QCD Sum Rule Predictions for Leptonic and Semileptonic B and D Decays

Alexander Khodjamirian

Ringberg Workshop, April 282009

Content

- Status of the decay constants f_{B} and $f_{D_{(s)}}$:
- QCD sum rules and bounds
- Light-cone sum rules for $B \rightarrow \pi$ form factor and $\left|V_{u b}\right|$
- new calculation of $D \rightarrow \pi$ and $D \rightarrow K$ form factors:
\rightarrow decreasing the theory error in $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$
- predicting the form factor shape

$B \& D_{(s)}$ decay constants

- leptonic channels: $B^{-} \rightarrow I^{-} \nu_{l}, \quad(I=\tau)$

$$
\Gamma\left(B^{-} \rightarrow I^{-} \bar{\nu}_{l}\right)=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{8 \pi} m_{l}^{2} m_{B}\left(1-\frac{m_{l}}{m_{B}}\right)^{3} f_{B}^{2}
$$

in charm sector: $D_{(s)}^{+} \rightarrow I^{+} \nu_{l}$, sensitive to $\left|V_{c d(s)}\right|$, need $f_{D_{(s)}}$

- hypothetical new physics effects ($H^{ \pm}$, SUSY, ..)
- $f_{B_{d}}\left(f_{B_{s}}\right)$ determine the rare decay $B_{(s)} \rightarrow I^{+} I^{-}$
- current precision:
$B R\left(B^{-} \rightarrow \tau \bar{\nu}\right)=(1.65 \pm 0.38 \pm 0.38) \times 10^{-4}$ [Belle '08] $\pm 4 \%$ projected at SuperB (for $75 \mathrm{ab}^{-1}$)
$B R\left(D_{s}^{+} \rightarrow \mu^{+} \bar{\nu}\right)=(5.65 \pm 0.45 \pm 0.17) \times 10^{-3}$ [CLEO '09] $B R\left(D^{+} \rightarrow \mu^{+} \bar{\nu}\right)=(3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$ [CLEO '08]
- need decay constants with comparable accuracy

QCD calculation of decay constants

- lattice QCD: see the talk by C. Tarantino
- "non-lattice methods" \Rightarrow QCD sum rules:

Correlator of quark currents = hadronic sum

- approximate analytic calculation of the correlator, based on operator-product expansion (OPE)

QCD sum rule for f_{B}

- Correlator of two $j_{5}=m_{b} \bar{b} i_{\gamma_{5}} u$ currents, $\quad\langle 0| j_{5}|B\rangle=m_{B}^{2} f_{B}$

$$
\begin{aligned}
& \int d^{4} x e^{i q x}\langle 0| T\left\{j_{5}(x) j_{5}^{\dagger}(0)\right\}|0\rangle=\frac{\langle 0| j_{5}|B\rangle\langle B| j_{5}^{\dagger}|0\rangle}{m_{B}^{2}-q^{2}}+\sum_{h} \frac{\langle 0| j|h\rangle\langle h| j^{\dagger}|0\rangle}{m_{h}^{2}-q^{2}} \\
& \quad q^{2}<m_{b}^{2} \downarrow \quad x \rightarrow 0 \\
& \sum_{d=0,3,4, \ldots} C_{d}\left(q^{2}, m_{b}, \alpha_{s}\right)\langle 0| O_{d}(0)|0\rangle
\end{aligned} \mathrm{OPE}, \begin{aligned}
& \quad \neq 0,\langle 0| O_{a \mid}|0\rangle-\text { vacuum condensates } \\
& O_{3}=\bar{q} q, O_{4}=G_{\mu \nu} G^{\mu \nu}, \ldots
\end{aligned}
$$

- input: quark masses and QCD parameters

OPE Input

- use the correlators where the hadronic sum is known from experiment: determine quark masses and/or condensates
- quarkonium sum rules:

$$
\begin{aligned}
& j \mu=\bar{b} \gamma_{\mu} b \Rightarrow\{\Upsilon(1 S), \Upsilon(2 S), . .\} \Rightarrow m_{b} \\
& j \mu=\bar{c} \gamma_{\mu} c \Rightarrow\{J / \psi(1 S), \psi(2 S), . .\} \Rightarrow m_{c},\langle G G\rangle
\end{aligned}
$$

the talk by J. Kühn

- strange quark $J^{P}=0^{-}$or $J^{P}=0^{+}$currents $\Rightarrow\{K, \ldots\}$ or $\{K \pi, \ldots\} \Rightarrow m_{s} \oplus \mathrm{ChPT} \Rightarrow m_{u, d},\langle\bar{q} q\rangle$
[A.K., K. Chetyrkin (2005), M.Jamin, Oller, A.Pich (2006)]

