷ NP scale $\gtrsim O(\text{TeV})$ vs. Higgs boson mass $\sim 100 \text{GeV}$.

- Basic idea: Higgs bosons are assumed to be pseudo Nambu-Goldstone bosons of a spontaneous global symmetry breaking.
- One loop correction to the Higgs boson mass is suppressed by *collective symmetry breaking*.

Littlest Higgs model (Arkani-Hamed et al., 2002)

- An implementation based on SU(5)/SO(5) nonlinear sigma model.
- Electroweak precision constraints
 - \Rightarrow SU(5) \rightarrow SO(5) SSB scale \gtrsim 4TeV (Csaki *et al.*).
 - ▷ Little hierarchy problem revives.
- Discrete Z_2 symmetry "T-parity" helps (Cheng & Low, 2003).

 \Rightarrow LHT is phenomenologically viable.

Introduction: flavor physics in LHT

LHT provides new particles (heavy gauge bosons and quarks/leptons) and new flavor mixings.

- \Rightarrow Various signals in flavor observables expected and studied.
 - Blanke et al. (2006–2007), Hubisz et al. (2006), Choudhury et al. (2007), ...

We have recalculated flavor changing amplitudes in LHT.

- A missing piece found, that cancels previously reported UV divergence.
- Applied to $K \rightarrow \pi \nu \overline{\nu}$ and LFVs.

Contents in the following:

- The model: LHT,
- Flavor changing Z penguin amplitude,
- Numerical results on $K \rightarrow \pi \nu \overline{\nu}$ and $\mu LFVs$.

Littlest Higgs model: SU(5)/SO(5) nonlinear sigma model

• SU(5) global symmetry is broken down to SO(5) by a VEV of Σ (15 of SU(5)) with a symmetry breaking scale $f \sim \text{TeV}$:

$$\langle \Sigma \rangle = \Sigma_0 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

• SU(5)/SO(5): 24 – 10 = 14 Nambu-Goldstone bosons.

$$\Sigma = \xi \Sigma_0 \xi^T, \qquad \xi = \exp(i\Pi/f),$$

$$\Pi = \frac{1}{2} \begin{pmatrix} -\omega^0 - \frac{\eta}{\sqrt{5}} & -\sqrt{2}\omega^+ & | -i\sqrt{2}\pi^+ & | -i2\phi^{++} & -i\sqrt{2}\phi^+ & \rangle \\ -\sqrt{2}\omega^- & \omega^0 - \frac{\eta}{\sqrt{5}} & h + i\pi^0 & | -i\sqrt{2}\phi^+ & \sqrt{2}(\phi^P - i\phi^0) \\ \hline i\sqrt{2}\pi^- & h - i\pi^0 & \frac{4}{\sqrt{5}}\eta & | -i\sqrt{2}\pi^+ & h + i\pi^0 \\ \hline i2\phi^{--} & i\sqrt{2}\phi^- & | i\sqrt{2}\pi^- & | -\omega^0 - \frac{\eta}{\sqrt{5}} & -\sqrt{2}\omega^- \\ \hline i\sqrt{2}\phi^- & \sqrt{2}(\phi^P + i\phi^0) & h - i\pi^0 & | -\sqrt{2}\omega^+ & \omega^0 - \frac{\eta}{\sqrt{5}} \end{pmatrix}$$

	$(SU(2)_1)$)
LHT: gauge symmetries			
		SU(2)	$\overline{)_2}$

global:
$$SU(5)$$

 \cup $\stackrel{f}{\Rightarrow}$
 U $SO(5)$
 \bigcup gauged: $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2$ $\stackrel{f}{\Rightarrow}$
 $SU(2) \times U(1)$
 SM electroweak

T-parity: $[SU(2) \times U(1)]_1 \xleftarrow{\top} [SU(2) \times U(1)]_2 \Rightarrow (g,g')_1 = (g,g')_2.$ Gauge bosons

 $\begin{bmatrix} W_1^a, B_1 \end{bmatrix}$ \Rightarrow $\begin{cases} W_L^{\pm}, Z_L, A_L & \text{``light'' SM gauge bosons (T-even)} \\ W_2^{\pm}, B_2 \end{bmatrix}$ \Rightarrow $\begin{cases} W_L^{\pm}, Z_L, A_L & \text{``light'' SM gauge bosons (T-even)} \\ W_H^{\pm}, Z_H, A_H & \text{``heavy'' } O(f) \text{ masses (T-odd)} \end{cases}$

(pseudo) Nambu-Goldstone bosons

• $\pi^{\pm,0}$, $h \to SM$ Higgs doublet ($\pi^{\pm,0}$ eaten by W_L^{\pm} , Z_L), T-even.

