CP Violation in $B \rightarrow V_L V_L$

Matthäus Bartsch

Arnold Sommerfeld Center, Department für Physik Ludwig-Maximilians-Universität München

Ringberg Workshop on New Physics, Flavors and Jets Ringberg, 29.04.2009

This talk is based on the paper [M.B., G. Buchalla, C. Kraus, 2008].

Papers on $B \rightarrow VV$, that are also based on QCD factorization, are e.g. [M. Beneke, J. Rohrer, D. Yang, 2007] and [H. Y. Cheng, K. C. Yang, 2008].

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

Current status of $|V_{ub}|$ and γ

Inclusive, lattice QCD and exclusive determination of $|V_{ub}|$:

Current status of $|V_{ub}|$ and γ

Inclusive, lattice QCD and exclusive determination of $|V_{ub}|$:

Direct and indirect determination methods of γ :

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

Structure of calculation and sources of uncertainties

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

Higher twist contributions more effectively suppressed O(0.1) than for pseudoscalar final states O(1).

 \rightarrow Smaller numerical impact of model dependent terms.

Influence of ω - ϕ mixing

• Mixing of ω and ϕ can be parametrized by:

$$\phi = s\bar{s}\cos\theta + \frac{u\bar{u} + d\bar{d}}{\sqrt{2}}\sin\theta$$
$$\omega = \frac{u\bar{u} + d\bar{d}}{\sqrt{2}}\cos\theta - s\bar{s}\sin\theta,$$

where the mixing angle is $\theta \approx 3.4^{\circ}$.

Branching ratios can differ by several orders of magnitude \rightarrow large effects.

E.g.: $BR(B^- \to \rho^- \omega) = 15.5 \cdot 10^{-6}$ and $BR(B^- \rightarrow \rho^- \phi) = 6.0 \cdot 10^{-9}$. Variation for $\rho^- \phi$ relative to BR at $\theta = 0$: $\theta = 3.4^{\circ}$: +49.8 $\theta = 6.8^{\circ}$: +207.5

- ω - ϕ -error $\mathcal{O}(10)$ bigger than other uncertainties of otherwise clean mode $\bar{B}_d \rightarrow \omega \phi$.
- Modes $B^- \to \rho^- \omega$, $B^- \to K^{*-} \phi$ and $\bar{B}_s \to \phi \phi$ have small effects on BR. -ののの 豆 (瓜を(瓜を(瓜を(口を

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

$|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination

Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

Determination of $|V_{ub}|$ from sin 2 β and S_{ρ} in $B \rightarrow \rho_L^+ \rho_L^-$

- ► The leading order term in r_{ρ} and S_{ρ} marks the minimum value for R_b , since $\alpha = 90^{\circ}$ in that order.
 - \Rightarrow First order corrections in r_{ρ} and S_{ρ} vanish.

Determination of $|V_{ub}|$ from sin 2 β and S_{ρ} in $B \rightarrow \rho_L^+ \rho_L^-$

► The leading order term in r_{ρ} and S_{ρ} marks the minimum value for R_b , since $\alpha = 90^{\circ}$ in that order.

 \Rightarrow First order corrections in r_{ρ} and S_{ρ} vanish.

• Using
$$|V_{ub}| = \left| \frac{V_{cb}V_{cd}}{V_{ud}} \right| R_b$$
 one obtains

 $|V_{ub}| = (3.54^{+0.15}_{-0.15}(\sin 2\beta)^{+0.04}_{-0.01}(r_{\rho}, S_{\rho}) \pm 0.06(V_{cb}, V_{us})) \cdot 10^{-3}$

 $\begin{array}{l} \text{inclusive: } |V_{ub}| = (3.70 \pm 0.32) \cdot 10^{-3} \text{ [Neubert]} \\ \text{QCD SR } B \to \pi I \nu \text{: } |V_{ub}| = (3.36 \pm 0.23) \cdot 10^{-3} \text{ [Bourrely, Caprini, Lellouch]} \\ \text{and lattice (average): } |V_{ub}| = (3.54 \pm 0.40) \cdot 10^{-3} \text{ [Lubicz, Tarantino]} \end{array}$

