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Fermion masses & mixings
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The SM quark flavor parameters have structure:
   small & hierarchical.  Why?

Compare to:   gs ~1,  g ~ 0.6,  g ~ 0.3,  λHiggs ~ 1

The SM flavor puzzle

YU ≈




10−5 −0.002 0.007 + 0.004i
10−6 0.007 −0.04 + 0.0008i
10−8 + 10−7i 0.0003 0.96





YD ≈ (10−5, 0.0005, 0.026)

YU = V †
CKM(mu,mc,mt)/v

YD = (md,ms,mb)/v
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Bounds on generic flavor violation



Dominating idea for a long time:

Hierarchies from symmetries (⇒ Graham Ross)

Alternative:

Hierarchies from geometrical sequestering
 (⇒ this talk and Stefania Gori) 

Origin of flavor



Geometrical sequestering
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Geometrical sequestering
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5D bulk

Higgs

Localization depends exponentially on O(1) parameter

F(tR)

F(Q3L)

F(dR)
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New sources for FCNCs

light heavy

flat 5D bulk

Higgs
0 5 10 15 20 25 30 35

1st KK mode

Light fermion-KK couplings induce 
FCNCs



Flat extra dimensions:

o KK exchange induces unsuppressed FCNCs
   ⇒ MKK ~ 1/R > 5000 TeV

o Flat ED’s are EFT’s with Λ ~ few x10/R 
   
   Even if KK mode coupling flavor universal/MFV
    ⇒ What explains 105 GeV suppression of 

                                            ?

Potential problems
Delgado, Pomarol, Quiros ’99

Leff =
1
Λ2

(s̄d)(s̄d) + . . .



ds2 = dxµdxν − dy2

ds2 =
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Randall, Sundrum



ds2 = dxµdxν − dy2

ds2 =
(

R

z

)2 (
dxµdxν − dz2

)
.

↓

✓ solution to the hierarchy problem
✓ AdS/CFT description of holographic technicolor,
   composite Higgs, pGB composite Higgs
✓ high scale unification, log running of gauge couplings

Randall, Sundrum



 Flavor in RS 

light heavy

Gherghetta, Pomarol

zero modes like 
in flat ED

Higgs

0 5 10 15 20 25 30 35

UV IR



 Flavor in RS 

light heavy

Gherghetta, Pomarol

zero modes like 
in flat ED

Higgs

0 5 10 15 20 25 30 35

KK modes

UV IR



 Flavor in RS 

light heavy

Gherghetta, Pomarol

zero modes like 
in flat ED

Higgs

0 5 10 15 20 25 30 35

KK modes

Fermion-KK coupling almost universal!

UV IR



 Flavor in RS 

light heavy

Gherghetta, Pomarol

zero modes like 
in flat ED

Higgs

0 5 10 15 20 25 30 35

KK modes

Fermion-KK coupling almost universal!

F(tR)

F(QL)

UV IR



Anarchy & Location, Location, 
Location

Yu , Yd ~ O(1): anarchic         

Hierarchical mass spectrum for  F1 ≪ F2 ≪ F3 
⇒    mui ~ FQi Fui (v Y)                     mdi ~ FQi Fdi (v Y)

m(u)
ij = v√

2
FQi(Yu)ijFuj m(d)

ij = v√
2
FQi(Yd)ijFdj

 Zero mode wave function on IR brane 

          F(c) ~ (TeV/Planck)c-1/2,      ci ~ O(1)



Ud
Lm(d)

ij Ud
R = diag

V ij
CKM ∼ (Uu,d

L )ij ∼ FQi/FQj

with i < j

CKM matrix 

(md, ms, mb)

Hierarchical mixing angles
Huber; Agashe, Perez, Soni



Ud
Lm(d)

ij Ud
R = diag

V ij
CKM ∼ (Uu,d

L )ij ∼ FQi/FQj

with i < j

CKM matrix 

    FQ1 / FQ3 ~ θ13  ~ λ3

    FQ2 / FQ3  ~ θ23 ~ λ2

Check:

⇒  θ12 ~ FQ1 / FQ2 ~ FQ1 / FQ3 ⋄ FQ3 / FQ2 ~ λ

Non-trivial prediction.

