$b \rightarrow s \ell^{+} \ell^{-}$in the high q^{2} region at two-loops

Volker Pilipp
in collaboration with
Christoph Greub and Christof Schüpbach

Institute for Theoretical Physics
University of Bern
Ringberg Workshop on New Physics, Flavors and Jets, Ringberg 2009

Outline

Framework and status of the calculation

NNLL calculation in the high q^{2} region

Numerical issues

Some features about $b \rightarrow s \ell^{+} \ell^{-}$

- Induced by flavour changing neutral current
\Rightarrow loop-induced in the SM and sensitive to new physics

Some features about $b \rightarrow s \ell^{+} \ell^{-}$

- Induced by flavour changing neutral current \Rightarrow loop-induced in the SM and sensitive to new physics

- Three body decay
\Rightarrow many kinematic observables can be measured like invariant mass spectrum of $\ell^{+} \ell^{-}$and forward-backward asymmetry

How to treat the decay mode theoretically

- Theoretically clean predictions are possible by operator product expansion (OPE), which approximates full decay rate by the partonic decay rate:

$$
\Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=\Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}\right)
$$

How to treat the decay mode theoretically

- Theoretically clean predictions are possible by operator product expansion (OPE), which approximates full decay rate by the partonic decay rate:

$$
\Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=\Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}\right)
$$

- Break down of OPE for dilepton invariant mass squared q^{2} at
- $c \bar{c}$ resonances
\Rightarrow Limitation of theoretical predictions to
Low $q^{2}: 1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$ High $q^{2}: q^{2}>14.4 \mathrm{GeV}^{2}$ (Topic of the present talk)

How to treat the decay mode theoretically

- Theoretically clean predictions are possible by operator product expansion (OPE), which approximates full decay rate by the partonic decay rate:

$$
\Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)=\Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}\right)
$$

- Break down of OPE for dilepton invariant mass squared q^{2} at
- $c \bar{c}$ resonances
\Rightarrow Limitation of theoretical predictions to
Low $q^{2}: 1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$
High $q^{2}: q^{2}>14.4 \mathrm{GeV}^{2}$ (Topic of the present talk)
- the endpoint m_{b}^{2}

For $\int_{q_{0}^{2}}^{m_{b}^{2}} d q^{2} \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)$effective expansion in
$\Lambda_{Q C D} /\left(m_{b}-\sqrt{q_{0}^{2}}\right)$ (Bauer, Ligeti, Luke '00, Neubert' 00)
Normalizing by $\int_{q_{0}^{2}}^{m_{b}^{2}} d q^{2} \Gamma\left(B \rightarrow X_{u} \ell \nu\right)$ reduces the effect of
$1 / m_{b}^{3}$ corrections (Ligeti, Tackmann '07)

Effective Hamiltonian

- Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{H}_{\text {eff }}|b\rangle=\sum_{i} C_{i}\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle
$$

with

$$
\begin{array}{lll}
\mathcal{O}_{1}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) & \mathcal{O}_{2} & =\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
\mathcal{O}_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) & \mathcal{O}_{4} & =\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
\mathcal{O}_{5}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} q\right) & \mathcal{O}_{6}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^{a} q\right) \\
\mathcal{O}_{7}=\frac{\mathcal{O}_{8}}{}=\frac{e}{g_{S}^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} & \frac{1}{g_{s}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a} \\
\mathcal{O}_{9}=\frac{e^{2}}{g_{S}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell}^{\mu} \ell\right) & \mathcal{O}_{10}=\frac{e^{2}}{g_{S}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{array}
$$