Constraint on New Physics phase in $B_d - \bar{B}_d$ mixing

New physics phase Ω in $B_d - \bar{B}_d$ mixing enters $B_d \rightarrow J/\psi K_s$ and $B_d \rightarrow \rho^+ \rho^-$. Measured phase changes to $\sin(2(\beta + \Omega))$. Change in CKM triangle:

Independent measurement of $|V_{ub}|$ constrains Ω :

$$R_{b} = \frac{|1 - \tau \tan \Omega|}{\sqrt{1 + \tau^{2}}} \left[1 - \tan \Omega \left(\frac{\tau r_{\rho} \cos \phi_{\rho}}{1 - \tau \tan \Omega} + \frac{S_{\rho}}{2} \right) \right] + \mathcal{O}(r_{\rho}^{2}, r_{\rho}S_{\rho}, S_{\rho}^{2}),$$

where $\tau \equiv \cot \beta \approx 2.5$. Valid for $\Omega < 20^{\circ}$.

Constraint on New Physics phase in $B_d - \bar{B}_d$ mixing

New physics phase Ω in $B_d - \bar{B}_d$ mixing enters $B_d \rightarrow J/\psi K_s$ and $B_d \rightarrow \rho^+ \rho^-$. Measured phase changes to sin $(2(\beta + \Omega))$. Change in CKM triangle:

Independent measurement of $|V_{ub}|$ constrains Ω :

$$\Omega = \left(0.0^{-0.9}_{+1.0}(\tau) \,{}^{+0.2}_{-0.1}(S_{\rho}) \,{}^{+0.2}_{-0.1}(r_{\rho}) \,{}^{+0.3}_{-0.3}(V_{cb}) \,{}^{+2.5}_{+2.5}(|V_{ub}|)\right)^{\circ},$$

using $|V_{ub}|$ from lattice QCD. Valid for $\Omega < 20^{\circ}$.

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

SU(3) relation to all orders in $\frac{\Lambda_{QCD}}{m_b}$ (1)

► SU(3)-symmetric final states K^{*0}_LK^{*0}_L and ρ⁺_Lρ⁻_L. Branching fractions of B_d decaying into these final states exhibit V-spin symmetry.

$$b \equiv \frac{B(\bar{B}_d \to \bar{K}_L^{*0} K_L^{*0})}{B(\bar{B} \to \rho_L^+ \rho_L^-)} = \frac{((1-\bar{\rho})^2 + \bar{\eta}^2) \, |\xi|^2 \, r_\rho^2}{\bar{\rho}^2 + \bar{\eta}^2 + r_\rho^2 + 2\bar{\rho} \, r_\rho \cos \phi_\rho}$$

plus CKM-suppressed corrections.

SU(3) relation to all orders in $\frac{\Lambda_{QCD}}{m_b}$ (1)

SU(3)-symmetric final states K
⁺⁰
_LK⁺⁰
_L and ρ⁺
_Lρ⁻
_L. Branching fractions of B_d decaying into these final states exhibit V-spin symmetry.

$$b \equiv \frac{B(\bar{B}_d \to \bar{K}_L^{*0} K_L^{*0})}{B(\bar{B} \to \rho_L^+ \rho_L^-)} = \frac{((1 - \bar{\rho})^2 + \bar{\eta}^2) |\xi|^2 r_{\rho}^2}{\bar{\rho}^2 + \bar{\eta}^2 + r_{\rho}^2 + 2\bar{\rho} r_{\rho} \cos \phi_{\rho}}$$

plus CKM-suppressed corrections.

SU(3)-breaking parameter: ξ ≈ 1.28 (QCD factorization). Used range: ξ = 1.28 ± 0.14.