(md, ms, mb)

Hierarchical mixing angles
Huber; Agashe, Perez, Soni



FCNC bounds satisfied?



FQ, Fu, Fd ! 13x3 will lead to FCNCs

g5

∫
dz

(
R

z

)4

G(1)(z)fL(z)2 ≈ g4

√
log

R′

R
(− 1

log R′

R

+ F (c)2)

c-dependent fermion KK-gauge 
coupling (same Fi as in Yukawa)

in CFT picture
mass ~ compositeness ~ F(c)
mixing with CFT excitation

Generating fermion masses 

similar to the SM

flavor blind 
couplings to the 
strong sector 
possible

!

 Flavor originates 
somewhere else

If high scale ! MFV

qi

qj

H

qi

qj

H

Two possibilities:

G(1),...



Quasi conformal sector between TeV … Mpl

Linear coupling of SM fields to composites

4D CFT explanation

µ
dλ

dµ
= γλ γ = dim[OR] + 3/2− 4

LUV ⊃ λŌRψL

λ ∼
(

TeV
MPl

)γ

γ = c− 1
2

AdS/CFT translation:

Contino, Pomarol



Masses and mixings from hierarchical 
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Masses, mixings and FCNCs

Y* md ∼ v FdLY ∗FdR

Gherghetta, Pomarol; Huber;Agashe, Perez, Soni; 
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~(g*/Mkk)2  FdL FsL FdR FsR 

~(g*/Mkk)2  md ms / (<H> Y*)

Masses, mixings and FCNCs

Y* md ∼ v FdLY ∗FdR

KK gluon FCNCs due to
the same small overlaps Fi :

∼ (g∗)2

M2
KK

FdLFdRFsLFsR

∼ (g∗)2

M2
KK

md ms

(vY ∗)2









KK gluonFdL FdR

FsL FsR

g* g*

Gherghetta, Pomarol; Huber;Agashe, Perez, Soni; 



Masses and mixings from hierarchical 
overlaps

RS GIM 

FdL

FdR

~(g*/Mkk)2  FdL FsL FdR FsR 

~(g*/Mkk)2  md ms / (<H> Y*)

Masses, mixings and FCNCs

Y* md ∼ v FdLY ∗FdR

KK gluon FCNCs due to
the same small overlaps Fi :

∼ (g∗)2

M2
KK

FdLFdRFsLFsR

∼ (g∗)2

M2
KK

md ms

(vY ∗)2









KK gluonFdL FdR

FsL FsR

g* g*

Gherghetta, Pomarol; Huber;Agashe, Perez, Soni; 



Integrating out the KK gluon

H =
1

M2
G

[
1
6
gij

L gkl
L (q̄iα

L γµqj
Lα) (q̄kβ

L γµql
Lβ)− gij

Rgkl
L

(
(q̄iα

R qk
Lα) (q̄lβ

L qj
Rβ)− 1

3
(q̄iα

R ql
Lβ) (q̄kβ

L qj
Rα)

)]

= C1(MG)(q̄iα
L γµqj

Lα) (q̄kβ
L γµql

Lβ) + C4(MG)(q̄iα
R qk

Lα) (q̄lβ
L qj

Rβ) + C5(MG)(q̄iα
R ql

Lβ) (q̄kβ
L qj

Rα)

Effective 4 fermi operators generated

In particular 
CRS

4K ∼ g2
s∗

M2
G

1
Y 2
∗

2mdms

v2

Has both real and O(1) imaginary part.



