CP Violation in B Decays in the LHC Era

Robert Fleischer

CERN Theory Unit

Ringberg Workshop on New Physics, Flavours and Jets
Ringberg Castle, 26 April - 1 May 2009

- Basic Framework
- Brief Look @ Current Picture
- Perspectives for B Physics @ LHC: \rightarrow Entering a New Territory
- Targets for an $e^{+} e^{-}$"Super-Flavour Factory"
- Concluding Remarks

Basic Framework

Quark Flavour Physics \& CP Violation

$\rightarrow \quad$ key players in the history of the Standard Model (SM):

- 1963: concept of flavour mixing [Cabibbo].
- 1964: discovery of CP violation in $K_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$[Christenson et al.].
- 1970: introduction of the charm quark to suppress the flavour-changing neutral currents (FCNCs) [Glashow, Iliopoulos \& Maiani].
- 1973: quark-flavour mixing with 3 generations allows us to accommodate CP violation in the SM [Kobayashi \& Maskawa].
- 1974: estimate of the charm-quark mass with the help of the $K^{0}-\bar{K}^{0}$ mixing frequency [Gaillard \& Lee].
- 1980s: the large top-quark mass was first suggested by the large $B^{0}-\bar{B}^{0}$ mixing seen by ARGUS (DESY) and UA1 (CERN).

Status of the Standard Model

- Quark flavour physics and CP violation:

$$
\text { Yukawa sector of EW SSB }(\rightarrow \text { quark masses }) \Rightarrow \text { rich phenomenology: }
$$

- The interplay between theory $\mathcal{\delta}$ experiments at the $e^{+} e^{-} B$ factories (BaBar \& Belle) resulted in many new insights into these topics.
- With the exception of a few "flavour puzzles" (not yet conclusive because of large errors), the SM flavour sector is in good shape.
- But still a large territory of the flavour-physics landscape is unexplored:

$$
\rightarrow \text { target of the LHCb experiment }
$$

- We have indications that the SM cannot be complete:
- Neutrino masses $\neq 0$: suggest see-saw mechanism, GUT scenarios ...
- Baryon asymmetry of the Universe (SM cannot generate it ...)
- The long-standing problem of dark matter ...
> \oplus
> fundamental theoretical questions (hierarchy problem, ...)

Status of the LHC

- Start-up phase of the LHC is currently in progress: [\rightarrow talk by S. Bethke]
- First beam on September 10th, 2008.
- Incident in LHC sector 3-4 on September 19th \rightarrow repair needed!
- LHC scheduled to restart in 09/2009, providing first physics data ... [Further info: http://public.web.cern.ch/public/]
- Transport of a magnet from LHC sector 3-4 to the surface to be repaired:

(December 2008)
- Most recent news:

In Pursuit of New Physics with Flavour Probes

- Goal: detect effects of $\mathcal{L}_{\mathrm{NP}}$ in weak processes
\rightarrow requires obviously a solid understanding of the $\mathcal{L}_{\mathrm{SM}}$ "background"!
- Challenging hierarchy of scales:

$$
\underbrace{\Lambda_{\mathrm{NP}} \sim 10^{(0 \ldots ?)} \mathrm{TeV} \gg \Lambda_{\mathrm{EW}} \sim 10^{-1} \mathrm{TeV}}_{\text {(very) short distances }} \ggg \underbrace{\Lambda_{\mathrm{QCD}} \sim 10^{-4} \mathrm{TeV}}_{\text {long distances }}
$$

- Powerful theoretical concepts/techniques: "Effective Field Theories"
- Heavy degrees of freedom (NP particles, top, Z, W) are "integrated out" from appearing explicitly: \rightarrow short-distance loop functions.
- Calculation of perturbative $Q C D$ corrections.
- Renormalization group allows the summation of large $\log \left(\mu_{\mathrm{SD}} / \mu_{\mathrm{LD}}\right)$.
- Applied to the SM and various NP scenarios, such as the following:
- MSSM, UED, WED, LH, LHT, Z^{\prime} models, 4th generation, ...
[See the corresponding talks @ this workshop]
- The key problem: strong interactions \rightarrow "hadronic" uncertainties
- The theory is formulated in terms of quarks, while flavour-physics experiments use their QCD bound states, i.e. B, D and K mesons.
- In the formalism sketched above, the long-distance physics is separated from the short-distance part ["operator product expansion" (OPE)]:
\Rightarrow process-dependent, non-perturbative "hadronic" parameters!? $\left[\rightarrow\right.$ lattice QCD: lots of progress (e.g., B_{K}), but still a long way to go ...]
- The B-meson system is a particularly promising flavour probe:
- Simplifications through the large b-quark mass $m_{b} \sim 5 \mathrm{GeV} \gg \Lambda_{\mathrm{QCD}}$.
- Offers various strategies to eliminate the hadronic uncertainties and to determine the hadronic parameters from the data.
- Tests of clean SM relations that could be spoiled by NP ...
- These features led to the "rise of the B mesons": \rightarrow our focus

$$
\ldots \text { after } K \rightarrow \pi \pi \text { decays }^{1} \text { have dominated for } 35 \text { years! }
$$

[^0]
Key Processes for the Exploration of CP Violation

$\rightarrow \quad$ non-leptonic $B \rightarrow f$ decays (only quarks in the final states):

- Tree diagrams:

- "Penguin" diagrams: \rightarrow loop processes:
$\diamond \underline{\text { QCD penguins: } \quad \diamond \text { Electroweak (EW) penguins: }}$

Amplitude Structure in the Standard Model

- CKM unitarity and CP conservation of strong interactions: \Rightarrow

$$
\begin{aligned}
& A(\bar{B} \rightarrow \bar{f})=e^{+i \varphi_{1}}\left|A_{1}\right| e^{i \delta_{1}}+e^{+i \varphi_{2}}\left|A_{2}\right| e^{i \delta_{2}} \\
& A(B \rightarrow f)=e^{i\left[\phi_{\mathrm{CP}}(B)-\phi_{\mathrm{CP}}(f)\right]}\left[e^{-i \varphi_{1}}\left|A_{1}\right| e^{i \delta_{1}}+e^{-i \varphi_{2}}\left|A_{2}\right| e^{i \delta_{2}}\right]
\end{aligned}
$$

- CP-violating weak phases $\varphi_{1,2}$ originate from CKM factors $V_{j r}^{*} V_{j b}$.
- CP-conserving "strong" amplitudes $\left|A_{1,2}\right| e^{i \delta_{1,2}}$ involve the hadronic matrix elements of four-quark operators:

$$
\left|A_{j}\right| e^{i \delta_{j}}=\sum_{k} \underbrace{C_{k}(\mu)}_{\text {pert. QCD }} \times \underbrace{\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle}_{\text {"unknown" }}
$$

\Rightarrow encode the hadron dynamics of the considered decay!