SU(3) relation to all orders in $\frac{\Lambda_{QCD}}{m_b}$ (1)

► SU(3)-symmetric final states K^{*0}_LK^{*0}_L and ρ⁺_Lρ⁻_L. Branching fractions of B_d decaying into these final states exhibit V-spin symmetry.

$$b \equiv \frac{B(\bar{B}_d \to \bar{K}_L^{*0} K_L^{*0})}{B(\bar{B} \to \rho_L^+ \rho_L^-)} = \frac{((1 - \bar{\rho})^2 + \bar{\eta}^2) \, |\xi|^2 \, r_\rho^2}{\bar{\rho}^2 + \bar{\eta}^2 + r_\rho^2 + 2\bar{\rho} \, r_\rho \cos \phi_\rho}$$

plus CKM-suppressed corrections.

- SU(3)-breaking parameter: ξ ≈ 1.28 (QCD factorization). Used range: ξ = 1.28 ± 0.14.
- ► Use 4 measured observables: $\cot \beta = 2.54 \pm 0.13$, $S_{\rho} = -0.05 \pm 0.17$, $C_{\rho} = -0.06 \pm 0.13$, $b = 0.043 \pm 0.015$ and one predicted parameter ξ to extract: 2 hadronic parameters r_{ρ} and ϕ_{ρ} and 2 CKM parameters: $\bar{\eta}$ and $\bar{\rho}$.

Discussion of Corrections to b

Corrections come from the branching ratio for $B_d \rightarrow \bar{K}_l^{*0} K_l^{*0}$:

$$B(\bar{B}_d \to \bar{K}_L^{*0} K_L^{*0}) =$$

$$\frac{\tau_{B_d} G_F^2 |\lambda_c|^2}{32\pi m_B} \bigg[f_0 |a_c(K^*)|^2 + 2f_1 \operatorname{Re} a_c^*(K^*) \Delta(K^*) + f_2 |\Delta(K^*)|^2 \bigg]$$

 f_0 , f_1 and f_2 are CKM-factors. f_1 and f_2 are much smaller:

 $f_0 = 0.835^{+0.162}_{-0.125}, \qquad f_1/f_0 = 0.018 \pm 0.086, \qquad f_2/f_0 = 0.161^{+0.042}_{-0.026}$

In addition suppression of hadronic factors:

$$\frac{|\Delta(\textit{K}^*)|}{|a_c(\textit{K}^*)|} = 0.25^{+0.12}_{-0.10}$$

 \Rightarrow Neglect terms multiplying f_1 and f_2 . Relative importance to leading term: 3%.

Result from SU(3) analysis (2)

$$\begin{split} r_{\rho} = & 0.064 \pm 0.012^{-0.006}_{+0.008}(|\xi|) \\ \gamma = & \left(76.2^{+1.0}_{-1.0}(\cot\beta)^{+4.7}_{-4.9}(S_{\rho})^{+0.0}_{-1.6}(C_{\rho})^{+1.5}_{-1.8}(b)^{-0.9}_{+1.1}(|\xi|) \right)^{\circ} \end{split}$$

・ロット (雪) (日) (日) (日)

Result from SU(3) analysis (2)

$$r_{\rho} = 0.064 \pm 0.012^{-0.006}_{+0.008}(|\xi|)$$

$$\gamma = \left(76.2^{+1.0}_{-1.0}(\cot\beta)^{+4.7}_{-4.9}(S_{\rho})^{+0.0}_{-1.6}(C_{\rho})^{+1.5}_{-1.8}(b)^{-0.9}_{+1.1}(|\xi|)\right)^{\circ}$$

- Error on γ dominated by S_{ρ} .
- ► Error from SU(3)-factor ξ smaller than from experimental quantities $\cot \beta$, S_{ρ} , $b \rightarrow$ improvement possible.
- Comparing penguin parameter to value from $B \rightarrow \rho_L^+ \rho_L^-$:

$$r_
ho = 0.038 \pm 0.005^{+0.019}_{-0.026}(X_A)$$

- Larger, but within errors consistent.
- Still small, which is basis of analysis.