Parameter Limit on ΛF (TeV) Suppression in RS (TeV)
ReC1

K 1.0 · 103 ∼ r/(
√

6 |VtdVts|f2
q3

) = 23 · 103

ReC4
K 12 · 103 ∼ r(vY∗)/(

√
2 mdms) = 22 · 103

ReC5
K 10 · 103 ∼ r(vY∗)/(

√
6 mdms) = 38 · 103

ImC1
K 15 · 103 ∼ r/(

√
6 |VtdVts|f2

q3
) = 23 · 103

ImC4
K 160 · 103 ∼ r(vY∗)/(

√
2 mdms) = 22 · 103

ImC5
K 140 · 103 ∼ r(vY∗)/(

√
6 mdms) = 38 · 103

|C1
D| 1.2 · 103 ∼ r/(

√
6 |VubVcb|f2

q3
) = 25 · 103

|C4
D| 3.5 · 103 ∼ r(vY∗)/(

√
2 mumc) = 12 · 103

|C5
D| 1.4 · 103 ∼ r(vY∗)/(

√
6 mumc) = 21 · 103

|C1
Bd

| 0.21 · 103 ∼ r/(
√

6 |VtbVtd|f2
q3

) = 1.2 · 103

|C4
Bd

| 1.7 · 103 ∼ r(vY∗)/(
√

2 mbmd) = 3.1 · 103

|C5
Bd

| 1.3 · 103 ∼ r(vY∗)/(
√

6 mbmd) = 5.4 · 103

|C1
Bs

| 30 ∼ r/(
√

6 |VtbVts|f2
q3

) = 270
|C4

Bs
| 230 ∼ r(vY∗)/(

√
2 mbms) = 780

|C5
Bs

| 150 ∼ r(vY∗)/(
√

6 mbms) = 1400

3 TeV KK gluon mass
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0 5000 10000 15000 20000 25000 30 000
mG

1!104

5!104
1!105

5!105
1!106

5000

!s " d" Im#LR

Some points are ok: any rationale to live here? 
Radiative stability?
Bound depends on bulk QCD coupling gs* and Y*  

KK gluon mass bound in RS
Csaki, Falkowski, A.W.; Buras et. al.

C4
K ∼ g2

s∗
M2

G

2mdms

v2 Y 2
∗

excluded



Main problem is CPV LR contribution to
 

o Reduce bulk QCD coupling gs* by loop level matching
   and assume vanishing UV boundary kinetic terms 

o Larger Y* allowed if Higgs in the bulk, more perturbative
   control but                         ~  Y*6 

 
Uncomfortable corner of parameter space: Little hierarchy? 
Fine tuning? Perturbativity? Still no signal at LHC?

Bounds with caveats
εK : (s̄LdR)(s̄RdL)

CRS
4K ∼ g2

s∗
M2

G

1
Y 2
∗

2mdms

v2

x ½

x ½

CpGB
4K ∼ g2

s∗
M2

G

1
g2
∗

8mdms

v2

1 + m2

m̃2
d

Agashe, Azatov, Zhu

mG ~ 5-7 TeV ?

Csaki, Falkowski, A.W.

Br(B → Xsγ)



How can we evade the RS 
flavor problem?



Total anarchy does not seem to work

o Finetuned scales? Raise the scale to MG ~ 20-30 TeV 

o Finetuned Yukawas?  Yukawas could miraculously give
   accidental cancellations

o No tuning, we need to add more structure: Alignment
   and flavor symmetries
   

Main message

Fitzpatrick, Randall, Perez; Santiago; Csaki Falkowski, A.W; 
Csaki, Grossman, Perez, Surujon,A.W. ; Agashe;

Buras et. al ⇒ Stefania’s talk



Without the Yukawas SM has  

global flavor symmetry.

In RS broken by        Yu* , Yd*  +  FQ , Fd , Fu

No dangerous FCNCs in the down sector if 

Yd*  +  FQ , Fd  aligned (diagonal in the same basis)

Spurion analysis

SU(3)QL × SU(3)uR × SU(3)dR

alternative picture: Davidson, Isidori, Uhlig



FQ

Anarchy

(Q̄i
LQj

L)
YUY †

U

YDY †
D

VCKM

Y †
DYD

Y †
UYU

(d̄i
Rdj

R)

(ūi
Ruj

R)

Fu

+ LR, RL
Fd



FQ

Align down sector

(Q̄i
LQj

L)
YUY †

U

YDY †
D

VCKM

Y †
DYD

Y †
UYU

(d̄i
Rdj

R)

(ūi
Ruj

R)

anarchic

+ LR, RL

Fd

similar to Nir, Seiberg ’93 for MSSM



for          no FCNCs in the down sector.

                                    Effective suppression, 
                                    scan over 5D CKM
                                    keeping ε = 0.2 fixed.