- The convention-dependent phase factor $e^{i\left[\phi_{\mathrm{CP}}(B)-\phi_{\mathrm{CP}}(f)\right]}$ has to cancel in all physical observables, in particular in the CP asymmetries!

Developments in the Last ~ 10 Years ...

$$
\left|A_{j}\right| e^{i \delta_{j}} \propto \sum_{k} \underbrace{C_{k}(\mu)}_{\text {pert. QCD }} \times\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle
$$

- QCD factorization (QCDF): [\rightarrow talks by Bell \& Bartsch $]$ Beneke, Buchalla, Neubert \& Sachrajda (1999-2001);

- Perturbative Hard-Scattering (PQCD) Approach:

Li \& Yu ('95); Cheng, Li \& Yang ('99); Keum, Li \& Sanda ('00);

- Soft Collinear Effective Theory (SCET):

Bauer, Pirjol \& Stewart (2001); Bauer, Grinstein, Pirjol \& Stewart (2003); ...

- QCD sum rules:

Khodjamirian (2001); Khodjamirian, Mannel \& Melic (2003); ...

$$
\text { Data } \Rightarrow \text { theoretical challenge remains ... }
$$

[Buras et al.; Ali et al.; Ciuchini et al.; Chiang et al.; ...]

Circumvent the Calculation of the $\langle\bar{f}| Q_{k}^{j}(\mu)|\bar{B}\rangle$:

- Amplitude relations allow us in fortunate cases to eliminate the hadronic matrix elements (\rightarrow typically strategies to determine the UT angle γ):
- Exact relations: class of pure "tree" decays (e.g. $B \rightarrow D K$).
- Approximate relations, which follow from the flavour symmetries of strong interactions, i.e. $S U(2)$ isospin or $S U(3)_{\mathrm{F}}$:

$$
B \rightarrow \pi \pi, B \rightarrow \pi K, B_{(s)} \rightarrow K K
$$

- Decays of neutral B_{d} or B_{s} mesons:

$$
\text { Interference effects through } B_{q}^{0}-\overline{B_{q}^{0}} \text { mixing: }
$$

- Lead to "mixing-induced" CP violation $S(f)$, in addition to "direct" CP violation $C(f)$ (caused by interference between decay amplitudes).
- If one CKM amplitude dominates:
\Rightarrow hadronic matrix elements cancel in $S(f)$, while $C(f)=0$

$$
\text { * Example: } \quad B_{d}^{0} \rightarrow J / \psi K_{\mathrm{S}} \Rightarrow S\left(J / \psi K_{\mathrm{S}}\right)=\sin 2 \beta
$$

A Brief Roadmap of Quark-Flavour Physics

- CP-B studies through various processes and strategies:

$$
\begin{aligned}
& B \rightarrow \pi \pi \text { (isospin), } B \rightarrow \rho \pi, B \rightarrow \rho \rho \\
& \left.\begin{array}{c}
B \rightarrow \pi K \\
R_{b}\left(b \rightarrow u, c \ell \bar{\nu}_{\ell}\right) \\
\left.\begin{array}{c}
B_{u}^{ \pm} \rightarrow K^{ \pm} D \\
B_{d} \rightarrow K^{* 0} D \\
B_{c}^{ \pm} \rightarrow D_{s}^{ \pm} D
\end{array}\right\} \text { only trees } \\
B_{d} \rightarrow D^{(*) \pm} \pi^{\mp}: \gamma+2 \beta \\
B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}: \gamma+\phi_{s}
\end{array}\right\} \text { only trees }
\end{aligned}
$$

- Moreover "rare" decays: $B \rightarrow X_{s} \gamma, B_{d, s} \rightarrow \mu^{+} \mu^{-}, K \rightarrow \pi \nu \bar{\nu}, \ldots$
- Originate from loop processes in the SM.
- Interesting correlations with CP-B studies.

$$
\text { New Physics } \Rightarrow \text { Discrepancies }
$$

Brief Look @ Current Picture

Status of the Unitarity Triangle

- Two competing groups: \rightarrow many plots \& correlations ...
- CKMfitter Collaboration [http://ckmfitter.in2p3.fr/];
- UTfit Collaboration [http://www.utfit.org]:
\rightarrow continuously updated results:

\diamond New Physics in Decay Amplitudes:

- Typically small effects if SM tree processes play the dominant rôle:

$$
\rightarrow \text { example: } B_{d}^{0} \rightarrow J / \psi K_{\mathrm{S}}
$$

- Potentially large effects in the penguin sector through new particles in the loops or new contributions at the tree level, e.g. SUSY, Z^{\prime} models:

CP Violation in $b \rightarrow s$ Penguin Modes

- Experimental pattern:

- Moreover: " $B \rightarrow \pi K$ puzzle" received quite some attention [Buras \& R.F. ('00); Beneke \& Neubert ('03); Buras, R.F., Recksiegel \& Schwab ('03-'06); ...]

$$
\Rightarrow \quad \text { NP could be present, but still cannot be resolved!? }
$$

Particularly Interesting Decay: $B^{0} \rightarrow \pi^{0} K^{0}$

- Time-dependent, CP-violating rate asymmetry:

$$
\begin{aligned}
& \frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{0} K_{\mathrm{S}}\right)-\Gamma\left(B^{0}(t) \rightarrow \pi^{0} K_{\mathrm{S}}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{0} K_{\mathrm{S}}\right)+\Gamma\left(B^{0}(t) \rightarrow \pi^{0} K_{\mathrm{S}}\right)} \\
& \quad=A_{\pi^{0} K_{\mathrm{S}}} \cos \left(\Delta M_{d} t\right)+S_{\pi^{0} K_{\mathrm{S}}} \sin \left(\Delta M_{d} t\right)
\end{aligned}
$$

- In the SM, we have - up to doubly Cabibbo-suppressed terms:

$$
A_{\pi^{0} K_{\mathrm{S}}} \approx 0, \quad S_{\pi^{0} K_{\mathrm{S}}} \equiv(\sin 2 \beta)_{\pi^{0} K_{\mathrm{S}}} \approx \sin 2 \beta
$$

- EW penguins have a significant impact: \Rightarrow nice for NP to enter!?