Use of QCD sum rule

- correlator calculated including $d \leq 6$ (power suppressed) and $O\left(\alpha_{s}^{2}\right)$ terms
- $\sum_{h}=q u a r k-h a d r o n ~ d u a l i t y ~ a p p r o x i m a t i o n ~ \Rightarrow m_{B},\langle 0| j|h\rangle$
- "systematic" uncertainty minimized by Borel transform., fixing the hadron mass from SR
- currently: $\sim 10 \%$ error no way to get a better accuracy in future
- the spectral density is positive definite \Rightarrow upper bounds independent from duality

OPE bounds for $f_{D_{s}}$ and f_{D}

[A.K., hep/ph-0812.3747]
the hadronic matrix element:

$$
\left(m_{c}+m_{s}\right)\langle 0| \bar{s} i \gamma_{5} c\left|D_{s}\right\rangle=f_{D_{s}} m_{D_{s}}^{2}
$$

- Correlation function of two charmed-strange currents:

$$
\begin{aligned}
& j_{5}(x)=\left(m_{c}+m_{s}\right) \bar{s}(x) i \gamma_{5} c(x) \\
& \left.\quad \begin{array}{l}
\Pi\left(q^{2}\right)
\end{array}\right)=i \int d^{4} x e^{i q x}\langle 0| T\left\{j(x) j^{\dagger}(0)\right\}|0\rangle \\
& \quad=\frac{f_{D_{s}}^{2} m_{D_{s}}^{4}}{m_{D_{s}}^{2}-q^{2}}+\sum_{h=D^{*} K, \ldots} \frac{\langle 0| j|h\rangle\langle h| j^{\dagger}|0\rangle}{m_{h}^{2}-q^{2}} \\
& s \rightarrow d, D_{s} \rightarrow D
\end{aligned}
$$

Deriving the bound

- calculate $\Pi\left(q^{2}\right)$ and apply Borel transformation:

$$
\begin{align*}
\Pi\left(M^{2}\right) & =\sum_{n=0,1,2} \int_{\left(m_{c}+m_{d}\right)^{2}}^{\infty} d s\left(\frac{\alpha_{s}}{\pi}\right)^{n} \rho^{(n)}(s) e^{-s / M^{2}} \\
+ & \sum_{n=0,1}\left(\frac{\alpha_{s}}{\pi}\right)^{n} \Pi_{\langle\bar{q} q\rangle}^{(n)}\left(M^{2}\right)+\sum_{d=4,5,6} \Pi_{d}\left(M^{2}\right) . \tag{1}
\end{align*}
$$

- equate to the hadronic sum and use the positivity of it: $f_{D}^{2} m_{D}^{4} e^{-m_{D}^{2} / M^{2}}+\ldots=\Pi\left(M^{2} ; m_{c}, m_{s}, \alpha_{s}\right.$, cond., $\left.\mu,\right)$
- the same OPE as QCD SR , with no duality assumption involved
$\Rightarrow f_{D}<\sqrt{\Pi\left(M^{2}\right) /\left(m_{D}^{4} e^{-m_{D}^{2} / M^{2}}\right)}$
$M>1.0 \mathrm{GeV}^{2}$ and $\mu>1.5 \mathrm{GeV}$, OPE convergence
- bound for f_{B} is not constraining

B and $D_{(s)}$ decay constants [in MeV]

a sample of recent results:

method	f_{B}	f_{D}	$f_{D_{s}}$
exp. \oplus CKM	$(242 \pm 28) \frac{3.99 \times 10^{-4}}{V_{u b}}$ [Belle '08]	$\begin{aligned} & 205.8 \pm 8.5 \pm 2.5 \\ & \text { [CLEO'OB], } V_{c d}=V_{u s} \\ & \hline \end{aligned}$	$\begin{aligned} & 259.5 \pm 6.6 \pm 3.1 \\ & \text { [CLEO'O9], } V_{c s}=V_{u d} \end{aligned}$
lattice	$\begin{aligned} & 190 \pm 13 \\ & {[H P Q C D, ' 09]} \end{aligned}$	$\begin{aligned} & 207 \pm 4 \\ & {[H P Q C D, U K Q C D \text { '08] }} \end{aligned}$	$\begin{aligned} & 241 \pm 3 \\ & {[H P Q C D, U K Q C D \text { '08] }} \end{aligned}$
QCD SR	$\begin{aligned} & 210 \pm 19 \\ & \text { [Jamin-Lange '01] } \\ & 206 \pm 20 \\ & \text { [Penin-Steinhauser'01] } \end{aligned}$	195 ± 20 [Penin-Steinhauser'01] 203 ± 20 [Narison '02]	$\begin{aligned} & 235 \pm 24 \\ & \text { [Narison '02] } \end{aligned}$
OPE bound	-	<230	<270

- $f_{B_{s}} / f_{B}$, SR in agreement with lattice QCD
- still some tension of exp. vs lattice $f_{D_{s}}$ (and vs the bound)
- already some tension in f_{B} ?

Heavy-light form factors

- semileptonic channels: $\bar{B}_{d} \rightarrow \pi^{+} \bar{\nu}_{l}$

$$
\Rightarrow\left|V_{u b}\right|
$$

$$
d \Gamma\left(\bar{B}_{d} \rightarrow \pi^{+} \mid \bar{\nu}_{l}\right) / d q^{2}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{24 \pi^{3}} p_{\pi}^{3}\left|f_{B \pi}^{+}\left(q^{2}\right)\right|^{2}
$$

semileptonic region: $0<q^{2}<\left(m_{B}-m_{\pi}\right)^{2}=q_{\max }^{2} \simeq 26.4 \mathrm{GeV}^{2}$

- in charm sector: $D \rightarrow \pi(K) / \nu_{l}$, sensitive to $\left|V_{c d(s)}\right|$,
need $f_{D \pi_{(\kappa)}}^{+}\left(q^{2}\right)$
- accurately measured BR's and slopes , $B R\left(\bar{B}^{0} \rightarrow \pi^{-} I \bar{\nu}\right)=(1.36 \pm 0.09) \times 10^{-4}\left[\right.$ PDG $\left.{ }^{\prime} 08\right]$
- need form factors $f_{B \pi}^{+}, f_{D \pi(K)}^{+}$with comparable accuracy
- $B \rightarrow P$ form factors also for $B \rightarrow P P, B \rightarrow P I I,(P=\pi, K)$

Light-cone sum rule (LCSR) for $B \rightarrow \pi$ form factor

 (also the talk by Patricia Ball)- the correlator of $j_{5}=m_{b} \bar{b} i \gamma_{5} d$ and $j_{\mu}^{W}=\bar{u} i \gamma_{\mu} b$

$$
\begin{aligned}
& \int d^{4} x e^{i q \times}|\pi(p)| T\left\{j_{5}(x) j_{w}(0)\right\}|0\rangle=\frac{\langle 0| j|B| B\rangle\langle\pi| j w|B\rangle}{m_{B}^{2}-(p+q)^{2}}+\sum_{h} \frac{\langle 0| j_{5}|h\rangle\langle\pi| j_{w} \mid t}{m_{h}^{2}-(p+q)^{2}} \\
& \quad\left|q^{2}\right| \sim\left|(p+q)^{2}\right| \ll m_{b}^{2} \downarrow x^{2} \rightarrow 0 \\
& \sum_{t=2,3, . .} C_{t}\left(q^{2},(p+q)^{2}, m_{q}, \alpha_{s}\right)\langle\pi(p)| O_{t}(x, 0)|0\rangle \Leftarrow \text { OPE }
\end{aligned}
$$

- $\left\langle\pi(p)\left(\left|O_{t}(x, 0)\right| 0\right\rangle\right.$ - pion light-cone distribution amplitudes $\mathrm{O}_{2} \rightarrow \bar{u}(x) \gamma_{\mu} \gamma_{5} d(0)$ twist 2, Gegenbauer moments