Effective Hamiltonian

- Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{H}_{\text {eff }}|b\rangle=\sum_{i} C_{i}\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle
$$

with

$$
\begin{array}{lll}
\mathcal{O}_{1}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) & \mathcal{O}_{2} & =\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
\mathcal{O}_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) & \mathcal{O}_{4} & =\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
\mathcal{O}_{5}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} q\right) & \mathcal{O}_{6}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^{a} q\right) \\
\mathcal{O}_{7}=\frac{\mathcal{O}_{8}}{g_{S}^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} & \frac{1}{g_{S}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a} \\
\mathcal{O}_{9}=\frac{e^{2}}{g_{S}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell}^{\mu} \gamma^{\mu} \ell\right) & \mathcal{O}_{10} & =\frac{e^{2}}{g_{S}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{array}
$$

- Wilson coefficients C_{i} contain physics of the order m_{t} and M_{W} and resum large logarithms $\ln \left(m_{b} / M_{W}\right)$:
$\mathrm{LL}:\left(\alpha_{S} \ln \frac{m_{b}}{M_{w}}\right)^{n}, \quad \mathrm{NLL}: \alpha_{S}\left(\alpha_{S} \ln \frac{m_{b}}{M_{W}}\right)^{n}, \quad \mathrm{NNLL}: \alpha_{S}^{2}\left(\alpha_{S} \ln \frac{m_{b}}{M_{w}}\right)^{n}$

Effective Hamiltonian

- Decay amplitude is given by matrix elements of an effective Hamiltonian:

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{H}_{\text {eff }}|b\rangle=\sum_{i} C_{i}\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle
$$

with

$$
\left.\begin{array}{lll}
\mathcal{O}_{1}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) & \mathcal{O}_{2} & =\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
\mathcal{O}_{3} & =\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) & \mathcal{O}_{4}
\end{array}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right)\right]\left(\mathcal{O}_{6}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^{a} q\right)\right)
$$

- Wilson coefficients C_{i} contain physics of the order m_{t} and M_{W} and resum large logarithms $\ln \left(m_{b} / M_{W}\right)$: $\mathrm{LL}:\left(\alpha_{S} \ln \frac{m_{b}}{M_{w}}\right)^{n}, \quad \mathrm{NLL}: \alpha_{S}\left(\alpha_{S} \ln \frac{m_{b}}{M_{W}}\right)^{n}, \quad \mathrm{NNLL}: \alpha_{S}^{2}\left(\alpha_{S} \ln \frac{m_{b}}{M_{w}}\right)^{n}$
- Note extra factor $1 / g_{s}^{2}$ in \mathcal{O}_{9} \Rightarrow Counting for the matrix elements: $\mathrm{LL} \sim \alpha_{s}^{-1}, \mathrm{NLL} \sim \alpha_{s}^{0}$, NNLL $\sim \alpha_{s}^{1}$,

Typical diagrams

- Two-quark operators

- Four-quark operators

\Rightarrow lead to $c \bar{c}$ resonances that spoil OPE

Status of the calculation

- Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth, Misiak, Urban '00; Bobeth, Gambino, Gorban, Haisch '04; Gorban, Haisch '05

Status of the calculation

- Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth,
Misiak, Urban '00; Bobeth, Gambino, Gorban, Haisch '04; Gorban, Haisch '05

- Matrix elements $\left\langle\mathcal{O}_{i}\right\rangle$
- LL and NLL

Grinstein, Savage, Wise ' 89 ; Misiak ' 93 ; Buras, Münz ' 95

Status of the calculation

- Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth,
Misiak, Urban '00; Bobeth, Gambino, Gorban, Haisch '04; Gorban, Haisch '05

- Matrix elements $\left\langle\mathcal{O}_{i}\right\rangle$
- LL and NLL

Grinstein, Savage, Wise ' 89 ; Misiak ' 93 ; Buras, Münz ' 95

- Power Corrections $1 / m_{b}^{2}, 1 / m_{c}^{2}, 1 / m_{b}^{3}$

Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07

Status of the calculation

- Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth,
Misiak, Urban '00; Bobeth, Gambino, Gorban, Haisch '04; Gorban, Haisch '05