SM Benchmark for the NP Search in $B^{0} \rightarrow \pi^{0} K^{0}$

- Isospin relation between neutral $B \rightarrow \pi K$ amplitudes is the starting point:

$$
\sqrt{2} A\left(B^{0} \rightarrow \pi^{0} K^{0}\right)+A\left(B^{0} \rightarrow \pi^{-} K^{+}\right)=-\underbrace{\left[(\hat{T}+\hat{C}) e^{i \gamma}+\hat{P}_{\mathrm{ew}}\right]}_{(\hat{T}+\hat{C})\left(e^{i \gamma}-q e^{i \omega}\right)} \equiv 3 A_{3 / 2}
$$

- $A_{3 / 2}$ can be fixed through $S U(3)$ for "well-behaved" quantities:
$-|\hat{T}+\hat{C}| \propto\left|A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)\right|$, i.e. determined from data;

$$
-q e^{i \omega} \equiv-\hat{P}_{\mathrm{ew}} /(\hat{T}+\hat{C}) \stackrel{\mathrm{SM}}{=} 0.66 \times 0.41 / R_{b}
$$

- Triangle construction: \rightarrow rates for decays and CP conjugates:

$S_{\pi^{0} K_{\mathrm{S}}}=\frac{2\left|\bar{A}_{00} A_{00}\right|}{\left|\bar{A}_{00}\right|^{2}+\left|A_{00}\right|^{2}} \sin \left(2 \beta-2 \phi_{\pi^{0} K_{\mathrm{S}}}\right)$
encounter a fourfold ambiguity:
triangles can be flipped around $A_{3 / 2}, \bar{A}_{3 / 2}$
[R.F., S. Jäger, D. Pirjol and J. Zupan ('08); confirmed by Gronau \& Rosner ('08)]

$$
r_{\mathrm{c}} e^{i \delta_{\mathrm{c}}}=(\hat{T}+\hat{C}) / \hat{P} ; B^{+} \rightarrow \pi^{+} K^{0} \rightarrow|\hat{P}| \quad \text { ("charged" constraint) }
$$

- So we are finally left with the following correlation in observable space:

- Narrow upper band: \rightarrow benchmark scenario for future TH uncertainty
- Relies on an assumed future progress in the calculation of an $S U(3)$ breaking form-factor ratio with 20% uncertainty on the lattice.
- Sensitivity to modified EW penguins with a new CP-violating phase.
- Interesting for a future super- B factory...

Direct CP Asymmetries (No $B_{d}^{0}-\bar{B}_{d}^{0}$ Mixing Involved)

- SM correlation between $A_{\pi^{0} K_{\mathrm{S}}}$ and $A_{\pi^{0} K^{+}}-A_{\pi^{-} K^{+}}$:

- The difference $A_{\pi^{0} K^{+}}-A_{\pi^{-} K^{+}} \neq 0$ has recently received quite some attention as a possible sign of NP [Belle Collaboration, Nature 452 (2008) 332].
- The data can be accommodated in the SM within the error of $A_{\pi^{0} K_{S}}$, although hadronic amplitudes then deviate from the $1 / m_{b}$ pattern:

$$
\Rightarrow \text { reduce the experimental error of } A_{\pi^{0} K_{\mathrm{S}}}
$$

NP Scenario to Resolve the $S_{\pi^{0} K_{S}}$ Discrepancy

- Assume that NP manifests itself as a modified EWP:

$$
q \rightarrow q e^{i \phi}
$$

- χ^{2} fits: only $B \rightarrow \pi K$:

- both $B \rightarrow \pi K$ and $B \rightarrow \pi \pi$:

- Other penguin-dominated $b \rightarrow s$ decays can be accommodated as well:

[IIlustration in QCDF]

Recent Specific BSM Analysis

- Models with a family non-universal $U(1)^{\prime}$:
- Generation-independent charges for the first two families;
- small fermion mixing angles.
- Constraints from data for $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing (see below) \& $B \rightarrow \pi K, \pi \pi$:

- Combination of both constraints (and from CPV in other $b \rightarrow s$ modes):

with $\quad M_{Z^{\prime}} \lesssim(10-100) M_{Z}$ approachable at LHC.
[Barger, Everett, Jiang, Langacker, Liu \& Wagner ('09); also Chang, Li \& Yang ('09)]

LHCb can also address this topic:

- Most promising channel for this experiment: $\quad B_{s}^{0} \rightarrow \phi \phi$
- $\bar{b} \rightarrow \bar{s} s \bar{s}$ penguin decay (B_{s}^{0} counterpart of $B_{d}^{0} \rightarrow \phi K_{\mathrm{S}}$):

- CP-violating observables of the time-dependent angular distribution of $B_{s}^{0} \rightarrow \phi\left[\rightarrow K^{+} K^{-}\right] \phi\left[\rightarrow K^{+} K^{-}\right]$provide powerful probes for NP!
- Strategy for extracting both NP amplitudes and their strong phases:
- Use information on CP violation in the $\bar{b} \rightarrow \bar{d} s \bar{s}$ decay $B_{s}^{0} \rightarrow \phi \bar{K}^{* 0}$ to complement the CP-violating observables in $B_{s}^{0} \rightarrow \phi \phi$.
- Flavour-symmetry arguments allow us to control doubly Cabibbosuppressed (i.e. $\left.\mathcal{O}\left(\lambda^{2}\right)\right)$ SM corrections to the $B_{s}^{0} \rightarrow \phi \phi$ observables.
[R.F. \& M. Gronau]

\diamond New Physics in $B_{q}^{0}-\bar{B}_{q}^{0}$ mixing:

- NP particles in boxes or tree contributions (e.g. SUSY, Z^{\prime} models):

$$
\kappa_{q} e^{i \sigma_{q}} \equiv M_{12}^{q, \mathrm{NP}} / M_{12}^{q, \mathrm{SM}} \Rightarrow
$$

- Mass difference: $\Delta M_{q}=\Delta M_{q}^{S M}\left|1+\kappa_{q} e^{i \sigma_{q}}\right|$
- Mixing phase: $\phi_{q}=\phi_{q}^{\mathrm{SM}}+\phi_{q}^{\mathrm{NP}}=\phi_{q}^{\mathrm{SM}}+\arg \left(1+\kappa_{q} e^{i \sigma_{q}}\right)$
[Details: P. Ball \& R.F. (2006)]

Implications of the Data for the B_{d}^{0} System

- Tension in fit of UT: $\left(\phi_{d}\right)_{J / \psi K^{0}}-2 \beta_{\text {true }}=-\left(8.7_{-3.6}^{+2.6} \pm 3.8\right)^{\circ} \rightarrow \mathrm{NP}!$?

