QCD Sum Rule Predictions for Leptonic and Semileptonic *B* and *D* Decays

Alexander Khodjamirian

Ringberg Workshop, April 28 2009

Content

- Status of the decay constants f_B and $f_{D_{(s)}}$:
 - QCD sum rules and bounds
- Light-cone sum rules for $B \to \pi$ form factor and $|V_{ub}|$
- new calculation of $D \to \pi$ and $D \to K$ form factors:
 - ightharpoonup decreasing the theory error in $|V_{cd}|$ and $|V_{cs}|$
 - predicting the form factor shape

$B \& D_{(s)}$ decay constants

• leptonic channels: $B^- \to I^- \nu_I$, $(I = \tau)$

$$\Gamma(B^- \to l^- \bar{\nu}_l) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_l^2 m_B \left(1 - \frac{m_l}{m_B}\right)^3 f_B^2 \,,$$

in charm sector: $D_{(s)}^+ \to l^+ \nu_l$, sensitive to $|V_{cd(s)}|$, need $f_{D_{(s)}}$

- hypothetical new physics effects (H[±], SUSY, ..)
- f_{B_d} (f_{B_s}) determine the rare decay $B_{(s)} \rightarrow l^+ l^-$
- current precision:

$$BR(B^- \to \tau \bar{\nu}) = (1.65 \pm 0.38 \pm 0.38) \times 10^{-4}$$
 [Belle '08] $\pm 4\%$ projected at SuperB (for 75 ab $^{-1}$)

$$BR(D_s^+ \to \mu^+ \bar{\nu}) = (5.65 \pm 0.45 \pm 0.17) \times 10^{-3}$$
 [CLEO '09] $BR(D^+ \to \mu^+ \bar{\nu}) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$ [CLEO '08]

need decay constants with comparable accuracy

QCD calculation of decay constants

- lattice QCD: see the talk by C. Tarantino
- "non-lattice methods" ⇒ QCD sum rules:
 Correlator of quark currents = hadronic sum
 {dispersion relation ⊕ unitarty}
- approximate analytic calculation of the correlator, based on operator-product expansion (OPE)

QCD sum rule for f_B

• Correlator of two $j_5 = m_b \overline{b} i \gamma_5 u$ currents, $\langle 0 | j_5 | B \rangle = m_B^2 f_B$

$$\int d^4x \ e^{iqx} \langle 0|T\{j_5(x)j_5^{\dagger}(0)\}|0\rangle = \frac{\langle 0|j_5|B\rangle \langle B|j_5^{\dagger}|0\rangle}{m_B^2 - q^2} + \sum_h \frac{\langle 0|j|h\rangle \langle h|j^{\dagger}|0\rangle}{m_h^2 - q^2}$$

$$q^2 \ll m_b^2 \quad \downarrow \qquad x \to 0$$

$$\sum_{d=0,3,4,...} C_d(q^2, m_b, \alpha_s) \langle 0|O_d(0)|0\rangle \quad \Leftarrow \mathsf{OPE}$$

$$d \neq 0$$
, $\langle 0|O_d|0 \rangle$ - vacuum condensates $O_3 = \bar{q}q$, $O_4 = G_{\mu\nu}G^{\mu\nu}$, ...

input: quark masses and QCD parameters

OPE Input

- use the correlators where the hadronic sum is known from experiment: determine quark masses and/or condensates
- quarkonium sum rules:

$$egin{aligned} j\mu &= ar{b}\gamma_{\mu}b \Rightarrow & \{\Upsilon(1S),\Upsilon(2S),..\} \Rightarrow \textit{m}_{b} \ j\mu &= ar{c}\gamma_{\mu}c \Rightarrow & \{J/\psi(1S),\psi(2S),..\} \Rightarrow \textit{m}_{c}, \langle\textit{GG}
angle \end{aligned}$$
 the talk by J. Kühn

• strange quark $J^P = 0^-$ or $J^P = 0^+$ currents $\Rightarrow \{K,...\}$ or $\{K\pi,...\} \Rightarrow m_s \oplus \text{ChPT} \Rightarrow m_{u,d}, \langle \bar{q}q \rangle$ [A.K., K. Chetyrkin (2005), M.Jamin, Oller, A.Pich (2006)]

Use of QCD sum rule

- correlator calculated including $d \le 6$ (power suppressed) and $O(\alpha_s^2)$ terms
- \sum_h =quark-hadron duality approximation $\Rightarrow m_B$, $\langle 0|j|h\rangle$
- "systematic" uncertainty minimized by Borel transform., fixing the hadron mass from SR
- currently: \sim 10% error no way to get a better accuracy in future
- the spectral density is positive definite
 - ⇒ upper bounds independent from duality

