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Higgs production pp → H+X

✦ For good reasons, Higgs production is one of 
the best studied processes theoretically:
✦ NNLO accuracy for total cross section 

Harlander and Kilgore ‘02, Anastasiou and Melnikov ‘02, Ravindran, 

Smith and van Nerven ‘03 as well as the differential 
decay to γγ Anastasiou, Melnikov and Petriello ’05; Catani and 

Grazzini ’07 and                               Anastasiou, 
Dissertori and Stöckli ’07; Grazzini ’08

✦ Large perturbative corrections. Leading order 
predictions off by more than a factor of two.

 

W+W− → !+ν!−ν̄
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✦ Large perturbative corrections...
✦ Soft-gluon resummation developed in ’86 by 

Sterman. NNLL result known Catani et al. ’03.
✦ Can use RG evolution in SCET Manohar ’03 (for DIS); Ji, Idilbi 

’06 (for Higgs), analytic expression for resummed kernels 
in momentum space TB, Neubert ‘06

✦ ... but are there large logarithms?
✦  Inclusive production cross section, plenty of phase 

space for hard radiation.  
✦ We find: no large scale hierarchy, but large 

corrections associated with analytic continuation 
from space-like to time-like kinematics.

To resum or not to resum, that is the question.
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✦ Gluon fusion via a top quark loop is an order of 
magnitude larger than the other production mechanisms

Higgs production mechanisms
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Factorization

✦ Convolution of perturbative hard-scattering 
kernel Cij with parton luminosity 

✦ At the partonic threshold                         . In 
the convolution 
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Hard-scattering kernels
✦ Known to NNLO for                  . At NLO

✦ other partonic channels are regular
✦ in the following, we will analyze the singular terms 

and resum certain contributions to all orders
✦ will keep regular terms in fixed-order perturbation 

theory

singular 

regular 

Harlander and Kilgore ‘02, Anastasiou and Melnikov ‘02, 
Ravindran, Smith and van Nerven ‘03

6

mH ! 2mt
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αs

π

{
δ(1− z)

(
11
2

+ 2π2

)
+ 6

[
1

1− z
ln

m2
H(1− z)2

µ2
fz

]

+

}

+
αs

π

{
6

(
1
z
− 2 + z − z2

)
ln

m2
H(1− z)2

µ2
fz

− 11
2

(1− z)3

z

}



Higher-order corrections

✦ Corrections are large: 70% 
NLO, 30% NNLO. [130% 
and 80% if PDFs and αs  are 
held fixed].

✦  

✦  Cgg contains singular terms, 
these give 90% of NLO and 
94% of NNLO correction

✦ contribution of Cqg and Cqq is 
small -1% and -8% of the 
NLO  correction.
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with

S(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α
∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −

αs(µ2)
∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{

4π

αs(m2
H)

[

2a arctan(a) − ln(1 + a2)
]

+

(

ΓA
1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)

ln(1 + a2) (20)

+
β1

4β0

[

4 arctan2(a) − ln2(1 + a2)
]

+ O(αs)

}

,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(

67

9
−

π2

3

)

CA −
20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m2
H)

2

[

1 +
ΓA

1

ΓA
0

αs(m2
H)

4π
+ O(α2

s)

]

.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m2

H)/2] and subtract the expanded
form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π

2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by

αs(mH) ≈ 0.1

MRST’04 PDFs
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Effective Theory Analysis



Effective theory analysis
✦ Separate contributions associated with different 

scales, turning a multi-scale problems into a series 
of single-scale problems

✦ Evaluate each contribution at its natural scale, 
leading to improved perturbative behavior

✦ Use renormalization group to evolve contributions 
to an arbitrary factorization scale, thereby 
exponentiating (resumming) large corrections

When this is done consistently, large K-factors
should never arise, since no large perturbative

corrections should be left unexponentiated!
9



Scale hierarchy

✦ We will analyze the Higgs cross section 
assuming the scale hierarchy [                    ]

✦ Expand to leading power in scale ratios
✦ Expand kernels Cij around partonic 

threshold z=1, keep only singular terms.
✦ Singular terms give most of the cross 

section, but z is integrated over. 