•
$$\omega^{\pm,0}$$
, $\eta \rightarrow$ eaten by W_H^{\pm} , Z_H , A_H , T-odd.

• $\phi^{\pm\pm,\pm,0,P} \rightarrow \text{physical}$, T-odd (effects on flavor obs. suppressed).

LHT: fermion sector

Fermions are doubled for T-parity.

Left-handed

	<i>SU</i> (2) ₁	<i>SU</i> (2) ₂	Y_1	Y_2	<i>SU</i> (2) _{<i>L</i>}	Y	T-parity
$q_1^i = \left(\begin{array}{c} u_1^i \\ d_1^i \end{array}\right)$	2	1	$\frac{1}{30}$	<u>4</u> 30	2	$\frac{1}{6}$	$a_1^i \leftrightarrow -a_2^i$
$q_2^i = \left(\begin{array}{c} u_2^i \\ d_2^i \end{array}\right)$	1	2	4 30	$\frac{1}{30}$	2	$\frac{1}{6}$	41 42

Right-handed

	<i>SU</i> (2) ₁	<i>SU</i> (2) ₂	Y_1	Y_2	<i>SU</i> (2) _{<i>L</i>}	Y	T-parity
u^i_R	1	1	$\frac{1}{3}$	$\frac{1}{3}$	1	<u>2</u> 3	+
d_R^i	1	1	$-\frac{1}{6}$	$-\frac{1}{6}$	1	$-\frac{1}{3}$	+
$\left \begin{array}{c} q_{HR}^{i} = \left(\begin{array}{c} u_{HR}^{i} \\ d_{HR}^{i} \end{array} \right) \right $	nonlinear			2	$\frac{1}{6}$	_	

- Singlet top partners T_{\pm} are also introduced to cancel one-loop top Yukawa contribution to SM Higgs boson mass (LH mechanism).
- $u \Rightarrow \nu$ and $d \Rightarrow e$ (with U(1) charge adjustments) for leptons.

SU(5) embedding for Yukawa and gauge interactions

Building blocks of gauge invariant Lagrangian: SU(5) "containers".

$$\Psi_1(\overline{5}) = \begin{pmatrix} -i\sigma^2 q_1 \\ 0 \\ 0 \end{pmatrix}, \quad \Psi_2(5) = \begin{pmatrix} 0 \\ 0 \\ -i\sigma^2 q_2 \end{pmatrix}, \quad \Psi_R = \begin{pmatrix} * \\ * \\ -i\sigma^2 q_{HR} \end{pmatrix}.$$

• $\Psi_{1,2}$: linear representations of SU(5).

• Ψ_R : 5 of SO(5), nonlinear representations of SU(5).

 $\triangleright \Psi'_R = \xi \Psi_R$ transforms as 5 of SU(5).

Yukawa coupling $\rightarrow O(f)$ masses of T-odd fermions.

$$\mathcal{L}_{H} = -\kappa^{ij} f \left[\overline{\Psi}_{2}^{i} \Psi_{R}^{\prime j} - \overline{\Psi}_{1}^{i} \widetilde{\Psi}_{R}^{\prime j} \right] + \text{H.c.}, \qquad \widetilde{\Psi}_{R}^{\prime}: \text{ $$T$-conjugate of $$\Psi_{R}^{\prime}$}.$$

 κ^{ij} makes mismatch between light and heavy fermion mass bases.

 \Rightarrow new flavor mixing occurs in couplings with T-odd gauge bosons.

$$O(rac{v^2}{f^2})$$
 corrections in Z_L coupling

Vacuum configuration after EWSB: $h \rightarrow h + v$ (v = 246 GeV).

$$\langle \Sigma \rangle_v = \xi_v \Sigma_0 \xi_v^T, \qquad \xi_v = 1 + O(\frac{v}{f}).$$

Expansion around $\langle \Sigma \rangle_v$ leads to $O(\frac{v^2}{f^2})$ corrections in gauge couplings of the pNG bosons and q_{HR} .

[Blanke et al., 2007]

Flavor changing processes in LHT

We studied:

- $K \rightarrow \pi \, \nu \, \overline{\nu}$ [PLB670(2009)378],
- Muon LFVs ($\mu \rightarrow e \gamma$, $\mu \rightarrow e e e$, $\mu \rightarrow e$ conversion) [preliminary].