                                    Need          :
                                     points to symmetry

Aligning 5D MFV
Fitzpatrick, Randall, Perez;

0 Π
2

Π 3 Π
2

2 Π
0.0

0.2

0.4

0.6

0.8

1.0
0 Π

2 Π
3 Π
2 2 Π

Θ1

!C 4"r#
$C 4,RS

!

ε→ 0

 Csaki, Grossman, Perez, Surujon,A.W., in progress

ε→ 0

cQ ∼ YdY
†
d + εYuY †

u cd ∼ Y †
d Yd cu ∼ Y †

u Yu



In the bulk: gauged SU(3)Q x SU(3)d flavor 
symmetry. 

Breaking shines into the bulk by vev of dynamical 
Yukawa field Y*d only (marginal operator)

Φd : (3,1,3),   <Φd> = Y*d (z/R)-ε

Large effects in up-FCNCs expected!

Alignment due to shining

F (cQ) = F (Y∗dY∗d
†), F (cd) = F (Y∗d

†Y∗d)

 Csaki, Grossman, Perez, Surujon,A.W., in progress

Rattazzi, Zafaroni



Alignment due to horizontal flavor symmetries

split doublet natural candidate for pGB Higgs 
(Zbb protection)

U(1)q protects UV mixing

U(1)d  alignes Yd*, cqd, cd

Alternative: horizontal U(1)’s

Ψu Ψqu Ψqd Ψd

U(1)q (+,−) · qi qi ·
U(1)d (−,+) 0 0 di di

Csaki, Falkowski, A.W.

θqu,L(0)− qd,L(0) = 0



Gauged flavor symmetries : flavor bosons at the 
LHC?

Large (but controlled) flavor violation in the up-
sector D-D mixing

Predictions of U(1) solution

Parameter Suppression fq3
u

= 0.3 fq3
u

= 1 Bound (TeV)
|C1

D|
√

6
gs∗λ5f2

q3
u

MG 7.8 · 103MG 0.7 · 103MG 1.2 · 103

|C1
D|

√
3Y 2

∗ v2λ5f2
q3
u√

2gs∗mumc
MG 1.2 · 103MG 1.3 · 105MG 1.2 · 103

|C4
D| vY∗

gs∗
√

2 mumc
MG 1.2 · 103MG 1.2 · 103MG 3.5 · 103

|C1
K |

√
6

gs∗λ5f2
q3
u

δ
MG 3.0 · 106MG 2.7 · 105MG 1.5 · 104

|C1
K |

√
3Y 2

∗ v2
√

2gs∗mdmsλδ
MG 1.5 · 1010MG 1.5 · 1010MG 1.5 · 104

|C4
K | Y∗v

gs∗
√

2mdmsλ3fq3
u

δ
MG 2.8 · 107MG 8.5 · 106MG 1.6 · 105

general discussion: Blum, Grossman, Nir, Perez



RS provides an interesting theory of flavor, 
dual to partial compositeness. 

RS-GIM suppresses dangerous FCNCs, tension 
with CPV in Kaon sector 

Anarchy alone needs fine-tuning to survive, 
additional structure in the flavor sector required
⇒ large FCNCs in the up-sector predicted

Conclusions



Back-up slides
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Exponential suppression of overall mass scale
but O(1) ν mixing angles.
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Higgs in the bulk
⇒ H = H(z)

Leptons

Agashe, Sundrum, Okui



Neutrino wave function picks up UV tail of Higgs

Exponential suppression of overall mass scale
but O(1) ν mixing angles.

Remark on lepton flavor

0 5 10 15 20 25 30 35

Higgs in the bulk
⇒ H = H(z)

Leptons

2

of the zero-modes H(0), ψ(0)
Li

, ψ(0)
Rj

satisfies (2) (up to non-

exponential normalization factors), where M and the sign
of exponent can depend on both SM representation (qL,
uR, dR, "L, eR, νR, H) and generation i = 1, 2, 3.

Now, note that the integral (3) is generically exponen-
tially dominated at y ∼ 0 or ∼ a. For example, consider

a case where both ψ(0)
Li

and ψ(0)
Rj

lean away from H(0) as
in Fig. 1, and imagine an assortment of MLi

and MRj
.