LCSR, outline of derivation

$F\left(q^{2},(p+q)^{2}\right)$ - analytical resut of light-cone OPE for the correlator, valid at $q^{2},(p+q)^{2} \ll m_{b}^{2}$

$$
f_{B} f_{B \pi}^{+}\left(q^{2}\right)
$$

$$
\sum_{B_{h}} \rightarrow \text { duality }\left(s_{0}^{B}\right)
$$

- calculation at finite m_{b}
- Gegenbauer moments: pion form factor, 2-point sum rules
- accuracy achieved $t \leq 4, O\left(\alpha_{s}\right)$
- the form factor includes both "soft" and "hard scattering terms

$B \rightarrow \pi$ form factor and $\left|V_{u b}\right|$

- the current status accumulated in a single figure:
from [Bourrely, Caprini, Lellouch, 0807.222 hep-ph]

- $q^{2}=0$: Light-cone sum rules (LCSR), recent update
[G.Duplancic, A.K., B.Melic, Th.Mannel, N. Offen (2007)

$$
f_{B \pi}^{+}(0)=0.26_{-0.03}^{+0.04}
$$

- large q^{2} lattice [FNAL-MILC, HPQCD]: $f^{+}\left(q^{2}\right)$ with errors at the level of $\pm 12 \%$
- the curve: analyticity \oplus "conformal mapping" $q^{2} \rightarrow z$ \Rightarrow series (in z) parameterization
- fitting theory \oplus exp. shape $d B R / d q^{2}$ [BaBar, Belle] to series parameterization

Recent $\left|V_{u b}\right|$ determinations from $B \rightarrow \pi I_{\nu_{l}}$

[ref.]	$f_{B \pi}^{+}\left(q^{2}\right)$ calculation	$f_{B \pi}^{+}\left(q^{2}\right)$ input	$\left\|V_{u b}\right\| \times 10^{3}$
Okamoto et al. '05	lattice $\left(n_{f}=3\right)$	-	$3.78 \pm 0.25 \pm 0.52$
HPQCD '06	lattice $\left(n_{f}=3\right)$	-	$3.55 \pm 0.25 \pm 0.50$
Flynn et al '07	-	lattice \oplus LCSR	$3.47 \pm 0.29 \pm 0.03$
Ball, Zwicky '04	LCSR	-	$3.5 \pm 0.4 \pm 0.1$
DKMMO '07	LCSR	-	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$
Bourrely, Caprini, Lellouch '08	-	lattice \oplus LCSR	3.54 ± 0.24

- $f_{B \pi}^{+}$from "lattice " and "non-lattice" (LCSR) have comparable uncertainties,
- this will change, if lattice calculations achieve the claimed goal of $\sim 1 \div 2 \%$ accuracy [App.A SuperB report '07] not achievable with LCSR ...
- other "non-lattice" tools:
- sum rules in effective theories (HQET,SCET)
[LCSR in SCET F. De Fazio, Th. Feldmann T.Hurth '06
- LCSR with B meson distribution amplitudes
[A.K., N. Offen, Th. Mannel '06]
\rightarrow new application $B \rightarrow D^{(*)}$, talk by Ch. Klein

$D \rightarrow \pi, K$ form factors from LCSR

[Ch.Klein, A.K., Th. Mannel, N.Offen, paper in prepar.]

- replace $b \rightarrow c$ in the correlator /LCSR for $B \rightarrow \pi$, $\bar{u} \rightarrow \bar{d}(\bar{s}) \Rightarrow$ LCSR for $D \rightarrow \pi(K)$
- input updates:
- $\overline{M S}$ for c-quark mass, instead of pole mass,
- $m_{s}(2 \mathrm{GeV})=98 \pm 16 \mathrm{MeV}$, QCD SR with α_{s}^{4} accuracy
$>$ Gegenbauer moments: $a_{2}^{\pi}=0.16 \pm 0.01 a_{4}^{\pi}=0.04 \pm 0.01$ constrained from fitting the $B \rightarrow \pi$ shape to experiment, $a_{1}^{K}=0.10 \pm 0.04$ from new determination
[K.Chetyrkin, A.K., A.Pivovarov (2008)]
- using very accurate experimental number for f_{D}