OPE bounds for f_{D_s} and f_D

[A.K., hep/ph-0812.3747] the hadronic matrix element:

$$(m_c+m_s)\langle 0|ar{s}i\gamma_5c|D_s
angle=f_{D_s}m_{D_s}^2$$

Correlation function of two charmed-strange currents:

$$\begin{split} j_{5}(x) &= (m_{c} + m_{s})\bar{s}(x)i\gamma_{5}c(x) \\ &\Pi(q^{2}) = i\int d^{4}x e^{iqx}\langle 0 \mid T\{j(x)j^{\dagger}(0)\} \mid 0 \rangle \\ &= \frac{f_{D_{s}}^{2}m_{D_{s}}^{4}}{m_{D_{s}}^{2} - q^{2}} + \sum_{h=D^{*}K,...} \frac{\langle 0 \mid j \mid h \rangle \langle h \mid j^{\dagger} \mid 0 \rangle}{m_{h}^{2} - q^{2}} \end{split}$$

$$s \rightarrow d$$
, $D_s \rightarrow D$,

Deriving the bound

• calculate $\Pi(q^2)$ and apply Borel transformation:

$$\Pi(M^{2}) = \sum_{n=0,1,2} \int_{(m_{c}+m_{d})^{2}}^{\infty} ds \left(\frac{\alpha_{s}}{\pi}\right)^{n} \rho^{(n)}(s) e^{-s/M^{2}} + \sum_{n=0,1} \left(\frac{\alpha_{s}}{\pi}\right)^{n} \Pi_{\langle \bar{q}q \rangle}^{(n)}(M^{2}) + \sum_{d=4,5,6} \Pi_{d}(M^{2}).$$
 (1)

equate to the hadronic sum and use the positivity of it:

$$f_D^2 m_D^4 e^{-m_D^2/M^2} + = \Pi(M^2; m_c, m_s, \alpha_s, \text{cond.}, \mu,)$$

• the same OPE as QCD SR , with no duality assumption involved

$$\Rightarrow f_D < \sqrt{\Pi(M^2)/(m_D^4 e^{-m_D^2/M^2})}$$

 $M > 1.0 \text{ GeV}^2$ and $\mu > 1.5 \text{ GeV}$, OPE convergence

• bound for f_B is not constraining

B and $D_{(s)}$ decay constants [in MeV]

a sample of recent results:

a cap.c c			
method	f_B	f_D	f_{D_s}
ехр.	$(242\pm28)\frac{3.99\times10^{-4}}{V_{ub}}$	$205.8 \pm 8.5 \pm 2.5$	$259.5 \pm 6.6 \pm 3.1$
⊕ CKM	[Belle '08]	[CLEO'08], $V_{cd} = V_{us}$	[CLEO'09], $V_{cs} = V_{ud}$
lattice	190± 13	207 ± 4	241 ± 3
	[HPQCD,'09]	[HPQCD,UKQCD '08]	[HPQCD,UKQCD '08]
QCD SR	210 ±19	-	
	[Jamin-Lange '01]		
	206±20	195 ± 20	
	[Penin-Steinhauser'01]	[Penin-Steinhauser'01]	
		203 ± 20	235 ± 24
		[Narison '02]	[Narison '02]
OPE	-	<230	<270
bound			

- f_{B_s}/f_B , SR in agreement with lattice QCD
- still some tension of exp. vs lattice f_{D_s} (and vs the bound)
- already some tension in f_B?

Heavy-light form factors

• semileptonic channels: $\overline{B}_d \to \pi^+ l \overline{\nu}_l$

$$d\Gamma(\overline{B}_d o \pi^+ l \bar{
u}_l)/dq^2 = rac{G_F^2 |V_{ub}|^2}{24 \pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2$$

semileptonic region: $0 < q^2 < (m_B - m_\pi)^2 = q_{max}^2 \simeq 26.4 \text{ GeV}^2$

- in charm sector: $D \to \pi(K) l \nu_l$, sensitive to $|V_{cd(s)}|$, need $f^+_{D\pi(s)}(q^2)$
- accurately measured BR's and slopes , $BR(\bar{B}^0 \to \pi^- l \bar{\nu}) = (1.36 \pm 0.09) \times 10^{-4}$ [PDG '08]
- need form factors $f_{B\pi}^+$, $f_{D\pi(K)}^+$ with comparable accuracy
- $B \rightarrow P$ form factors also for $B \rightarrow PP$, $B \rightarrow PII$, $(P = \pi, K)$

Light-cone sum rule (LCSR) for $B \rightarrow \pi$ form factor

(also the talk by Patricia Ball)