✦  Will check later if z ≈1 is fulfilled.

2mt ! mH ∼
√

ŝ!
√

ŝ(1− z)! ΛQCD

z = M2
H/ŝ
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Sequence of EFTs

✦ Treating one scale at a time leads to a sequence 
of effective theories

✦ Effects associated with each scale are 
absorbed into Wilson coefficient. 

✦ Solve RG equation to evolve from higher to 
lower scales.

Figure 2: Sequence of matching steps and associated effective theories leading to the factor-
ization theorem (13).

momentum transfer q2 = m2
H , and with infrared divergences subtracted using the MS scheme

[16, 25, 27]:

H(m2
H , µ2) =

∣∣CS(−m2
H − iε, µ2)

∣∣2 . (14)

On a technical level, the function CS appears as a Wilson coefficient in the matching of the
two-gluon operator in (11) onto an operator in SCET, in which all hard modes have been
integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2) Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (15)

where Q2 = −q2 is (minus) the square of the total momentum carried by the operator. The
fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are effective, gauge-invariant gluon fields in SCET [42]. They describe

gluons propagating along the two light-like directions n, n̄ defined by the colliding hadrons.
The two-loop expression for the Wilson coefficient CS can be extracted from the results of
[43]. We write its perturbative series in the form

CS(−m2
H − iε, µ2) = 1 +

∞∑

n=1

cn(L)

(
αs(µ2)

4π

)n

, (16)

where L = ln[(−m2
H − iε)/µ2]. The one- and two-loop coefficients read

c1(L) = CA

(
−L2 +

π2

6

)
,

c2(L) = C2
A

[
L4

2
+

11

9
L3 +

(
−

67

9
+

π2

6

)
L2 +

(
80

27
−

11π2

9
− 2ζ3

)
L

+
5105

162
+

67π2

36
+

π4

72
−

143

9
ζ3

]
+ CFTF nf

(
4L −

67

3
+ 16ζ3

)

+ CATF nf

[
−

4

9
L3 +

20

9
L2 +

(
104

27
+

4π2

9

)
L −

1832

81
−

5π2

9
−

92

9
ζ3

]
.

(17)

The soft function S in (13) is defined in terms of the Fourier transform of a vacuum
expectation value of a Wilson loop in the adjoint representation of SU(Nc). In SCET is
arises after the decoupling of soft gluons from the hard-collinear and anti-hard-collinear fields
describing the partons originating from the colliding beam particles [27]. The soft function
in the case of Higgs-boson production is closely related to an analogous function entering

7
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First step: integrate out the top

✦ For                   we can integrate out the top 
quark, i.e. replace the SM by an effective 
theory with             .

✦ Calculations in EFT are much simpler. One 
loop and one scale less.
✦ NNLO results only available in EFT.

mH ! 2mt

nf = 5

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2

MRST2006NNLO PDFs

µf = mH

√
s = 1.96 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

2

1.5

1

0.5

0

MRST2006NNLO PDFs

µf = mH

√
s = 14 TeV

mH (GeV)

σ
(p

b
)

200180160140120100

80

70

60

50

40

30

20

10

0

Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [27] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [27]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [30–34]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5
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Matching and RG evolution

✦ Natural scale choice              , small corr’s. 
✦ Wilson coefficient Ct(mt,µ) fulfills RG equation

✦ Solution

Ct(m2
t , µ) = 1 +

11
4

αs

π
+

(αs

4π

)2
[
2777
18

− 19 ln
m2

t

µ2
+ nf

(
−67

6
− 16

3
ln

m2
t

µ2

)]
+ . . .

µ ≈ mt

the Drell-Yan cross section [16, 27]. At two-loop order (but not beyond) the two quantities
coincide after a simple replacement of color factors. In the notation of the second reference,
we have

S(ŝ(1 − z)2, µ2
f) =

√
ŝWHiggs(ŝ(1 − z)2, µ2

f)

=
√

ŝWDY(ŝ(1 − z)2, µ2
f)

∣∣∣
CF→CA

+ O(α3
s) .