- Matrix elements $\left\langle\mathcal{O}_{i}\right\rangle$
- LL and NLL

Grinstein, Savage, Wise ' 89 ; Misiak ' 93 ; Buras, Münz ' 95

- Power Corrections $1 / m_{b}^{2}, 1 / m_{c}^{2}, 1 / m_{b}^{3}$

Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07

- Electromagnetic corrections

Huber, Lunghi, Misiak, Wyler '06; Huber, Hurth, Lunghi '08

Status of the calculation

- Wilson Coefficients up to NNLL

Adel, Yao '94; Buchalla, Buras, Lautenbacher '96; Greub, Hurth '97; Chetyrkin, Misiak, Münz '97; Bobeth,
Misiak, Urban '00; Bobeth, Gambino, Gorban, Haisch '04; Gorban, Haisch '05

- Matrix elements $\left\langle\mathcal{O}_{i}\right\rangle$
- LL and NLL

Grinstein, Savage, Wise ' 89 ; Misiak ' 93 ; Buras, Münz ' 95

- Power Corrections $1 / m_{b}^{2}, 1 / m_{c}^{2}, 1 / m_{b}^{3}$

Falk, Luke, Savage '94; Ali, Hiller, Handoko, Morozumi '97; Chen, Rupak, Savage '97; Buchalla, Isidori, Rey '98; Buchalla, Isidori '98; Bauer, Burrell '00; Ligeti, Tackmann '07

- Electromagnetic corrections

Huber, Lunghi, Misiak, Wyler '06; Huber, Hurth, Lunghi '08

- NNLL of $\left\langle\mathcal{O}_{1}\right\rangle$ and $\left\langle\mathcal{O}_{2}\right\rangle$
- Low q^{2} : Expansion in m_{c} / m_{b} and q^{2} / m_{b}^{2} Asatrian, Asatryan, Greub, Walker '01 '02 '02
- High q^{2} :

Numerically Ghinculov, Hurth, Isidori, Yao '04
Analytically in an expansion in m_{c} / m_{b} Greub, V.P., Schüpbach '08

NNLL calculation in the high q^{2} region

- Diagrams occurring at NNLL

NNLL calculation in the high q^{2} region

- Diagrams occurring at NNLL

- Two ratios of scales: q^{2} / m_{b}^{2} and m_{c} / m_{b} High q^{2} region \Rightarrow We keep $q^{2}=\mathcal{O}\left(m_{b}^{2}\right)$ and expand in m_{c} / m_{b}

NNLL calculation in the high q^{2} region

- Diagrams occurring at NNLL

- Two ratios of scales: q^{2} / m_{b}^{2} and m_{c} / m_{b} High q^{2} region \Rightarrow We keep $q^{2}=\mathcal{O}\left(m_{b}^{2}\right)$ and expand in m_{c} / m_{b}
- Due to slow convergence we need powers up to $\left(m_{c} / m_{b}\right)^{20}$ to obtain an error less than 1%

Evaluation of two-loops Feynman integrals

- Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$
\begin{gathered}
\int d^{d} k_{1} d^{d} k_{2} \frac{\left[k_{1}^{\mu_{1}} \ldots k_{1}^{\mu_{m}}\right]\left[k_{2}^{\nu_{1}} \ldots k_{2}^{\nu_{n}}\right]}{\prod D_{i}\left(k_{1}, k_{2}, p_{\text {extern }}\right)}= \\
p_{\text {ext. }}^{\mu_{1}} \ldots p_{\text {ext. }}^{\nu_{n}} S_{1}+g^{\mu_{1}, \mu_{2}} p_{\text {ext. }}^{\mu_{3}} \ldots p_{\text {ext. } .}^{\nu_{n}} S_{2}+\ldots
\end{gathered}
$$