- $\underline{\text { SM corrections (penguin effects): } \Rightarrow S\left(J / \psi K_{S}\right) \propto \sin \left(\phi_{d}+\Delta \phi_{d}\right), ~}$
- $\Delta \phi_{d}$ fixed through $B_{d}^{0} \rightarrow J / \psi \pi^{0}$ data and $S U(3)$ flavour-symmerty:

- Fit to all current data, allowing also for $S U(3)$ breaking:

$$
\Rightarrow \frac{\Delta \phi_{d} \in[-6.7,0.0]^{\circ} \Rightarrow \text { softens the tension in the fit of the UT! }}{[\text { S. Faller, R.F., M. Jung \& T. Mannel (2008)] }}
$$

- NP parameters:

$$
\phi_{d}^{\mathrm{NP}} \in[-14.9,4.0]^{\circ} \text {, i.e. no significant effect. }
$$

- Future perspectives (scenarios): \rightarrow refer to an $e^{+} e^{-}$super- B factory:

- Since the exp. error of $\left(\phi_{d}\right)_{J / \psi K^{0}}$ could be reduced to $\sim 0.3^{\circ}$ (LHCb upgrade and $e^{+} e^{-}$super- B factory), these corrections will be crucial. [LHCb: alternative to measure CP violation in $B_{s}^{0} \rightarrow J / \psi K_{\mathrm{S}}$ (R.F. '99)]
- Interesting observation:
- The quality of the B-factory data has essentially reached a level of precision where subleading SM effects have to be included!

B Physics at the LHC:

\rightarrow entering a new territory of the B landscape:
high statistics \oplus complementarity to B factories: ${ }^{2}$
fully exploit the B_{s}-meson system!
${ }^{2} e^{+} e^{-} B$ factories operating at the $\Upsilon(4 S)$ resonance cannot produce B_{s} mesons; could go to $\Upsilon(5 S)$.

Key Features of the $\boldsymbol{B}_{s^{-}}$-Meson System

- The $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations are rapid: $\Delta M_{s} / \Delta M_{d} \sim 40$
\Rightarrow challenging to resolve them experimentally, but actually feasible!
- Expect sizeable width difference $\Delta \Gamma_{s} / \Gamma_{s} \sim 15 \%$ (while $\Delta \Gamma_{d} / \Gamma_{d} \sim 0$):
\Rightarrow interesting for "untagged" studies of $B_{s}^{0}, \bar{B}_{s}^{0} \rightarrow f$:
$\left\langle\Gamma\left(B_{s}(t) \rightarrow f\right)\right\rangle \equiv \Gamma\left(B_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)=e^{-\Gamma_{\mathrm{H}}^{(s)} t} R_{\mathrm{H}}+e^{-\Gamma_{\mathrm{L}}^{(s)} t} R_{\mathrm{L}}$
- The rapidly oscillating $\Delta M_{s} t$ terms cancel \Rightarrow exp. advantages.
- Various "untagged" strategies of CP violation were proposed.
[Dunietz ('95); R.F. \& Dunietz ('96); Dunietz, Dighe \& R.F. ('99); ...]
- The CP-violating mixing phase is tiny in the SM (while $\phi_{d} \sim 42^{\circ}$):

$$
\phi_{s}^{\mathrm{SM}}=-2 \lambda^{2} \eta \approx-2^{\circ} \Rightarrow \text { great news for probing } \phi_{s}^{\mathrm{NP}} \neq 0^{\circ}!
$$

Constraints on NP through ΔM_{s}

- After long efforts, signals for $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing at the Tevatron in 2006:

$$
\left.\Delta M_{s}=(17.78 \pm 0.12) \mathrm{ps}^{-1} \text { (CDF \& D } \varnothing \text { average }\right)
$$

- SM prediction ($f_{B_{s}}^{2} \hat{B}_{B_{s}} @$ lattice): [HPQCD collaboration, hep-lat/0610104]

$$
\Delta M_{s}^{\mathrm{SM}}=20.3(3.0)(0.8) \mathrm{ps}^{-1}
$$

- Allowed region in the $\sigma_{s}-\kappa_{s}$ plane: [Update of P. Ball \& R.F. (2006)]

$$
\begin{aligned}
& \Delta M_{q}=\Delta M_{q}^{\mathrm{SM}}\left|1+\kappa_{q} e^{i \sigma_{q}}\right| \\
\Rightarrow & \text { plenty of space for NP left! }
\end{aligned}
$$

$\left[\begin{array}{l}\text { also in popular NP scenarios: } \\ \text { SUSY, } Z^{\prime}, \text { WED, LHT, 4th gen., } . . .\end{array}\right]$

Golden Process to Search

for NP in $B_{s}^{0}-\bar{B}_{s}^{0}$ Mixing:

$$
B_{s}^{0} \rightarrow J / \psi \phi
$$

$\rightarrow \quad B_{s}^{0}$ counterpart of $B_{d}^{0} \rightarrow J / \psi K_{\mathrm{S}} \ldots$
[Dighe, Dunietz \& R.F. (1999); Dunietz, R.F. \& Nierste (2001)]

Amplitude Structure

- Decay topologies:

$$
\lambda_{c}^{(s)} \equiv V_{c s} V_{c b}^{*}
$$

- Structure of the decay amplitude:

$$
A\left(B_{s}^{0} \rightarrow J / \psi \phi\right)=\lambda_{c}^{(s)}\left(A_{\mathrm{T}}^{c}+A_{\mathrm{P}}^{c}\right)+\lambda_{u}^{(s)} A_{\mathrm{P}}^{u}+\lambda_{t}^{(s)} A_{\mathrm{P}}^{t}
$$