Comparison of $D \rightarrow \pi, K$ form factors at $q^{2}=0$

Method	[Ref.]	$f_{D \pi}^{+}(0)$	$f_{D K}^{+}(0)$
Lattice QCD	[APE(2001)]	$0.57 \pm 0.06 \pm 0.02$	$0.66 \pm 0.04 \pm 0.01$
	[Aubin et al (2005)]	$0.64 \pm 0.03 \pm 0.06$	$0.73 \pm 0.03 \pm 0.07$
	[QCDSF(2009)]	$0.74 \pm 0.06 \pm 0.04$	$0.78 \pm 0.05 \pm 0.04$
LCSR	[A.K. et al. (2000)]	0.65 ± 0.11	$0.78_{-0.15}^{+0.2}$
	[P. Ball (2006)]	0.63 ± 0.11	0.75 ± 0.12
	this work (prel.)	$0.67_{-0.07}^{+0.10}$	$0.74_{-0.08}^{+0.11}$

theoretical uncertainties added in quadrature

$$
\frac{f_{D \pi}^{+}(0)}{f_{D K}^{+}(0)}=0.90 \pm 0.06
$$

some uncertainties cancel, also agrees with [P.Ball (2006)]

Determination of $\left|V_{c d}\right|$ and $\left|V_{c s}\right|$

- LCSR predicts the product, $\left[f_{D} f_{D \pi}(0)\right]_{\angle C S R}=138_{-13}^{+20} \mathrm{MeV}$
- previously a two-point SR was used for f_{D}
(adding own uncertainty, although some errors compensated)
- $C L E O_{C}$ data:

$$
B R\left(D \rightarrow \mid \nu_{l}\right) \Rightarrow f_{D}\left|V_{c d}\right|=46.5 \pm 2.0 \mathrm{MeV}
$$

(they quote f_{D} assuming $\left|V_{c d}\right|=\left|V_{u s}\right|$)
$d B R / d q^{2}\left(D \rightarrow \pi / \nu_{l}\right) \Rightarrow f_{D \pi}(0)\left|V_{c d}\right|=0.143 \pm 0.005 \pm 0.002$,
(from the series parameterization fit of the q^{2}-bins)

- multiply two exp. numbers and divide by LCSR prediction:

$$
\left|V_{c d}\right|=0.219 \pm[0.005]_{\text {exp } 1} \pm[0.004]_{\text {exp } 2}+0.016
$$

the LCSR error is effectively halved!
CLEO \oplus lattice: $\left|V_{c d}\right|=0.223 \pm 0.008 \pm 0.003 \pm 0.023$

- the same for $\left|V_{u b}\right|$, if $B \rightarrow I \nu_{l} \rightarrow f_{B}\left|V_{u b}\right|$ will have a smaller error
- from the predicted ratio of $D \rightarrow \pi$ and $D \rightarrow K$ form factors and CLEO data (f_{D} cancels):

$$
\begin{gathered}
\frac{\left|V_{c d}\right|}{\left|V_{c s}\right|}=0.214 \pm[0.008]_{\exp } \pm[0.002]_{e x p} \pm 0.014 \\
\left|V_{c s}\right|=1.03 \pm[0.08]_{\text {ratio }}\left[\begin{array}{l}
+0.08 \\
-0.06
\end{array}\right]_{V_{c d}}
\end{gathered}
$$

- compare with $\mathrm{CLEO} \oplus$ lattice:

$$
\left|V_{c s}\right|=1.019 \pm 0.019 \pm 0.007 \pm 0.106
$$

all results still preliminary, some correlations not accounted for

Predicting the shape of $D \rightarrow \pi, K$ form factors

- LCSR valid at $q^{2}<m_{c}^{2}-2 m_{c} \tau, \quad \tau \sim 1 \mathrm{GeV}$ scale \Rightarrow only $q^{2} \leq 0$ accessible
- the semileptonic region is larger: $\left(m_{D}-m_{\pi(K)}\right)^{2}=2.98(1.88) G e V^{2}$
- new : calculating the form factor at negative q^{2} and accessing the whole semileptonic region via analytic continuation (applyng BK parameterization of dispersion relation or z expansion)
-

$D \rightarrow \pi$ and $D \rightarrow K$ form factor shapes

(preliminary)

Outlook

- "non-lattice" decay constants and form factors : QCD sum rules /bounds and LCSR agree with and complement the lattice QCD results
- the level of accuracy in the correlators cannot be essentially improved, task for future: refine/adjust the input, calculate twist-5 terms in LCSR
- combining various exp. data may help, more accurate data on the shapes in semileptonic decay distributions
- quark-hadron duality approximation is the main concern more data on the hadron spectroscopy in $D_{(s)}$ and B channels : radial excitations