• the correlator of $j_5 = m_b \overline{b} i \gamma_5 d$ and $j_\mu^W = \overline{u} i \gamma_\mu b$

$$\int \!\! d^4x e^{iqx} \langle \pi(p) | T\{j_5(x)j_W(0)\} | 0 \rangle = \frac{\langle 0 | j_5 | B \rangle \langle \pi | j_W | B \rangle}{m_B^2 - (p+q)^2} + \sum_h \frac{\langle 0 | j_5 | h \rangle \langle \pi | j_W | B \rangle}{m_h^2 - (p+q)^2}$$
$$|q^2| \sim |(p+q)^2| \ll m_b^2 \parallel x^2 \to 0$$

$$|G| \sim |(D+Q)^-| \ll |H_b| \qquad X^- \to 0$$

$$\boxed{\sum_{t=2,3,...} C_t(q^2,(p+q)^2,m_q,\alpha_s)\langle \pi(p)|O_t(x,0)|0\rangle} \Leftarrow \mathsf{OPE}$$

• $\langle \pi(p)(|O_t(x,0)|0\rangle$ - pion light-cone distribution amplitudes $O_2 \to \bar{u}(x)\gamma_u\gamma_5 d(0)$ twist 2, Gegenbauer moments

LCSR, outline of derivation

 $F(q^2, (p+q)^2)$ - analytical resut of light-cone OPE for the correlator,

- calculation at finite m_b
- Gegenbauer moments: pion form factor, 2-point sum rules
- accuracy achieved $t \leq 4$, $O(\alpha_s)$
- the form factor includes both "soft" and "hard scattering terms

$B \rightarrow \pi$ form factor and $|V_{ub}|$

• the current status accumulated in a single figure:

from [Bourrely, Caprini, Lellouch, 0807.222 hep-ph]

• $q^2 = 0$: Light-cone sum rules (LCSR), recent update [G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)

$$f_{B\pi}^+(0) = 0.26^{+0.04}_{-0.03}$$

- large q^2 lattice [FNAL-MILC, HPQCD]: $f^+(q^2)$ with errors at the level of $\pm 12\%$
- the curve: analyticity \oplus "conformal mapping" $q^2 \rightarrow z$ \Rightarrow series (in z) parameterization
- fitting theory \oplus exp. shape dBR/dq^2 [BaBar, Belle] to series parameterization

Recent $|V_{ub}|$ determinations from $B \to \pi I \nu_I$

[ref.]	$f_{B\pi}^+(q^2)$	$f_{B\pi}^+(q^2)$	$ V_{ub} \times 10^3$
	calculation	input	
Okamoto et al. '05	lattice	-	$3.78 {\pm} 0.25 {\pm} 0.52$
	$(n_f = 3)$		
HPQCD '06	lattice	-	$3.55{\pm}0.25{\pm}0.50$
	$(n_f = 3)$		
Flynn et al '07	-	lattice ⊕ LCSR	$3.47 \pm 0.29 \pm 0.03$
Ball, Zwicky '04	LCSR	-	$3.5\pm0.4\pm0.1$
DKMMO '07	LCSR	-	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$
Bourrely, Caprini,	-	lattice⊕ LCSR	$\textbf{3.54} \pm \textbf{0.24}$
Lellouch '08			

- $f_{B\pi}^+$ from "lattice" and "non-lattice" (LCSR) have comparable uncertainties,
- this will change , if lattice calculations achieve the claimed goal of \sim 1 \div 2% accuracy [App.A SuperB report '07] not achievable with LCSB ...
- other "non-lattice" tools:
 - sum rules in effective theories (HQET,SCET)

[LCSR in SCET F. De Fazio, Th. Feldmann T.Hurth '06

- LCSR with B meson distribution amplitudes
 [A.K., N. Offen, Th. Mannel '06]
 - **>** new application $B o D^{(*)}$, talk by Ch. Klein

$D \rightarrow \pi$, K form factors from LCSR

[Ch.Klein, A.K., Th. Mannel, N.Offen, paper in prepar.]