- CKM unitarity: $\lambda_{t}^{(s)}=-\lambda_{c}^{(s)}-\lambda_{u}^{(s)} \oplus \epsilon \equiv \lambda^{2} /\left(1-\lambda^{2}\right)=0.053 \Rightarrow$

$$
A\left(B_{s}^{0} \rightarrow J / \psi \phi\right) \propto\left[1+\epsilon a e^{i \vartheta} e^{i \gamma}\right] \quad a e^{i \vartheta}=R_{b}\left[\frac{A_{\mathrm{P}}^{u}-A_{\mathrm{P}}^{t}}{A_{\mathrm{T}}^{c}+A_{\mathrm{P}}^{c}-A_{\mathrm{P}}^{t}}\right]
$$

Exploring CP Violation with $B_{s}^{0} \rightarrow J / \psi \phi$

- There is an important difference with respect to $B_{d}^{0} \rightarrow J / \psi K_{\mathrm{S}}$:

2-vector-meson final state is an admixture of different CP eigenstates.

- Angular distribution of the $J / \psi\left[\rightarrow \mu^{+} \mu^{-}\right] \phi\left[\rightarrow K^{+} K^{-}\right]$decay products:

$$
\begin{array}{ll}
B_{s}^{0} \rightarrow J / \psi \phi: & f(\Theta, \Phi, \Psi ; t)=\sum_{k} g^{(k)}(\Theta, \Phi, \Psi) b^{(k)}(t) \\
\bar{B}_{s}^{0} \rightarrow J / \psi \phi: & \bar{f}(\Theta, \Phi, \Psi ; t)=\sum_{k} g^{(k)}(\Theta, \Phi, \Psi) \bar{b}^{(k)}(t)
\end{array}
$$

$\Rightarrow \mathrm{CP}$ eigenstates can be disentangled (rather complicated) ...

Structure of the Observables

- Consider linear pol. states of the vector mesons, which are longitudinal (0) or transverse to their directions of motion. In the latter case, the pol. states may be parallel $(\|)$ or perpendicular (\perp) to one another.
- Linear polarization amplitudes:

$$
A_{0}(t), \quad A_{\|}(t), \quad A_{\perp}(t)
$$

- $A_{\perp}(t)$ describes a CP-odd final-state configuration.
- $A_{0}(t)$ and $A_{\|}(t)$ correspond to CP-even final-state configurations.
- The observables $b^{(k)}(t)$ are then given as follows:

$$
\begin{gathered}
\left|A_{f}(t)\right|^{2} \quad(f \in\{0, \|, \perp\}) \\
\operatorname{Re}\left\{A_{0}^{*}(t) A_{\|}(t)\right\}, \quad \operatorname{Im}\left\{A_{f}^{*}(t) A_{\perp}(t)\right\} \quad(f \in\{0, \|\})
\end{gathered}
$$

- CP asymmetries are governed by the following observable $(f \in\{0, \|, \perp\})$:

$$
\xi_{(\psi \phi)_{f}}^{(s)} \propto e^{-i \phi_{s}}[1-\underbrace{2 i \lambda^{2} a_{f} e^{i \theta_{f}} \sin \gamma+\mathcal{O}\left(\lambda^{4}\right)}_{\text {penguin effects }}] \rightarrow e^{-i \phi_{s}}
$$

- Two avenues to probe the $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing phase ϕ_{s} :

$$
\phi_{s}=\left(-2 \lambda^{2} \eta\right)_{\mathrm{SM}}+\phi_{s}^{\mathrm{NP}} \approx-2^{\circ}+\phi_{s}^{\mathrm{NP}} \approx \phi_{s}^{\mathrm{NP}}
$$

- Untagged observables:
\rightarrow do not distinguish between initially present B_{s}^{0} or \bar{B}_{s}^{0} :

$$
\propto\left[\left(1 \pm \cos \phi_{s}\right) e^{-\Gamma_{\mathrm{L}}^{(s)} t}+\left(1 \mp \cos \phi_{s}\right) e^{-\Gamma_{\mathrm{H}}^{(s)} t}\right]
$$

- Tagged data samples:
\rightarrow distinguish between initially present B_{s}^{0} or \bar{B}_{s}^{0} :
$\rightarrow \mathrm{CP}$ asymmetries $\propto \sin \left(\Delta M_{s} t\right) \sin \phi_{s}$
- CP-violating NP effects, i.e. $\phi_{s}^{\mathrm{NP}} \neq 0^{\circ}$, would be indicated as follows:
- The untagged observables depend on two exponentials;
- sizeable values of the CP-violating asymmetries.

Interesting Results from the Tevatron

- First tagged analyses of $B_{s} \rightarrow J / \psi \phi$ by CDF and D \varnothing :
- T. Aaltonen et al. (CDF Collaboration), arXiv:0712.2397 [hep-ex]
- V.M. Abazov et al. (DØ Collaboration), arXiv:0802.2255 [hep-ex]
- UTfit Collaboration: arXiv:0803.0659 [hep-ph]
- Performing an average of CDF and $\mathrm{D} \varnothing$ and taking other constraints into account, it is speculated about CP-violating NP in $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing.
- Heavy Flavour Averaging Group (HFAG): $\phi_{s}^{\mathrm{NP}}=\left(-44_{-21}^{+17}\right)^{\circ} \vee\left(-135_{-17}^{+21}\right)^{\circ}$

[Update of P. Ball \& R.F. (2006)]
$\Rightarrow!?$ Fortunately, ϕ_{s} is very accessible @ LHCb ...