There are two cases, the integral (3) being dominated at
y ∼ 0 or ∼ a, depending on whether MLi

+ MRj
> MH

or < MH , respectively:

Y4D,ij ∼
∫ a

0
dy Y5D,ij(y) e−(MLi

+MRj
)y+MH(y−a)

(MLi
+MRj

>MH)↙ ↘(MLi
+MRj

<MH ) (4)

∼ Ỹ0,ij e−MHa $ ∼ Ỹa,ij e−(MLi
+MRj

)a ,

where Ỹ0,ij (Ỹa,ij) is an O(1) linear combination of
Ybulk,ij and Y0,ij (Ya,ij). The strong inequality in the
last line of (4) follows simply from the condition on the
exponents in the y ∼ a case, MLi

+ MRj
< MH . The

y ∼ a case is the classic model of charged fermion mass
matrices, yielding exponential hierarchies in masses and
mixings [2, 3]. Note that this would be the only case if
H were boundary-localized (MH → ∞) as is often as-
sumed in extra-dimensional flavor models. But if that
were true, it would strongly suggest that ν masses and
mixings should exhibit hierarchies comparable to charged
fermions in stark contrast to data, unless there is some
extra rationale for degeneracies among the M!Li

and the
MνRj

.

On the other hand, for a generic bulk H (MH < ∞),
we can elegantly accommodate ν data while simultane-
ously capturing charged fermion hierarchies.1 For suffi-
ciently large MνRj

such that M!Li
+ MνRj

> MH , the
ν’s switch to the y ∼ 0 case by (4), which naturally has
no large flavor-dependent hierarchies. Note that this does
not affect our discussion above regarding charged fermion
hierarchies generated at y ∼ a. Moreover, the last line
of (4) means that the ν’s are exponentially lighter than
the charged fermions. The structures and relations be-
tween the ν and charged mass matrices are quite robust
because they derive from the branching in (4), based on
simple inequalities among the M ’s.

Returning to (3), we could also consider ψ(0)
L,R lean-

ing toward H(0) in contrast to Fig. 1. Indeed, an O(1)
top Yukawa coupling does not match either exponentially

suppressed case in (4), but robustly follows once t(0)L,R

1 Even if H is exactly boundary-localized, at the quantum level,
loops containing fermion pairs with Higgs quantum numbers re-
produce the effects of a bulk Higgs.

both lean towards H(0). Then different leanings for ψ(0)
L,R

contribute to a smaller bottom quark mass and mixing
angles. In this way the simple extra-dimensional frame-
work captures the presence and absence of hierarchies
across the range of flavor physics.

The case of Majorana neutrinos works differently. In
this case, the smallness of mν comes just from its non-
renormalizable origins, "L"LHH/Λ. As for the non-
hierarchical nature of neutrinos, it is a generic conse-

quence precisely when all "(0)
Li

lean toward H(0), regard-
less of the precise M!Li

:

mν,ij ∼ O(1)ij
v2

Λ
, (5)

where v is the weak scale. The hierarchical structure
among charged leptons can be generated if e(0)

Ri
lean away

from H(0).
The minimal experimental implications reduce in the

ν sector to those of the “neutrino mass anarchy” sce-
nario [8], namely, θ13 should be close to the current upper
bound ∼ 0.2, and CP-violating phase(s) should be O(1).
More speculatively, at the other end of the spectrum, a
4th SM generation is a natural possibility in the Dirac

ν case, and in order for it to be heavy, their ψ(0)
L,R must

be leaning toward H(0), just like the top. Thus, we ex-
pect large mixing with the 3rd generation, which would
dominate the phenomenology.

We must also consider the impact of Kaluza-Klein
(KK) excitations. While 4D gauge fields couple flavor-
blindly by 4D gauge invariance, gauge KK modes are
sensitive to the flavor-dependent profiles of the fermions.
Exchanging them will generate flavor-violating 4-fermion
operators with strength ∼ g2

SM/M2
KK with MKK ∼ a−1.