(18)

The explicit form of the result can be derived using formulas compiled in Appendix B of [27].
When one inserts the two-loop expressions for the various component functions into (13)

and expands the product to O(α2
s), one recovers the expression given in (7). In the following

section we will discuss how improved perturbative expressions for the component functions
can be obtained by solving RG evolution equations with appropriate boundary conditions. In
this way one avoids perturbative logarithms arising when the factorization scale µf is chosen
different from the characteristic scales mt, mH , or

√
ŝ(1 − z). Even though these logarithms

are not particularly large, their resummation has the effect of improving the stability of the
prediction with respect to scale variations. More importantly, however, we will also be able to
resum the π2-enhanced terms in the perturbative expansion related to the time-like kinematics
of the Higgs-boson production process. They have been shown to be responsible for the bulk
of the large K-factors arising in calculations of the Higgs-production cross sections at the
Tevatron and the LHC [17].

3 Renormalization-group analysis and resummation

Our formalism for the resummation of large perturbative corrections in Higgs-boson production
is based on effective field theory and follows closely our previous analyses of DIS at large x
[25, 26] and Drell-Yan production [27]. The two key steps of the approach are deriving a
factorization formula such as (13) valid near the partonic threshold z → 1, and then using the
RG directly in momentum space to resum logarithms arising from ratios of the different scales.
We stress that the final, RG-improved formula for the cross section follows unambiguously by
applying the rules of effective field theory at each step of the derivation.

The Wilson coefficient Ct appearing when the top quark is integrated out satisfies the RG
equation

d

d ln µ
Ct(m

2
t , µ

2) = γt(αs) Ct(m
2
t , µ

2) , with γt(αs) = α2
s

d

dαs

β(αs)

α2
s

. (19)

The fact that the anomalous dimension is related to the QCD β-function [33, 44] is not
surprising, since the two-gluon operator in (11) is proportional to the Yang-Mills Lagrangian.
The evolution equation can be integrated in closed form and leads to

Ct(m
2
t , µ

2
f) =

β
(
αs(µ2

f)
)
/α2

s(µ
2
f)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )

Ct(m
2
t , µ

2
t ) , (20)

where µt ∼ mt is the matching scale at which the top quark is integrated out.
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factorization formula such as (13) valid near the partonic threshold z → 1, and then using the
RG directly in momentum space to resum logarithms arising from ratios of the different scales.
We stress that the final, RG-improved formula for the cross section follows unambiguously by
applying the rules of effective field theory at each step of the derivation.

The Wilson coefficient Ct appearing when the top quark is integrated out satisfies the RG
equation

d

d ln µ
Ct(m

2
t , µ

2) = γt(αs) Ct(m
2
t , µ

2) , with γt(αs) = α2
s

d

dαs

β(αs)

α2
s

. (19)

The fact that the anomalous dimension is related to the QCD β-function [33, 44] is not
surprising, since the two-gluon operator in (11) is proportional to the Yang-Mills Lagrangian.
The evolution equation can be integrated in closed form and leads to

Ct(m
2
t , µ

2
f) =

β
(
αs(µ2

f)
)
/α2

s(µ
2
f)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )

Ct(m
2
t , µ

2
t ) , (20)

where µt ∼ mt is the matching scale at which the top quark is integrated out.

8

≈ 1 + 0.09 + 0.007 + . . . for µ = mt

13

NNNLO:  Schröder and Steinhauser; Chetyrkin, Kühn and Sturm ’05 



✦ Separate the contributions of the hard scale      
and the soft scale              
✦ Set z=1, then only hard scale remains. 

These are diagrams w/o gluon emission:

✦ H is the on-shell gluon form factor squared.

Second step: hard contributions H

ŝ

 H =                +              +             + ... 