Evaluation of two-loops Feynman integrals

- Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$
\begin{gathered}
\int d^{d} k_{1} d^{d} k_{2} \frac{\left[k_{1}^{\mu_{1}} \ldots k_{1}^{\mu_{m}}\right]\left[k_{2}^{\nu_{1}} \ldots k_{2}^{\nu_{n}}\right]}{\prod D_{i}\left(k_{1}, k_{2}, p_{\text {extern }}\right)}= \\
p_{\text {ext. }}^{\mu_{1}} \ldots p_{\text {ext. }}^{\nu_{n}} S_{1}+g^{\mu_{1}, \mu_{2}} p_{\text {ext. }}^{\mu_{3}} \ldots p_{\text {ext. }}^{\nu_{n}} S_{2}+\ldots
\end{gathered}
$$

- Reduction of scalar integrals to a set of simpler master integrals via integration by parts identities

$$
0=\int d^{d} k p^{\mu} \frac{\partial}{\partial k^{\mu}} f(k)
$$

$\Rightarrow \mathcal{O}(20)$ master integrals

Evaluation of two-loops Feynman integrals

- Reduction of tensor integrals to scalar integrals via Passarino-Veltman

$$
\begin{gathered}
\int d^{d} k_{1} d^{d} k_{2} \frac{\left[k_{1}^{\mu_{1}} \ldots k_{1}^{\mu_{m}}\right]\left[k_{2}^{\nu_{1}} \ldots k_{2}^{\nu_{n}}\right]}{\prod D_{i}\left(k_{1}, k_{2}, p_{\text {extern }}\right)}= \\
p_{\text {ext. }}^{\mu_{1}} \ldots p_{\mathrm{ext.} .}^{\nu_{n}} S_{1}+g^{\mu_{1}, \mu_{2}} p_{\text {ext. }}^{\mu_{3}} \ldots p_{\mathrm{ext.} .}^{\nu_{n}} S_{2}+\ldots
\end{gathered}
$$

- Reduction of scalar integrals to a set of simpler master integrals via integration by parts identities

$$
0=\int d^{d} k p^{\mu} \frac{\partial}{\partial k^{\mu}} f(k)
$$

$\Rightarrow \mathcal{O}(20)$ master integrals

- Evaluation of master integrals in expansion in m_{c} / m_{b}

Power expansion of Feynman integrals

- Expansion of Feynman integrals in powers of $z=m_{c}^{2} / m_{b}^{2}$ by solving a set of differential equations in z

$$
\frac{d}{d z} I_{\alpha}=\sum_{\beta} h_{\alpha \beta} I_{\beta}+g_{\alpha}
$$

$h_{\alpha \beta}$: rational functions in z, $\quad g_{\alpha}$: simpler master integrals

Power expansion of Feynman integrals

- Expansion of Feynman integrals in powers of $z=m_{c}^{2} / m_{b}^{2}$ by solving a set of differential equations in z

$$
\frac{d}{d z} I_{\alpha}=\sum_{\beta} h_{\alpha \beta} I_{\beta}+g_{\alpha}
$$

$h_{\alpha \beta}$: rational functions in z, $\quad g_{\alpha}$: simpler master integrals

- Ansatz: Expansion of I_{α} in powers of z and $\ln z$

$$
I_{\alpha}=\sum_{i, j, k} I_{\alpha, i}^{(j, k)} \epsilon^{i} z^{j} \ln ^{k} z
$$

Additionally expand $h_{\alpha \beta}$ and g_{α} in z :

$$
h_{\alpha \beta}=\sum_{i j} h_{\alpha, i}^{(j)} i^{i} z^{j} \quad \text { and } \quad g_{\alpha}=\sum_{i, j, k} g_{\alpha, i}^{(j, k)} \epsilon^{i} z^{j} \ln ^{k} z
$$

Power expansion of Feynman integrals

- Expansion of Feynman integrals in powers of $z=m_{c}^{2} / m_{b}^{2}$ by solving a set of differential equations in z

$$
\frac{d}{d z} I_{\alpha}=\sum_{\beta} h_{\alpha \beta} I_{\beta}+g_{\alpha}
$$