CKM triangle – status of $|V_{ub}|$ and γ

Structure of calculation

Phenomenological analysis

 $|V_{ub}|$ determination and NP constraint Controlling power corrections for indirect γ determination Standardmodel limit to $B_s \rightarrow \phi_L \phi_L$

CP Violation in $B_s \rightarrow \phi_L \phi_L$

$$\begin{aligned} \mathsf{A}_{CP,\phi}(t) &= \frac{\Gamma[\bar{B}^0(t) \to \phi_L \phi_L] - \Gamma[B^0(t) \to \phi_L \phi_L]}{\Gamma[\bar{B}^0(t) \to \phi_L \phi_L] + \Gamma[B^0(t) \to \phi_L \phi_L]} = \\ &= \frac{\mathsf{S}_{\phi} \sin\left(\Delta m t\right) - C_{\phi} \cos\left(\Delta m t\right)}{\mathsf{C}_{\phi} \cos\left(\Delta m t\right)} \end{aligned}$$

Theoretical prediction of S_{ϕ} and C_{ϕ} from QCD-factorization:

$$S_{\phi} = 2\lambda^2 \eta \operatorname{Re} rac{a_{\mathcal{C}}(\phi) - a_{\mathcal{U}}(\phi)}{a_{\mathcal{C}}(\phi)}, \qquad C_{\phi} = 2\lambda^2 \eta \operatorname{Im} rac{a_{\mathcal{C}}(\phi) - a_{\mathcal{U}}(\phi)}{a_{\mathcal{C}}(\phi)}$$

$$|a_{c}(\phi) - a_{u}(\phi)|/\text{GeV}^{3} = = 0.057^{+0.007}_{-0.007} (A_{0})^{-0.008}_{+0.010} (\alpha_{2}^{V})^{+0.016}_{-0.015} (m_{c})^{-0.012}_{+0.021} (\mu)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\lambda = 0.226 \text{ small} \rightarrow S_{\phi} \text{ and } C_{\phi} \text{ small.}$

Determination of $|a_c(\phi)|$ from Experiment

$$egin{aligned} B(ar{B}_{ extsf{s}} o \phi_L \phi_L) &= rac{ au_{B_{ extsf{s}}} G_F^2 \, |\lambda_c'|^2}{64 \pi m_{B_{ extsf{s}}}} \, |m{a}_c(\phi)|^2 \end{aligned}$$

From that one obtains

$$|a_{c}(\phi)| = 0.177 \,\text{GeV}^{3} \left[\frac{B(\bar{B}_{s} \to \phi_{L}\phi_{L})}{15 \cdot 10^{-6}}\right]^{1/2} \left[\frac{1.53 \,\text{ps}}{\tau_{B_{s}}}\right]^{1/2}$$

Upper limit for S_{ϕ} and $|C_{\phi}|$:

 $\mathsf{S}_\phi \lesssim 0.02 \qquad |\mathsf{C}_\phi| \lesssim 0.02$

Determination of $|a_c(\phi)|$ from Experiment

$$egin{aligned} B(ar{B}_{ extsf{s}} o \phi_L \phi_L) &= rac{ au_{B_{ extsf{s}}} G_F^2 \left| \lambda_c'
ight|^2}{64 \pi m_{B_{ extsf{s}}}} \left| m{a}_c(\phi)
ight|^2 \end{aligned}$$

From that one obtains

$$|a_{c}(\phi)| = 0.177 \,\text{GeV}^{3} \,\left[\frac{B(\bar{B}_{s} \to \phi_{L}\phi_{L})}{15 \cdot 10^{-6}}\right]^{1/2} \,\left[\frac{1.53 \,\text{ps}}{\tau_{B_{s}}}\right]^{1/2}$$

Upper limit for S_{ϕ} and $|C_{\phi}|$:

 $|S_{\phi} \lesssim 0.02$ $|C_{\phi}| \lesssim 0.02$

- Branching ratios will be measured at LHCb: $10 fb^{-1} \rightarrow \Delta S_{\phi\phi} \approx 0.05$, upgraded LHCb: $100 fb^{-1} \rightarrow \Delta S_{\phi\phi} \approx 0.01$ to 0.02
- Measurement in excess of these limits constitutes evidence for new physics.