To avoid excessive flavor-changing neutral currents (FC-
NCs) from such interactions we need a−1 >∼ 1000 TeV
[9]. Therefore, we should address the hierarchy problem
between the electroweak scale and at least this high scale.
We will consider two solutions, warping the above extra
dimension [10] and supersymmetry (SUSY) [11].

The simplest 5D warped spacetime is given by:

ds2 = e−2kydx2
4D − dy2 (0 ≤ y ≤ a) . (6)

The curvature scale k is comparable to the typical 5D
mass scale, such as M and a−1, and is taken to be very
high. An exponentially small v ∼ ke−ka emerges natu-
rally for a >∼ k−1, provided that H(0) is sufficiently lo-
calized near y = a [12]. The zero-mode profiles continue
to be exponentials in y, but with the curvature-modified
exponents [2]:

eMH(y−a) −→ e
(
k+

√
4k2+M2

H

)
(y−a) for H(0),

{
e−My

eM(y−a) −→
{

e(k/2−M)y

e(k/2+M)(y−a) for each ψ(0). (7)

Mi = ci

Agashe, Sundrum, Okui
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Ybulk,ij and Y0,ij (Ya,ij). The strong inequality in the
last line of (4) follows simply from the condition on the
exponents in the y ∼ a case, MLi

+ MRj
< MH . The

y ∼ a case is the classic model of charged fermion mass
matrices, yielding exponential hierarchies in masses and
mixings [2, 3]. Note that this would be the only case if
H were boundary-localized (MH → ∞) as is often as-
sumed in extra-dimensional flavor models. But if that
were true, it would strongly suggest that ν masses and
mixings should exhibit hierarchies comparable to charged
fermions in stark contrast to data, unless there is some
extra rationale for degeneracies among the M!Li

and the
MνRj

.

On the other hand, for a generic bulk H (MH < ∞),
we can elegantly accommodate ν data while simultane-
ously capturing charged fermion hierarchies.1 For suffi-
ciently large MνRj

such that M!Li
+ MνRj

> MH , the
ν’s switch to the y ∼ 0 case by (4), which naturally has
no large flavor-dependent hierarchies. Note that this does
not affect our discussion above regarding charged fermion
hierarchies generated at y ∼ a. Moreover, the last line
of (4) means that the ν’s are exponentially lighter than
the charged fermions. The structures and relations be-
tween the ν and charged mass matrices are quite robust
because they derive from the branching in (4), based on
simple inequalities among the M ’s.

Returning to (3), we could also consider ψ(0)
L,R lean-

ing toward H(0) in contrast to Fig. 1. Indeed, an O(1)
top Yukawa coupling does not match either exponentially

suppressed case in (4), but robustly follows once t(0)L,R

1 Even if H is exactly boundary-localized, at the quantum level,
loops containing fermion pairs with Higgs quantum numbers re-
produce the effects of a bulk Higgs.

both lean towards H(0). Then different leanings for ψ(0)
L,R

contribute to a smaller bottom quark mass and mixing
angles. In this way the simple extra-dimensional frame-
work captures the presence and absence of hierarchies
across the range of flavor physics.

The case of Majorana neutrinos works differently. In
this case, the smallness of mν comes just from its non-
renormalizable origins, "L"LHH/Λ. As for the non-
hierarchical nature of neutrinos, it is a generic conse-

quence precisely when all "(0)
Li

lean toward H(0), regard-
less of the precise M!Li

:

mν,ij ∼ O(1)ij
v2

Λ
, (5)

where v is the weak scale. The hierarchical structure
among charged leptons can be generated if e(0)

Ri
lean away

from H(0).
The minimal experimental implications reduce in the

ν sector to those of the “neutrino mass anarchy” sce-
nario [8], namely, θ13 should be close to the current upper
bound ∼ 0.2, and CP-violating phase(s) should be O(1).
More speculatively, at the other end of the spectrum, a
4th SM generation is a natural possibility in the Dirac

ν case, and in order for it to be heavy, their ψ(0)
L,R must

be leaning toward H(0), just like the top. Thus, we ex-
pect large mixing with the 3rd generation, which would
dominate the phenomenology.