2

= Ct(m2
t , µ

2)
H

v

αs(µ2)
12π

Gµν,a Gµν
a

ŝ(1− z)2
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)
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I. INTRODUCTION

The discovery of the Higgs boson is the most important
goal of modern particle physics. The inclusive production
cross sections for pp → H +X and pp̄ → H +X have been
calculated a long time ago at next-to-leading order (NLO)
in perturbation theory [1, 2], and since a few years results
at next-to-next-to-leading order (NNLO) are available [3,
4, 5]. Inclusive Higgs-boson production is thus one of the
best studied processes from a theoretical perspective.

In view of this fact, it is uncomfortable that the behav-
ior of QCD perturbation theory appears to be rather poor
in this case. The K-factor for Higgs-boson production,
defined as the prediction for the cross section normalized
to the Born approximation, takes surprisingly large values.
For the production of a light Higgs boson (mH < 150GeV)
at the LHC, one typically finds K ≈ 1.7–1.9 at NLO and
K ≈ 2.0–2.2 at NNLO. Also, the residual dependence on
the renormalization and factorization scales remains signif-
icant even at NNLO. The standard argument that the large
K-factor results from the accessibility of new production
channels beyond the leading order, such as qg → Hq and
qq̄ → H , does not apply in this case, as these contributions
to the cross section are known to be below 10%. Also, the
K-factor is not much reduced by soft-gluon resummation
near the partonic threshold [6].

In this Letter we show that the bulk of the large per-
turbative corrections to Higgs-boson production via gluon-
gluon fusion originate from terms of the form (CAπαs)n

arising from the analytic continuation of the gluon form
factor to time-like momentum transfer, and that these
terms exponentiate to leading order.

II. TIME-LIKE GLUON FORM FACTOR

The Higgs-boson production cross section at hadron col-
liders such as the Tevatron or LHC is dominated by the
gluon-gluon fusion process gg → H via a top-quark loop.
For a not too heavy Higgs boson, this process is well ap-
proximated by the effective local interaction [7]

Leff = Ct(m
2
t , µ

2)
H

v
Gµν,a Gµν

a , (1)

where v ≈ 246GeV is the Higgs vacuum expectation value,
and the short-distance coefficient Ct = αs/(12π) + O(α2

s)
is known to NNLO [8] and has a well behaved perturba-
tive expansion for µ ∼ mH . The production cross section
is related to the discontinuity of the product of two such
effective vertices. It can be written as the convolution of a
hard-scattering kernel with parton distribution functions.

The large corrections we identify are due to virtual cor-
rections to the effective ggH interaction (1) and arise from
quantum corrections characterized by the scale µ ∼ mH .
These effects are described by a universal factor and af-
fect differential distributions in same way as the total
cross section. They can be factorized into a hard function
H(m2

H , µ2), which is the square of the on-shell gluon form
factor evaluated at time-like momentum transfer q2 = m2

H ,
and with infrared divergences subtracted using the MS
scheme [9, 10, 11]. On a technical level, the hard func-
tion appears as a Wilson coefficient in the matching of the
two-gluon operator in (1) onto an operator in soft-collinear
effective theory (SCET) [12, 13], in which all hard modes
have been integrated out. This matching takes the form

Gµν,a Gµν
a → CS(Q2, µ2)Q2 gµν A

µ,a
n⊥ A

ν,a
n̄⊥ , (2)

where Q2 = −q2 is (minus) the square of the total momen-
tum carried by the operator. The fields A

µ,a
n⊥ and A

ν,a
n̄⊥ are

effective, gauge-invariant gluon fields in SCET [14]. They
describe gluons propagating along the two light-like direc-
tions n, n̄ defined by the colliding hadrons.