FCNC in LHT: $K \rightarrow \pi \nu \overline{\nu} \ (s \rightarrow d \nu \overline{\nu})$

Low energy effective Lagrangian:

$$\mathcal{L}_{[d\nu]}^{\mathsf{eff}} = C_{[d\nu]LL}^{ijlm} (\overline{d}^i \gamma^{\mu} d_L^j) (\overline{\nu}^l \gamma_{\mu} \nu_L^m), \qquad i \neq j.$$

- Right-handed $d^j \rightarrow d^i$ current is suppressed in LHT (as in SM).
- Leading order = one loop (no tree level contributions).

- In 't Hooft-Feynman gauge, box terms are manifestly finite.
- T-even sector = SM \oplus SU(2) singlet vector-like top partner T_+ . $\triangleright C^{ijkl}_{[d\nu]LL}$ (T-even) $\propto \lambda^{(ij)}_t = (V^*_{\mathsf{CKM}})_{ti}(V_{\mathsf{CKM}})_{tj}$.

T-odd loops: Z penguins

- Zeroth order terms in $\frac{v^2}{f^2}$ expansion vanishes.
- Relevant diagrams for leading $O(\frac{v^2}{f^2})$ contributions:

• UV divergences cancel in the sum \Rightarrow finite amplitude obtained.

$$C_{[d\nu]LL}^{ijlm}(\mathsf{T}\text{-}\mathsf{odd}) = -\frac{g^4}{(4\pi)^2 m_{W_L}^2} \sum_{k,n=1}^3 \lambda_k^{Hd(ij)} \lambda_n^{H\nu(lm)} \\ \times \frac{v^2}{16f^2} \left[z_k F_9(z_k) - G_{[du]}^{\Box \text{odd}}(z_k, y_n, r) \right], \\ z_k = m_{q_k^{\mu}}^2 / m_{W_H}^2, \quad y_n = m_{\ell_n^{\mu}}^2 / m_{W_H}^2, \quad y = m_{A_H}^2 / m_{Z_H}^2. \\ \lambda_k^{Hd(ij)} = (V_{Hd}^*)_{ki} (V_{Hd})_{kj}, \quad \lambda_n^{H\nu(lm)} = (V_{H\nu}^*)_{nl} (V_{H\nu})_{nm}.$$

 $\xi_3 = (V_{Hd})_{31}(V_{Hd})_{32}^*$. Re $[(V_{Hd})_{31}^*(V_{Hd})_{32}] = 0$ (to suppress T-odd contrib. to ε_K).

 $B(K_L \to \pi^0 \,\nu \,\bar{\nu}) \qquad B(\exp) < 2.1 \times 10^{-7}$

 $\xi_3 = (V_{Hd})_{31}(V_{Hd})^*_{32}$. Re $[(V_{Hd})^*_{31}(V_{Hd})_{32}] = 0$ (to suppress T-odd contrib. to ε_K).

 $\mu \mathsf{LFV}: \ \mu \to e \ \gamma, \ \mu \to e \ e \ e \ and \ \mu \to e \ conversion$

- T-odd loops only.
- Calculated in the same way as quark FCNC: $u \Leftrightarrow \nu$, $d \Leftrightarrow e$.

See also: del Águila, Illana & Jenkins, JHEP0901(2009)080;

Blanke et al., JHEP05(2007)013.

 $\mu \mathsf{LFV}: \ \mu \to e \, \gamma, \ \mu \to e \, e \, e \, and \ \mu \to e \, conversion$

- Assumptions: $\theta_{i3} = \delta_{ij} = 0$ in V_{He} ; q_H degenerate in mass.
- Matrix elements for $\mu \rightarrow e$ conv. taken from Kitano, Koike and Okada, PRD66(2002)096002.

$\mu \mathsf{LFV}: \mu \to e \text{ conversion}$

- B=conversion rate/capture rate depends on nucleus.
- Cancelation among amplitudes possible.
- Experiments aiming 10^{-16} planned (Mu2e@FNAL, COMET@J-PARC).

Conclusion

- FCNC and LFV processes in the Littlest Higgs model with T-parity are (re-)studied.
- One loop $d^i \to d^j$ and $e^i \to e^j$ amplitudes are UV finite at $O(\frac{v^2}{f^2})$.
- Branching fractions of $K \to \pi \nu \overline{\nu}$ decays may differ from SM predictions significantly.
- $\mu \to e \gamma$, $\mu \to e e e$ and $\mu \to e$ conversion can be measurable in near future experiments.