$h_{\alpha \beta}$: rational functions in z, $\quad g_{\alpha}$: simpler master integrals

- Ansatz: Expansion of I_{α} in powers of z and $\ln z$

$$
I_{\alpha}=\sum_{i, j, k} I_{\alpha, i}^{(j, k)} \epsilon^{i} z^{j} \ln ^{k} z
$$

Additionally expand $h_{\alpha \beta}$ and g_{α} in z :

$$
h_{\alpha \beta}=\sum_{i j} h_{\alpha, i}^{(j)} i^{i} z^{j} \quad \text { and } \quad g_{\alpha}=\sum_{i, j, k} g_{\alpha, i}^{(j, k)} \epsilon^{i} z^{j} \ln ^{k} z
$$

- Set of algebraic equations

$$
0=(j+1) I_{\alpha, i}^{(j+1, k)}+(k+1) I_{\alpha, i}^{(j+1, k+1)}-\sum_{\beta} \sum_{i^{\prime}} \sum_{j^{\prime}} h_{\alpha \beta, i^{\prime}}^{\left(j^{\prime}\right)} I_{\beta, i-i^{\prime}}^{\left(j-j^{\prime}, k\right)}-g_{\alpha, i}^{(j, k)}
$$

- We gained: Reduction of higher powers in z to lower powers
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We have to assume that the expansion in Inz contains only a finite number of terms
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We have to assume that the expansion in Inz contains only a finite number of terms
- We do not know a priori if there occur only integer powers of z or also half-integer powers
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We have to assume that the expansion in Inz contains only a finite number of terms
- We do not know a priori if there occur only integer powers of z or also half-integer powers
- Evaluation of the leading power using method of regions
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We have to assume that the expansion in Inz contains only a finite number of terms
- We do not know a priori if there occur only integer powers of z or also half-integer powers
- Evaluation of the leading power using method of regions
- Testing the correctness of our ansatz: Formalism that combines sector decomposition (Binoth, Heinrich '00) and Mellin-Barnes techniques and provides a formal proof of our ansatz (v.P. '08)
- We gained: Reduction of higher powers in z to lower powers
- But:
- We need leading power as initial condition
- We have to assume that the expansion in Inz contains only a finite number of terms
- We do not know a priori if there occur only integer powers of z or also half-integer powers
- Evaluation of the leading power using method of regions
- Testing the correctness of our ansatz: Formalism that combines sector decomposition (Binoth, Heinrich '00) and Mellin-Barnes techniques and provides a formal proof of our ansatz (v.P. 'o8)
- This formalism also allows for numerical evaluation of the coefficients in the expansion \Rightarrow additional cross-check.

A short description of this formalism

- Feynman parametrization:

$$
I(z) \sim \int_{0}^{1} d^{n-1} x \frac{1}{\left(z f_{1}(\vec{x})+f_{2}(\vec{x})\right)^{n-d / 2}}
$$

A short description of this formalism

- Feynman parametrization:

$$
I(z) \sim \int_{0}^{1} d^{n-1} x \frac{1}{\left(z f_{1}(\vec{x})+f_{2}(\vec{x})\right)^{n-d / 2}}
$$

- Mellin-Barnes representation:

$$
\begin{gathered}
\frac{1}{\left(X_{1}+X_{2}\right)^{x}}=\frac{1}{\Gamma(x)} \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d s \Gamma(-s) \Gamma(s+x) X_{1}^{s} X_{2}^{-s-x} \\
I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} x F(\vec{x}, s)
\end{gathered}
$$

A short description of this formalism

- Feynman parametrization:

$$
I(z) \sim \int_{0}^{1} d^{n-1} x \frac{1}{\left(z f_{1}(\vec{x})+f_{2}(\vec{x})\right)^{n-d / 2}}
$$