The two-loop expression for the Wilson coefficient CS

can be extracted from the results of [15]. We write

CS(Q2, µ2) = 1 +
∞
∑

n=1

cn(L)

(

αs(µ2)

4π

)n

, (3)

where L = ln(Q2/µ2). The one-loop coefficient reads

c1(L) = CA

(

−L2 +
π2

6

)

, (4)

and the result for the two-loop coefficient can be found in
[10, 16]. The hard function is given by the absolute square
of the Wilson coefficient at time-like momentum transfer,

H(m2
H , µ2) =

∣

∣CS(−m2
H − iε, µ2)

∣

∣

2
. (5)

2

The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]

dCS(Q2, µ2)

d lnµ
=

[

ΓA
cusp(αs) ln

Q2

µ2
+ γS(αs)

]

CS(Q2, µ2) ,

(6)
where ΓA

cusp is the cusp anomalous dimension of Wilson
lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
infrared divergences of the on-shell form factor [9]. Us-
ing results from [18] it can be derived to three-loop order
[16]. The evolution equation (6) links the coefficients of
the logarithmic terms in (3) to coefficients in the perturba-
tive expansions of the anomalous dimensions and the QCD
β-function. At one-loop order we have

c1(L) = −
ΓA

0

4
L2 −

γS
0

2
L + CA

π2

6
, (7)

where ΓA
0 = 4CA and γS

0 = 0.
The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
constant, if the renormalization scale is taken to be of order
the natural scale, µ2 ∼ Q2. For instance, with Nc = 3
colors and nf = 5 light quark flavors, we find

CS(Q2, Q2) = 1 + 0.393 αs(Q
2)− 0.152 α2

s(Q
2) + . . . . (8)

The nature of the expansion changes drastically when the
same coefficient is evaluated at time-like momentum trans-
fer Q2 = −q2 − iε. We then obtain

CS(−q2, q2) = 1 + 2.75 αs(q
2) + (4.84 + 2.07i)α2

s(q
2)

+ . . . . (9)

The expansion coefficients are more than an order of mag-
nitude larger than in the space-like region. The origin of
this effect is that the Sudakov (double) logarithms con-
tained in the coefficients cn(L) in (3) give rise to π2 terms
when we analytically continue L → ln(q2/µ2)− iπ. For the
hard function entering the Higgs-boson production cross
section, this implies

H(m2
H , m2

H) = 1 + 5.50αs(m
2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . . , (10)

where the numerical estimates in the last line refer to the
NLO and NNLO corrections for a Higgs-boson mass of
120GeV, and we use αs(m2

Z) = 0.118 as our normalization
of the running coupling constant. These hard matching
corrections account for the bulk of the K-factors found at
NLO and NNLO.

The large expansion coefficients in the perturbative se-
ries for the Wilson coefficient in the time-like region can be
avoided if we evaluate this coefficient at a time-like renor-
malization point, in which case (here and below, negative

arguments of the running coupling are always understood
with a −iε prescription)

CS(−q2,−µ2) = 1 +
∞
∑

n=1
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with L = ln(q2/µ2) and the same expansion coefficients as
in (3). We then obtain

CS(−q2,−q2) = 1 + 0.393 αs(−q2) − 0.152 α2
s(−q2) + . . .

(12)
instead of (9). The perturbative series analogous to that
in (10) reads

|CS(−m2
H ,−m2

H)|2 = 1 + 0.0845− 0.0015 + . . . , (13)

which indeed exhibits a vastly better behavior.
In the expressions above, the running coupling is evalu-

ated at time-like momentum transfer −µ2 − iε. The func-
tion αs(µ2) in perturbation theory is analytic in the com-
plex µ2 plane with a (physical) cut on the negative real
axis and a (unphysical) Landau pole at µ2 = Λ2

MS
. Since

we are interested in very large |µ2| values, the Landau pole
is not of concern to our discussion. The definition

β(αs) = 2
dαs(µ2)
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∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (15)

and this relation allows us to define the running coupling
at time-like argument in terms of that at space-like mo-
mentum transfer. At NLO we obtain
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where a(µ2) = β0αs(µ2)/4. In standard applications of
the renormalization group one would count this quantity
as an O(1) parameter. Since numerically a(m2

H) ≈ 0.2, it
is however also reasonable to count a = O(αs).