We must also consider the impact of Kaluza-Klein
(KK) excitations. While 4D gauge fields couple flavor-
blindly by 4D gauge invariance, gauge KK modes are
sensitive to the flavor-dependent profiles of the fermions.
Exchanging them will generate flavor-violating 4-fermion
operators with strength ∼ g2

SM/M2
KK with MKK ∼ a−1.

To avoid excessive flavor-changing neutral currents (FC-
NCs) from such interactions we need a−1 >∼ 1000 TeV
[9]. Therefore, we should address the hierarchy problem
between the electroweak scale and at least this high scale.
We will consider two solutions, warping the above extra
dimension [10] and supersymmetry (SUSY) [11].

The simplest 5D warped spacetime is given by:

ds2 = e−2kydx2
4D − dy2 (0 ≤ y ≤ a) . (6)

The curvature scale k is comparable to the typical 5D
mass scale, such as M and a−1, and is taken to be very
high. An exponentially small v ∼ ke−ka emerges natu-
rally for a >∼ k−1, provided that H(0) is sufficiently lo-
calized near y = a [12]. The zero-mode profiles continue
to be exponentials in y, but with the curvature-modified
exponents [2]:

eMH(y−a) −→ e
(
k+

√
4k2+M2

H

)
(y−a) for H(0),

{
e−My

eM(y−a) −→
{

e(k/2−M)y

e(k/2+M)(y−a) for each ψ(0). (7)

Mi = ci

Agashe, Sundrum, Okui



Mass terms from gauge interactions

Possible fermion embedding: 4 of SO(5)

1)               = chiral zero modes     

 

Ψq =




qq[+,+]
uc

q[−,+]
dc

q[−,+]



 Ψu =




qu[+,−]
uc

u[−,−]
dc

u[+,−]



 Ψd =
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dc

d[−,−]







Mass terms from gauge interactions

Possible fermion embedding: 4 of SO(5)

1)               = chiral zero modes     

 

Ψq =




qq[+,+]
uc

q[−,+]
dc

q[−,+]



 Ψu =




qu[+,−]
uc

u[−,−]
dc

u[+,−]



 Ψd =




qd[+,−]
uc

d[+,−]
dc

d[−,−]





2)  <A5> marries fields in same multiplet

A5



Mass terms from gauge interactions

Possible fermion embedding: 4 of SO(5)

1)               = chiral zero modes     

 

Ψq =




qq[+,+]
uc

q[−,+]
dc

q[−,+]



 Ψu =




qu[+,−]
uc

u[−,−]
dc

u[+,−]



 Ψd =




qd[+,−]
uc

d[+,−]
dc

d[−,−]





2)  <A5> marries fields in same multiplet

A5

3) SO(4) invariant brane masses mix multiplets

M̃u

LIR = −
(

R

R′

)4 [
m̃uχqqψqu + m̃dχqqψqd + M̃u(χuc

q
ψuc

u
+ χdc

q
ψdc

u
) + M̃d(χuc

q
ψuc

d
+ χdc

q
ψdc

d
)
]



Mass terms from gauge interactions

Possible fermion embedding: 4 of SO(5)

1)               = chiral zero modes     

 

Ψq =




qq[+,+]
uc

q[−,+]
dc

q[−,+]



 Ψu =




qu[+,−]
uc

u[−,−]
dc

u[+,−]



 Ψd =




qd[+,−]
uc

d[+,−]
dc

d[−,−]





2)  <A5> marries fields in same multiplet

A5

3) SO(4) invariant brane masses mix multiplets

M̃u

LIR = −
(

R

R′

)4 [
m̃uχqqψqu + m̃dχqqψqd + M̃u(χuc

q
ψuc

u
+ χdc

q
ψdc

u
) + M̃d(χuc

q
ψuc

d
+ χdc

q
ψdc

d
)
]



Simple model with 
  o A5 zero mode ∈ SO(5)/SO(4) = Higgs
  o UV insensitive, dynamical EWSB  
  o small corrections to S,T,U, Zbb

Agashe, Contino, Pomarol 

Planck
brane

TeV
brane

AdS5

SO(5)xU(1)x

SO(4)xU(1)xSU(2)xU(1)Y

Holographic pGB Higgs model

Dual to pGB composite
Higgs (Georgi, Kaplan ’83)
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