- Mellin-Barnes representation:

$$
\begin{gathered}
\frac{1}{\left(X_{1}+X_{2}\right)^{x}}=\frac{1}{\Gamma(x)} \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} d s \Gamma(-s) \Gamma(s+x) X_{1}^{s} X_{2}^{-s-x} \\
I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} x F(\vec{x}, s)
\end{gathered}
$$

- Close integration contour to the right half

\Rightarrow Summing up residua on the positive real axis leads to power expansion in z
$\Rightarrow \ln (z)$ terms originate from terms like z^{ϵ} / ϵ
- We have $I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$
- Position of the poles in s give possible powers in z
- We need information about the analytic structure of $\int_{0}^{1} d^{n-1} x F(\vec{x}, s)$ without explicit evaluation of the integral
- We have $I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$
- Position of the poles in s give possible powers in z
- We need information about the analytic structure of $\int_{0}^{1} d^{n-1} x F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
- Make sure that divergences in s come from integration over small x
- Integral can be decomposed into terms like

$$
\int_{0}^{1} d^{n-1} x\left(\prod_{j} x_{j}^{A_{j}-B_{j} \epsilon-C_{j} s}\right) \times(\text { const. }+\mathcal{O}(x))
$$

- We have $I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$
- Position of the poles in s give possible powers in z
- We need information about the analytic structure of $\int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
- Make sure that divergences in s come from integration over small x
- Integral can be decomposed into terms like

$$
\int_{0}^{1} d^{n-1} x\left(\prod_{j} x_{j}^{A_{j}-B_{j} \epsilon-C_{j} s}\right) \times(\text { const. }+\mathcal{O}(x))
$$

- Location of the poles can be read off

$$
s_{j N}=\frac{1+N+A_{j}-B_{j} \epsilon}{C_{j}} \quad N \in \mathbb{N}_{0}
$$

- We have $I(z) \sim \int_{-i \infty}^{i \infty} d s z^{s} \int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$
- Position of the poles in s give possible powers in z
- We need information about the analytic structure of $\int_{0}^{1} d^{n-1} \times F(\vec{x}, s)$ without explicit evaluation of the integral
- Sector decomposition provides this property
- Make sure that divergences in s come from integration over small x
- Integral can be decomposed into terms like

$$
\int_{0}^{1} d^{n-1} x\left(\prod_{j} x_{j}^{A_{j}-B_{j} \epsilon-C_{j} s}\right) \times(\text { const. }+\mathcal{O}(x))
$$

- Location of the poles can be read off

$$
s_{j N}=\frac{1+N+A_{j}-B_{j} \epsilon}{C_{j}} \quad N \in \mathbb{N}_{0}
$$

- Analytical structure in z of $I(z)$ is known
\Rightarrow Ansatz

$$
I(z)=\sum_{i, j, k \in S} l_{i}^{(j, k)} \epsilon^{i} z^{j} \ln ^{k} z
$$

where the set of indices S is known

Numerical convergence of the power expansion

- Decomposition of matrix elements

$$
\left\langle\boldsymbol{s} \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle_{2-\mathrm{loops}}=-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[F_{i}^{(7)}\left\langle\mathcal{O}_{7}\right\rangle_{\text {tree }}+F_{i}^{(9)}\left\langle\mathcal{O}_{9}\right\rangle_{\text {tree }}\right]
$$

Numerical convergence of the power expansion

- Decomposition of matrix elements

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle_{2 \text {-loops }}=-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[F_{i}^{(7)}\left\langle\mathcal{O}_{7}\right\rangle_{\text {tree }}+F_{i}^{(9)}\left\langle\mathcal{O}_{9}\right\rangle_{\text {tree }}\right]
$$