Prospects for ϕ_{s} Measurements at the LHC

- Experimental reach @ LHCb: very impressive ...
- One nominal year of operation, i.e. $2 \mathrm{fb}^{-1}: \sigma\left(\phi_{s}\right)_{\exp } \sim 1^{\circ}$
- LHCb upgrade with integrated lumi of $100 \mathrm{fb}^{-1}: \sigma\left(\phi_{s}\right)_{\exp } \sim 0.2^{\circ}$
- However: have to include hadronic SM corrections to match this ...
- Penguin shift $\Delta \phi_{s}$ could induce CP asymmetries as large as $\sim-10 \%$, while $\sin \phi_{s}^{\mathrm{SM}} \approx-3 \%$ (supported by $B^{0} \rightarrow J / \psi \pi^{0}$ data analysis).
- Control channel: $\quad B_{s}^{0} \rightarrow J / \psi\left[\rightarrow \ell^{+} \ell^{-}\right] \bar{K}^{* 0}\left[\rightarrow \pi^{+} K^{-}\right]$
* Search for this decay at the Tevatron: \Rightarrow first constraints on $\Delta \phi_{s}$.
* Fully pin down $\Delta \phi_{s}$ at LHCb (perform corresponding studies).
* Offers also internal checks of the $S U(3)$ flavour symmetry :-)
[S. Faller, R.F. \& T. Mannel (2008) \rightarrow]

Closer Look @ SM Penguin Effects

- CP asymmetries:

$$
\frac{\left|A_{f}(t)\right|^{2}-\left|\bar{A}_{f}(t)\right|^{2}}{\left|A_{f}(t)\right|^{2}+\left|\bar{A}_{f}(t)\right|^{2}}=\frac{\hat{A}_{\mathrm{D}}^{f} \cos \left(\Delta M_{s} t\right)+\hat{A}_{\mathrm{M}}^{f} \sin \left(\Delta M_{s} t\right)}{\cosh \left(\Delta \Gamma_{s} t / 2\right)-\mathcal{A}_{\Delta \Gamma}^{f} \sinh \left(\Delta \Gamma_{s} t / 2\right)}
$$

- Impact of hadronic effects:

$$
\eta_{f} \hat{A}_{\mathrm{M}}^{f} / \sqrt{1-\left(\hat{A}_{\mathrm{D}}^{f}\right)^{2}}=\sin \left(\phi_{s}+\Delta \phi_{s}^{f}\right)
$$

$\sin \Delta \phi_{s}^{f}=\frac{2 \epsilon a_{f} \cos \theta_{f} \sin \gamma+\epsilon^{2} a_{f}^{2} \sin 2 \gamma}{N_{f} \sqrt{1-\left(\hat{A}_{\mathrm{D}}^{f}\right)^{2}}}$

$$
\cos \Delta \phi_{s}^{f}=\frac{1+2 \epsilon a_{f} \cos \theta_{f} \cos \gamma+\epsilon^{2} a_{f}^{2} \cos 2 \gamma}{N_{f} \sqrt{1-\left(\hat{A}_{\mathrm{D}}^{f}\right)^{2}}}
$$

$$
N_{f} \equiv 1+2 \epsilon a_{f} \cos \theta_{f} \cos \gamma+\epsilon^{2} a_{f}^{2}
$$

- Illustration of the effects:

- Control of the effects through $B_{s}^{0} \rightarrow J / \psi \bar{K}^{* 0}$:

[S. Faller, R.F. \& T. Mannel (2008)]

Examples of Specific BSM Analyses

- Littlest Higgs Model with T-Parity (LHT): ${ }^{3}$ [\rightarrow talk by Goto]

[Blanke, Buras, Poschenrieder, Recksiegel, Tarantino, Uhlig \& Weiler]
- Warped Extra Dimensions: [\rightarrow talks by Weiler \& Gori]

[Blanke, Buras, Duling, Gori \& Weiler (2008)]
${ }^{3} A_{\mathrm{SL}}^{s \mathrm{SM}} \sim 2 \times 10^{-5}:$ "wrong-charge" lepton asymmetry measuring CP violation in $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations.

Further Benchmark Decays

for the

LHCb Experiment

\rightarrow very rich physics programme ...
[For experimental overview, see talk by Tatsuya Nakada]

Two Major Lines of Research

1. Precision measurements of γ :

- Tree strategies, with expected sensitivities after 1 year of taking data:
$-B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}: \sigma_{\gamma} \sim 14^{\circ}$
- $B_{d}^{0} \rightarrow D^{0} K^{*}: \quad \sigma_{\gamma} \sim 8^{\circ} \quad .$. to be compared with the
$-B^{ \pm} \rightarrow D^{0} K^{ \pm}: \sigma_{\gamma} \sim 5^{\circ}$
current B-factory data: $\left.\gamma\right|_{D^{(*)} K^{(*)}}= \begin{cases}\left(70_{-30}^{+27}\right)^{\circ} & \text { [CKMfitter] } \\ (78 \pm 12)^{\circ} & \text { [UTfit] }\end{cases}$
- Decays with penguin contributions:
- $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B_{d}^{0} \rightarrow \pi^{+} \pi^{-}: \sigma_{\gamma} \sim 5^{\circ}$
$-B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}$and $B_{d}^{0} \rightarrow D_{d}^{+} D_{d}^{-}$

2. Analyses of rare decays: [see discussion above \& talks by Ball \& Hiller]

- $B_{s}^{0} \rightarrow \phi \phi$
- $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}, B_{d}^{0} \rightarrow \mu^{+} \mu^{-}$(ATLAS \& CMS are competitive!)
- $B_{d}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}, B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-} ; \ldots$
\rightarrow let's have a closer look at some decays ...

CP Violation in $B_{s} \rightarrow D_{s}^{ \pm} K^{\mp}$ and $B_{d} \rightarrow D^{ \pm} \pi^{\mp}$

- General case:

$$
\phi_{q}+\gamma
$$

- $q=s: D_{s} \in\left\{D_{s}^{+}, D_{s}^{*+}, \ldots\right\}, u_{s} \in\left\{K^{+}, K^{*+}, \ldots\right\}$:
\rightarrow hadronic parameter $X_{s} e^{i \delta_{s}} \propto R_{b} \Rightarrow$ large interference effects!
- $q=d: D_{d} \in\left\{D^{+}, D^{*+}, \ldots\right\}, u_{d} \in\left\{\pi^{+}, \rho^{+}, \ldots\right\}:$
\rightarrow hadronic parameter $X_{d} e^{i \delta_{d}} \propto-\lambda^{2} R_{b} \Rightarrow$ tiny interference effects!
- $\underline{\cos \left(\Delta M_{q} t\right) \text { and } \sin \left(\Delta M_{q} t\right) \text { terms of the time-dependent decay rates: }}$
\Rightarrow theoretically clean determination of $\phi_{q}+\gamma$
$\phi_{q} \xrightarrow{\text { known }}$