III. RESUMMATION

What is needed for the calculation of the Higgs-boson
production cross section is the Wilson coefficient at posi-
tive, not negative µ2, see (5). We will use the solution to
the renormalization-group equation (6) to relate this coef-
ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
in perturbation theory. We write the solution in the form
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The Wilson coefficient obeys an evolution equation, which
reflects the renormalization properties of the effective two-
gluon operator in SCET. It reads [9]
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lines with light-like segments in the adjoint representation
of SU(Nc). It controls the leading Sudakov double loga-
rithms contained in CS and is known to three-loop order
[17]. The single-logarithmic evolution is controlled by the
anomalous dimension γS , which can be extracted from the
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The Wilson coefficient at space-like momentum transfer

has a well behaved expansion in powers of the coupling
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Solution
✦ Reason:                                and double log’s 

give rise to      terms. Parisi ’80

✦ Being related to Sudakov logs, they can be 
resummed. Magnea and Sterman and  ’90

✦ We can avoid the      terms by choosing a time-
like value                    

✦ same expansion coefficients as 
✦ Note: RG-evolution defines             for any    

π2
L→ ln q2/µ2 − iπ

µ2 = −q2
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ficient to the one in (11). In that way the large corrections
arising in the time-like region are resummed to all orders
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CS(Q2, Q2)

αs(µ2) µ2
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αs in the complex µ2 plane

✦ Can avoid the Landau 
pole when going to 
negative µ2 .

✦ Size of expansion 
parameters is similar. 
For mH=120 GeV
✦ αs(mH2)=0.112
✦ αs(-mH2+iε)=0.107+0.024i

Running of αs in the complex µ2 plane

µ2

Λ2

m2
H−m2

H − iε

physical cut

unphysical Landau pole

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= − iπ

2

For mH = 120 GeV

αs(m2
H) ≈ 0.112

αs(−m2
H − iε) ≈ 0.107 + 0.024i
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Time-like vs. space-like µ2

✦ Convergence is much better for 
✦ Evaluate H for              where convergence is 

good and use RG to evolve to  arbitrary scale

1.00.5 2.0

1.0

1.2

1.4

1.6

1.8

2.0
H

(m
2 H

,µ
2
)

LO

NLO
NNLO

∣∣µ2/m2
H

∣∣

µ2 > 0

µ2 < 0

µ2 < 0

µ2 < 0
19



✦ Hard function fulfills RG equation

✦ Exact solution

✦ with

RG evolution
The Wilson coefficient CS arising when hard, virtual quantum corrections to the effective

two-gluon vertex (11) are integrated out obeys an evolution equation reflecting the renor-
malization properties of the effective two-gluon SCET operator on the right-hand side of the
matching relation (15). It reads [25]

d

d lnµ
CS(−m2

H − iε, µ2) =

[
ΓA

cusp(αs) ln
−m2

H − iε

µ2
+ γS(αs)

]
CS(−m2

H − iε, µ2) , (21)

where ΓA
cusp is the cusp anomalous dimension of Wilson lines with light-like segments in the

adjoint representation of SU(Nc). It controls the leading Sudakov double logarithms contained
in CS and is known to three-loop order [45]. The single-logarithmic evolution is controlled
by the anomalous dimension γS, which can be extracted from the infrared divergences of the
on-shell gluon form factor [25]. Using results from [46] it can be derived to three-loop order.
We collect the relevant expressions for the expansion coefficients of the anomalous dimensions
in Appendix A. The general solution to (21) is [47]

CS(−m2
H−iε, µ2

f)=exp

[
2S(µ2

h, µ
2
f) − aΓ(µ2

h, µ
2
f) ln

−m2
H − iε

µ2
h

− aγS(µ2
h, µ

2
f)

]
CS(−m2

H−iε, µ2
h),

(22)
where µh is the hard matching scale. We have introduced the definitions

S(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)

α∫

αs(ν2)

dα′

β(α′)
,

aΓ(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)
,

(23)

and similarly for the function aγS . The perturbative expansions of these functions obtained
at NNLO in RG-improved perturbation theory can be found in the Appendix of [26].