Here $z=0.1, \hat{s}=q^{2} / m_{b}^{2}$, red curve: up to $\mathcal{O}\left(z^{6}\right)$, blue curve: up to $\mathcal{O}\left(z^{8}\right)$, black curve: up to $\mathcal{O}\left(z^{10}\right)$

Numerical convergence of the power expansion

- Decomposition of matrix elements

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle_{2 \text {-loops }}=-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[F_{i}^{(7)}\left\langle\mathcal{O}_{7}\right\rangle_{\text {tree }}+F_{i}^{(9)}\left\langle\mathcal{O}_{9}\right\rangle_{\text {tree }}\right]
$$

Here $z=0.1, \hat{s}=q^{2} / m_{b}^{2}$, red curve: up to $\mathcal{O}\left(z^{6}\right)$, blue curve: up to $\mathcal{O}\left(z^{8}\right)$, black curve: up to $\mathcal{O}\left(z^{10}\right)$

- For $\hat{s}>0.6$ good numerical convergence

Numerical convergence of the power expansion

- Decomposition of matrix elements

$$
\left\langle s \ell^{+} \ell^{-}\right| \mathcal{O}_{i}|b\rangle_{2 \text {-loops }}=-\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[F_{i}^{(7)}\left\langle\mathcal{O}_{7}\right\rangle_{\text {tree }}+F_{i}^{(9)}\left\langle\mathcal{O}_{9}\right\rangle_{\text {tree }}\right]
$$

Here $z=0.1, \hat{s}=q^{2} / m_{b}^{2}$, ed curve: up to $\mathcal{O}\left(z^{6}\right)$, blue curve: up to $\mathcal{O}\left(z^{8}\right)$, black curve: up to $\mathcal{O}\left(z^{10}\right)$

- For $\hat{s}>0.6$ good numerical convergence
- By comparison with numerical calculation of Ghinculov et al. we find deviation less than 1%

Numerical impact of $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$ on the BRs

- Simple ratio with small dependence on $m_{b, p o l e}$:

$$
R(\hat{s})=\frac{1}{\Gamma\left(\bar{B} \rightarrow X_{c} e^{-} \bar{\nu}_{e}\right)} \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}
$$

Numerical impact of $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$ on the BRs

- Simple ratio with small dependence on $m_{b, p o l e}$:

$$
R(\hat{s})=\frac{1}{\Gamma\left(\bar{B} \rightarrow X_{c} e^{-} \bar{\nu}_{e}\right)} \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}
$$

- Significant effect of 2-loops contribution on $R(\hat{s})$ of the order 10\%

Red curve: not including $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$ Black curve: including $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$

Numerical impact of $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$ on the BRs

- Simple ratio with small dependence on $m_{b, p o l e}$:

$$
R(\hat{s})=\frac{1}{\Gamma\left(\bar{B} \rightarrow X_{c} e^{-} \bar{\nu}_{e}\right)} \frac{d \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}
$$

- Reduction of scale-dependence of $R_{\text {high }}=\int_{0.6}^{1} d \hat{s} R(\hat{s})$ to 2% $(2 \mathrm{GeV} \leq \mu \leq 10 \mathrm{GeV})$

Red curve: not including $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$ Black curve: including $\left\langle\mathcal{O}_{1,2}\right\rangle_{2 \text {-loops }}$

Summary

- We did the NNLL calculation of the matrix elements of $\mathcal{O}_{1,2}$ in the high q^{2} region

Summary

- We did the NNLL calculation of the matrix elements of $\mathcal{O}_{1,2}$ in the high q^{2} region
- Combining method of regions with differential equation techniques we obtained an expansion in m_{c} / m_{b} of the Feynman integrals

Summary

- We did the NNLL calculation of the matrix elements of $\mathcal{O}_{1,2}$ in the high q^{2} region
- Combining method of regions with differential equation techniques we obtained an expansion in m_{c} / m_{b} of the Feynman integrals
- This analytical result confirmed a former numerical calculation and is now completely published