[Dunietz \& Sachs (1988); Aleksan, Dunietz \& Kayser (1992); Dunietz (1998); ...]
- However, there are also problems:
- We encounter an eightfold discrete ambiguity for $\phi_{q}+\gamma!?$
- In the $q=d$ case, an additional input is required to extract X_{d} since $\mathcal{O}\left(X_{d}^{2}\right)$ interference effects would have to be resolved \rightarrow impossilbe \ldots
- Combined analysis of $B_{s}^{0} \rightarrow D_{s}^{(*)+} K^{-}$and $B_{d}^{0} \rightarrow D^{(*)+} \pi^{-}$: [R.F. (2003)]
$s \leftrightarrow d \Rightarrow U$-spin symmetry provides an interesting playground:4
- An unambiguous value of γ can be extracted from the observables!
- To this end, X_{d} has not to be fixed, and X_{s} may only enter through a $1+X_{s}^{2}$ correction, which is determined through untagged B_{s} rates!
- Promising studies by LHCb:

[^1]
EXAMPLE RESULT: $\gamma=60^{\circ}, \delta=60^{\circ}$ (5 YEARS)

[V. Gligorov @ CERN TH Flavour Institute, June 2008]

The $B_{s} \rightarrow K^{+} K^{-}, B_{d} \rightarrow \pi^{+} \pi^{-}$System

- $\underline{B}_{s}^{0} \rightarrow K^{+} K^{-}:$

- $B_{d}^{0} \rightarrow \pi^{+} \pi^{-}$.

$$
\Rightarrow \quad s \leftrightarrow d
$$

- Structure of the decay amplitudes in the Standard Model:

$$
\begin{aligned}
A\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right) & \propto \\
A\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) & \propto \\
& {\left[e^{i \gamma}+\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right) d^{\prime} e^{i \theta^{\prime}}\right] } \\
d e^{i \theta}=\left.\frac{\text { "penguin" }}{\text { "tree" }}\right|_{B_{d} \rightarrow \pi^{+} \pi^{-}}, & d^{\prime} e^{i \theta^{\prime}}=\left.\frac{\text { "penguin" }}{\text { "tree" }}\right|_{B S \rightarrow K^{+} K^{-}}
\end{aligned}
$$

[d, d^{\prime} : real hadronic parameters; θ, θ^{\prime} : strong phases]

- General form of the CP asymmetries:

$$
\begin{gathered}
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)=G_{1}(d, \theta, \gamma), \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)=G_{2}\left(d, \theta, \gamma, \phi_{d}\right) \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right)=G_{1}^{\prime}\left(d^{\prime}, \theta^{\prime}, \gamma\right), \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right)=G_{2}^{\prime}\left(d^{\prime}, \theta^{\prime}, \gamma, \phi_{s}\right)
\end{gathered}
$$

- $\phi_{d}=2 \beta\left(\right.$ from $\left.B_{d} \rightarrow J / \psi K_{\mathrm{S}}\right)$ and $\phi_{s} \approx 0$ are known parameters:

$$
\begin{aligned}
& -\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) \quad \& \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right): \Rightarrow d=d(\gamma) \\
& -\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right) \quad \& \quad \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right): \Rightarrow d^{\prime}=d^{\prime}(\gamma)
\end{aligned}
$$

- Example (inspired by the current data):
- Input parameter:
* $\phi_{d}=42.4^{\circ}, \phi_{s}=-2^{\circ}, \gamma=70^{\circ}, d=d^{\prime}=0.46, \theta=\theta^{\prime}=155^{\circ}$
- CP asymmetries:
* $B_{d} \rightarrow \pi^{+} \pi^{-}: \quad \mathcal{A}_{\mathrm{CP}}^{\text {dir }}=-0.24, \mathcal{A}_{\mathrm{CP}}^{\text {mix }}=+0.59$
$* B_{s} \rightarrow K^{+} K^{-}: \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}=+0.09, \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}=-0.23$

- The decays $B_{d} \rightarrow \pi^{+} \pi^{-}$and $B_{s} \rightarrow K^{+} K^{-}$are related to each other through the interchange of all down and strange quarks:

$$
U \text {-spin symmetry } \Rightarrow
$$

- Determination of γ and hadronic parameters $d\left(=d^{\prime}\right), \theta$ and θ^{\prime}.
- Internal consistency check of the U-spin symmetry: $\theta \stackrel{?}{=} \theta^{\prime}$.

$$
\text { [R.F. (1999); current picture: } \gamma=\left(66.6_{-5.0-3.0}^{+4.3+4.0}\right)^{\circ} \text { arXiv:0705.1121 [hep-ph]] }
$$

- Detailed studies show that this strategy is very promising for LHCb:

\rightarrow for γ of a few degrees!
[CERN-LHCb/2003-123 \& 124; recent study: A. Carbone @ CERN TH Flavour Institute

Targets for an $e^{+} e^{-}$ "Super-Flavour Factory":

\rightarrow aim @ luminosity $\sim 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Super B : proposal with new site close to Rome; [http://www.pi.infn.it/SuperB/]
[\rightarrow talk by T. Nakada]
- SuperKEKB: KEK/Japan [http://superb.kek.jp/]
\rightarrow physics "left" by LHCb (\oplus possible upgrade)?

Rare Decays @ Super-Flavour Factory

1. Semileptonic tree processes (tiny BRs): ${ }^{5}$

- $\operatorname{BR}(B \rightarrow \tau \nu): ~(3-4) \%$
- $\mathrm{BR}(B \rightarrow D \tau \nu): \sim(2-3) \%$
\rightarrow constraints on non-SM charged Higgs:

2. Loop processes: \rightarrow powerful NP probes

- Mixing-induced CP asymmetry $S\left(B^{0} \rightarrow \rho^{0} \gamma\right): \sim 0.08-0.12$
- Mixing-induced CP asymmetry $S\left(B^{0} \rightarrow K_{\mathrm{S}} \pi^{0} \gamma\right): \sim 0.02-0.03$
- CP asymmetry $A_{\mathrm{CP}}(b \rightarrow s \gamma): \sim 0.004-0.005$
- Forward-backward asymmetry $A_{\mathrm{FB}}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right): \hat{s}_{0} \sim(4-6) \%$
- Branching ratio $\mathrm{BR}(B \rightarrow K \nu \bar{\nu}): \sim(16-20) \%$
- Branching ratio $\mathrm{BR}\left(B \rightarrow X_{s} \nu \bar{\nu}\right)$ ("cleanest" rare B decay process!).