- replace $b \to c$ in the correlator /LCSR for $B \to \pi$, $\bar{u} \to \bar{d}(\bar{s}) \Rightarrow \text{LCSR}$ for $D \to \pi(K)$
- input updates:
 - $ightharpoonup \overline{MS}$ for *c*-quark mass, instead of pole mass,
 - $m m_s(2 GeV) = 98 \pm 16 \ {
 m MeV}, \ {
 m QCD} \ {
 m SR} \ {
 m with} \ lpha_s^4 \ {
 m accuracy}$
 - ▶ Gegenbauer moments: $a_2^{\pi} = 0.16 \pm 0.01$ $a_4^{\pi} = 0.04 \pm 0.01$ constrained from fitting the $B \to \pi$ shape to experiment, $a_1^{K} = 0.10 \pm 0.04$ from new determination [K.Chetyrkin, A.K., A.Pivovarov (2008)]
- using very accurate experimental number for f_D

Comparison of $D \to \pi, K$ form factors at $q^2 = 0$

Method	[Ref.]	$f_{D\pi}^+(0)$	$f_{DK}^+(0)$
Lattice QCD	[APE(2001)]	$0.57 \pm 0.06 \pm 0.02$	$0.66 \pm 0.04 \pm 0.01$
	[Aubin et al (2005)]	$0.64 \pm 0.03 \pm 0.06$	$0.73 \pm 0.03 \pm 0.07$
	[QCDSF(2009)]	$0.74 \pm 0.06 \pm 0.04$	$0.78 \pm 0.05 \pm 0.04$
LCSR	[A.K. et al. (2000)]	0.65 ± 0.11	$0.78^{+0.2}_{-0.15}$
	[P. Ball (2006)]	0.63 ± 0.11	0.75 ± 0.12
	this work (prel.)	$0.67^{+0.10}_{-0.07}$	$0.74^{+0.11}_{-0.08}$

theoretical uncertainties added in quadrature

$$\frac{f_{D\pi}^{+}(0)}{f_{DK}^{+}(0)} = 0.90 \pm 0.06,$$

some uncertainties cancel, also agrees with [P.Ball (2006)]

Determination of $|V_{cd}|$ and $|V_{cs}|$

- LCSR predicts the product, $[f_D f_{D\pi}(0)]_{LCSR} = 138^{+20}_{-13}$ MeV
- ullet previously a two-point SR was used for f_D (adding own uncertainty, although some errors compensated)
- *CLEO_c* data:

$$BR(D \rightarrow l\nu_l) \Rightarrow f_D |V_{cd}| = 46.5 \pm 2.0 \text{ MeV}$$

(they quote f_D assuming $|V_{cd}| = |V_{us}|$)

$$dBR/dq^{2}(D \to \pi I \nu_{I}) \Rightarrow f_{D\pi}(0)|V_{cd}| = 0.143 \pm 0.005 \pm 0.002,$$

(from the series parameterization fit of the q^2 -bins)

• multiply two exp. numbers and divide by LCSR prediction:

$$|V_{cd}| = 0.219 \pm [0.005]_{\text{exp1}} \pm [0.004]_{\text{exp2}} + 0.016 + 0.016$$

the LCSR error is effectively halved!

CLEO \oplus lattice: $|V_{cd}| = 0.223 \pm 0.008 \pm 0.003 \pm 0.023$

- the same for $|V_{ub}|$, if $B \to I\nu_I \to f_B |V_{ub}|$ will have a smaller error
- from the predicted ratio of $D \to \pi$ and $D \to K$ form factors and CLEO data (f_D cancels):

$$\frac{|V_{cd}|}{|V_{cs}|} = 0.214 \pm [0.008]_{\text{exp}} \pm [0.002]_{\text{exp}} \pm 0.014 \,,$$

$$|V_{cs}| = 1.03 \pm [0.08]_{ratio} {+0.08 \brack -0.06}_{V_{cd}},$$

■ compare with CLEO⊕ lattice:

$$|V_{cs}| = 1.019 \pm 0.019 \pm 0.007 \pm 0.106$$

all results still preliminary, some correlations not accounted for

Predicting the shape of $D \rightarrow \pi, K$ form factors

- LCSR valid at $q^2 < m_c^2 2m_c\tau$, $\tau \sim 1$ GeV scale \Rightarrow only $q^2 \le 0$ accessible
- the semileptonic region is larger: $(m_D m_{\pi(K)})^2 = 2.98(1.88) GeV^2$
- new: calculating the form factor at negative q² and accessing the whole semileptonic region via analytic continuation (applyng BK parameterization of dispersion relation or z expansion)

•

$D \rightarrow \pi$ and $D \rightarrow K$ form factor shapes

Outlook

- "non-lattice" decay constants and form factors:
 QCD sum rules /bounds and LCSR agree with and complement the lattice QCD results
- the level of accuracy in the correlators cannot be essentially improved, task for future: refine/adjust the input, calculate twist-5 terms in LCSR
- combining various exp. data may help,
 more accurate data on the shapes in semileptonic decay distributions
- quark-hadron duality approximation is the main concern more data on the hadron spectroscopy in D_(s) and B channels: radial excitations