Conclusions

- ▶ Precise determination of $|V_{ub}|$ from $B_d \rightarrow \rho_L^+ \rho_L^-$ and sin 2 β .
- Constraint on New Physics phase by independent measurements of |V_{ub}|.
- Determination of γ from B_d → ρ⁺_Lρ⁻_L and SU(3)-related decay. Provides additional constraint on power corrections. Potential for improvements up to 1° − 2° on precision extraction of γ.
- Upper Standard model limit for S_{ϕ} and $|C_{\phi}|$ provided.

Thank you very much for your attention!

Backup slides

Future prospects of the determination of $|V_{ub}|$

The uncertainty of $|V_{ub}|$ is dominated by the statistical uncertainty of sin $2\beta = 0.681 \pm 0.025$: $\Delta |V_{ub}| = \pm 0.15 \cdot 10^{-3}$.

- ► Hadronic uncertainties (S_{ρ}, r_{ρ}) are much smaller: $\begin{pmatrix} +0.05 \\ -0.02 \end{pmatrix} \cdot 10^{-3}$
- LHCb upgrade with 100*fb*⁻¹ promises to measure sin 2β at ±0.003 to ±0.01. Potential for |V_{ub}| at value of Δ sin 2β = 0.006:
 Δ|V_{ub}| = ±0.08 ⋅ 10⁻³.

Constraint on New Physics phase in $B_d - \bar{B}_d$ mixing (1)

- ► Assuming a (small) contribution of New Physics in $B_d \bar{B}_d$ mixing, we measure in $\bar{B}_d \rightarrow J/\psi K_s$ the CP violation $S = \sin (2(\beta + \Omega)).$
- Disentangling standard model part:

$$\bar{\rho} = \frac{(1 - \tau \bar{\eta}) - (\tau + \bar{\eta}) \tan \Omega}{1 - \tau \tan \Omega}$$

• Measurement of S_{ρ} used to eliminate $\bar{\rho}$:

$$ar{\eta} = rac{ au(\mathbf{1} - au \tan \Omega)}{\mathbf{1} + au^2} + \mathcal{O}(\mathbf{r}_{
ho}, \mathbf{S}_{
ho})$$

• $\tau = 2.54$ enhances the sensitivity to Ω .

Constraint on New Physics phase in $B_d - \bar{B}_d$ mixing (2)

• We get an expression for $|V_{ub}|$ depending on $(\tau, S_{\rho}, r_{\rho}, \phi_{\rho}, \Omega)$:

$$\begin{aligned} |V_{ub}| = & \frac{|V_{cd} V_{cb}|}{|V_{ud}|} \frac{|1 - \tau \tan \Omega|}{\sqrt{1 + \tau^2}} \left[1 - \tan \Omega \left(\frac{\tau r_{\rho} \cos \phi_{\rho}}{1 - \tau \tan \Omega} + \frac{S_{\rho}}{2} \right) \right] \\ &+ \mathcal{O}(r_{\rho}^2, r_{\rho} S_{\rho}, S_{\rho}^2) \end{aligned}$$

- $\tan \Omega$ appears already in leading order and is enhanced by τ .
- Using the lattice measurement of |V_{ub}|, Ω can be constrained to

$$\Omega = \left(0.0^{-0.9}_{+1.0}(\tau) \,{}^{+0.2}_{-0.1}(S_{\rho}) \,{}^{+0.2}_{-0.1}(r_{\rho}) \,{}^{+0.3}_{-0.3}(V_{\textit{cb}}) \,{}^{-2.5}_{+2.5}(|V_{\textit{ub}}|)\right)^{\circ}$$

• The constraint is valid for $|\Omega| \leq 20^{\circ}$.