3. Lepton Flavour Violation: \rightarrow measureable in various NP scenarios

- $\operatorname{BR}(\tau \rightarrow \mu \gamma): \sim(2-8) \times 10^{-9}$
- $\operatorname{BR}(\tau \rightarrow \mu \mu \mu): \sim(0.2-1) \times 10^{-9}$
- $\operatorname{BR}(\tau \rightarrow \mu \eta): \sim(0.4-4) \times 10^{-9}$

[^2]
Hadronic B Decays @ Super-Flavour Factory

1. Control of the SM corrections to "golden" decays: $\rightarrow \phi_{q}$
$-B_{d}^{0} \rightarrow J / \psi \pi^{0}$ to control the penguin effects in $B_{d}^{0} \rightarrow J / \psi K_{\mathrm{S}, \mathrm{L}}$.

- Also $B_{d}^{0} \rightarrow J / \psi \rho^{0}$ would be interesting for $B_{s}^{0} \rightarrow J / \psi \phi$.

2. Search for NP in hadronic $b \rightarrow s$ penguin processes:

- CP violation in $B_{d}^{0} \rightarrow \pi^{0} K_{\mathrm{S}}$ offers most interesting observables.
- Requires also measurements of other $B \rightarrow \pi^{0} K$ and $B \rightarrow \pi^{0} \pi$ decay observables as input for the theoretical analysis.

3. Pure tree decays:
$-B_{d} \rightarrow D_{ \pm} K_{\mathrm{S}(\mathrm{L})}\left(\right.$ and $\left.B_{s} \rightarrow D_{ \pm} \eta^{\left({ }^{\prime}\right)}, B_{s} \rightarrow D_{ \pm} \phi\right):$
\rightarrow unambiuous clean determinations of γ
$-B_{d} \rightarrow D_{ \pm} \pi^{0}, D_{ \pm} \rho^{0}, \ldots$ (and $\left.B_{s} \rightarrow D_{ \pm} K_{\mathrm{S}(\mathrm{L})}\right)$:
\rightarrow extremely clean determinations of $\sin \phi_{q}(\rightarrow$ compare with 1.$)$

Where do we stand in B physics?

- Tremendous progress in B physics during the recent years:

Fruitful interplay between theory and experiment

- $e^{+} e^{-} B$ factories: have produced $\sum \mathcal{O}\left(10^{9}\right) B \bar{B}$ pairs;
- Tevatron: has recently reported exciting B_{s} results.
- Status in Spring 2009:
- The data agree globally with the Kobayashi-Maskawa picture!
- But we have also hints for discrepancies: \rightarrow first signals of NP?
- New perspectives for B-decay studies @ LHC (restart in September '09):
- Large statistics and full exploitation of the B_{s} physics potential, thereby complementing the physics programme of the $e^{+} e^{-} B$ factories.
- Precision determinations of $\gamma: \rightarrow$ key ingredients for NP searches!
- Powerful studies of rare decays: $B_{s}^{0} \rightarrow \phi \phi, B_{s, d}^{0} \rightarrow \mu^{+} \mu^{-}, \ldots$

An Optimistic Scenario: Let's Hope Nature is Kind!

- First unambiguous signals for NP @ LHC in the flavour sector:
- Could show up @ LHCb in the CP asymmetries of $B_{s}^{0} \rightarrow J / \psi \phi$.
- Would immediately imply new sources of CP violation!
- Could go hand in hand with new CP-violating effects in the $b \rightarrow s$ penguin decay $B_{s}^{0} \rightarrow \phi \phi$ (as well as in $B^{0} \rightarrow \phi K_{\mathrm{S}}, B^{0} \rightarrow \pi^{0} K_{\mathrm{S}}$).
- Study correlations with rare decays: $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}, B_{d}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}, \ldots$

> NP reach limited by precision!

- Ideally, NP signals would be complemented by high- Q^{2} collider physics:
- Direct signals of new particles @ ATLAS and CMS!
- Measure masses, couplings of new particles (e.g. Z^{\prime} boson, SUSY).
- Flavour-physics observables determine then new flavour- and CPviolating structures (NP particle masses, couplings important input).

> NP reach limited by the energy of the LHC (or ILC, CLIC, ...)!

Next Decade: Most Exciting for Particle Physics!

- Expect to find Higgs(es) or an alternative for EW symmetry breaking!
- Hope to find also evidence for physics beyond the SM @ LHC:

1. Establish NP signals unambiguously, i.e. distinguish from SM effects.
2. Study the properties of NP and find out what it is (SUSY, extra dimensions, little Higgs models, Z^{\prime} models, 4th generation, ... ?).
B (flavour) physics is an integral part of this adventure!

- Get back to the long-standing "big" questions:
- Dark matter of the Universe.
- Baryon asymmetry of the Universe ...
- Decide on new experimental programmes and get them started:

LHC upgrade options (luminosity vs. energy), LHCb detector upgrade, $e^{+} e^{-}$super- B factories (SuperKEKB, Super B), $K \rightarrow \pi \nu \bar{\nu}$ experiments (CERN, J-PARC), ILC, CLIC, ... are already under discussion.

- The interplay between theory and experiment should allow us to make significant progress towards the formulation of a "new" Standard Model:

$$
\rightarrow \text { may revolutionize our picture of the Universe! }
$$

[^0]: ${ }^{1} K \rightarrow \pi \nu \bar{\nu}$ with $\mathrm{SM} \mathrm{BRs}=\mathcal{O}\left(10^{-11}\right)$ very clean, but exp. very challenging [\rightarrow Gorbahn's talk].

[^1]: ${ }^{4}$ The U-spin is an $S U(2)$ subgroup of the $S U(3)_{\mathrm{F}}$ flavour-symmetry group, connecting d and s quarks in analogy to the conventional isospin symmetry, which relates d and u quarks to each other.

[^2]: ${ }^{5}$ Experimental sensitivities refer to (50-75) ab ${ }^{-1}$ [Browder et al., arXiv:0710.3799 [hep-ph]].