Backups

\boldsymbol{Z} penguins: T-odd loops

Calculated in $\frac{v^2}{f^2}$ expansion.

- and : $O(\frac{v^2}{f^2})$ corrections.
- zeroth order vanishes.

Ringberg Workshop, 28 April 2009

Loop functions

$$F_{9}(x) = \frac{x-6}{2(x-1)} + \frac{(3x+2)\log x}{2(x-1)^{2}},$$

$$G_{[dd]}^{\Box \text{odd}}(x,y,r) = G_{[dd]}^{\Box}(x,y) - \frac{3}{4} \Big[g_{2[1]}(x,y) + \frac{r}{25} g_{2[1]}(\frac{x}{r},\frac{y}{r}) + \frac{2r}{5} g_{2}(x,y,r) \Big],$$

$$G_{[du]}^{\Box \text{odd}}(x,y,r) = G_{[du]}^{\Box}(x,y) + \frac{3}{4} \Big[g_{2[1]}(x,y) + \frac{r}{25} g_{2[1]}(\frac{x}{r},\frac{y}{r}) - \frac{2r}{5} g_{2}(x,y,r) \Big].$$

$$G_{[dd]}^{\Box}(x,y) = \Big(1 + \frac{xy}{4} \Big) g_{2[1]}(x,y) - 2xyg_{1[1]}(x,y),$$

$$G_{[du]}^{\Box}(x,y) = \Big(4 + \frac{xy}{4} \Big) g_{2[1]}(x,y) - 2xyg_{1[1]}(x,y),$$

$$g_{2}(x,y,z) = \frac{x^{2}\log x}{(x-1)(x-y)(x-z)} + (\text{cycl. perm.}),$$

$$g_{2[1]}(x,y) = g_{2}(x,y,1).$$

Result of T-even loops for $d^j
ightarrow d^i \, \nu \, ar
u$

$$C_{[d\nu]LL}^{ijlm}(\text{T-even}) = -\frac{g^4}{(4\pi)^2 m_{W_L}^2} \delta^{lm} \left[\sum_{k=c,t} \lambda_k^{d(ij)} X_{\text{SM}}(x_k) + \lambda_t^{d(ij)} \bar{X}_{\text{even}} \right],$$

$$X_{\text{SM}}(x) = \frac{x}{8} \left[\frac{(3x-6)\log x}{(x-1)^2} + \frac{x+2}{x-1} \right],$$

$$\bar{X}_{\text{even}} = s_L^2 \left[X_{\text{SM}}(x_{T_+}) - X_{\text{SM}}(x_t) \right]$$

$$+ \frac{s_L^2 c_L^2}{4} \left[-\frac{x_t + x_{T_+}}{2} + \frac{x_t x_{T_+}(\log x_t - \log x_{T_+})}{x_t - x_{T_+}} \right].$$

_

Numerical inputs

LHT has 20 new parameters:

- $f, m_{T_+},$
- $m_{u_H^k}$, $m_{e_H^k}$,
- 3 angles + 3 phases in V_{Hd} , 3 angles + 3 phases in $V_{H\nu}$.

In the $K \to \pi \, \nu \, \overline{\nu}$ plots, we fix

•
$$f = 1 \text{TeV}, m_{T_+} = 1.34 \text{TeV},$$

•
$$m_{u_{H}^{1,2}} = m_{e_{H}^{1,2,3}} = 500 \, {\rm GeV}$$
,

• $\operatorname{Re}[(V_{Hd})_{31}^*(V_{Hd})_{32}] = 0$ (to suppress T-odd contribution to ε_K).

 \Rightarrow free inputs: $m_{u_H^3}$ and $\text{Im}[(V_{Hd})^*_{31}(V_{Hd})_{32}]$.

In the μLFV plots, we fix

•
$$f = 1 \text{TeV}$$
, $(m_{T_+} = 1.34 \text{TeV})$,

- $m_{e_{H}^{2,3}} = m_{q_{H}^{1,2,3}} = 500 {\rm GeV}$,
- $\theta_{23} = \theta_{13} = \delta_{ij} = 0$ for V_{He} .

 \Rightarrow free inputs: $m_{e_{H}^{1}}$ and θ_{12} in $V_{He}.$