The naive choice µ2
h ∼ m2

H of the hard matching scale gives rise to large π2 terms in the
matching condition (16), which arise since L2 = ln2[(−m2

H − iε)/µ2
h] ∼ −π2 and render the

perturbative expansion of the hard function H in (14) unstable. We have shown in [17] that
these π2-enhanced terms are to a large extent responsible for the poor perturbative behavior of
fixed-order predictions for the Higgs-boson production cross sections at hadron colliders. We
can exploit the fact that the solution (22) is formally independent of the hard matching scale
to avoid the large π2 terms in the matching condition by a proper choice of the matching scale.
To this end we set µ2

h ∼ −m2
H − iε, so that ln[(−m2

H − iε)/µ2
h] remains a small parameter.

The π2-enhanced terms are then resummed to all orders in perturbation theory and appear
in the functions S and aΓ in the exponent in (22). With this choice, relation (22) involves the
running coupling αs(µ2) evaluated at negative argument. The definition β(αs) = dαs/d lnµ
of the QCD β-function implies that

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (24)
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by the anomalous dimension γS, which can be extracted from the infrared divergences of the
on-shell gluon form factor [25]. Using results from [46] it can be derived to three-loop order.
We collect the relevant expressions for the expansion coefficients of the anomalous dimensions
in Appendix A. The general solution to (21) is [47]

CS(−m2
H−iε, µ2

f)=exp

[
2S(µ2

h, µ
2
f) − aΓ(µ2

h, µ
2
f) ln

−m2
H − iε

µ2
h

− aγS(µ2
h, µ

2
f)

]
CS(−m2

H−iε, µ2
h),

(22)
where µh is the hard matching scale. We have introduced the definitions

S(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)

α∫

αs(ν2)

dα′

β(α′)
,

aΓ(ν2, µ2) = −
αs(µ2)∫

αs(ν2)

dα
ΓA

cusp(α)

β(α)
,

(23)

and similarly for the function aγS . The perturbative expansions of these functions obtained
at NNLO in RG-improved perturbation theory can be found in the Appendix of [26].

The naive choice µ2
h ∼ m2

H of the hard matching scale gives rise to large π2 terms in the
matching condition (16), which arise since L2 = ln2[(−m2

H − iε)/µ2
h] ∼ −π2 and render the

perturbative expansion of the hard function H in (14) unstable. We have shown in [17] that
these π2-enhanced terms are to a large extent responsible for the poor perturbative behavior of
fixed-order predictions for the Higgs-boson production cross sections at hadron colliders. We
can exploit the fact that the solution (22) is formally independent of the hard matching scale
to avoid the large π2 terms in the matching condition by a proper choice of the matching scale.
To this end we set µ2

h ∼ −m2
H − iε, so that ln[(−m2

H − iε)/µ2
h] remains a small parameter.

The π2-enhanced terms are then resummed to all orders in perturbation theory and appear
in the functions S and aΓ in the exponent in (22). With this choice, relation (22) involves the
running coupling αs(µ2) evaluated at negative argument. The definition β(αs) = dαs/d lnµ
of the QCD β-function implies that

∫ αs(−µ2)

αs(µ2)

dα

β(α)
= −

iπ

2
, (24)

9

produces Sudakov double log’s 
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Approximate solution

✦ Neglect single log’s and running of αs 

✦ Solution

✦ Hard function

✦

d

d lnµ
CS(−m2

H , µ2) = CA
αs

π
ln
−m2

H − iε

µ2
CS(−m2

H , µ2)

CS(−m2
H , µ2) = exp

(
CA

αs

4π
ln2 −m2

H

µ2

)
× CS(−m2

H ,−m2
H)

H(m2
H , µ2 = +m2

H) = exp
(
CA

αs

2π
π2

)
× |CS(−m2

H ,−m2
H)|2

≈ 1.7
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Soft function S

✦                                  is the vacuum expectation 
value of a Wilson loop constructed from soft 
gluon fields.Final step: the soft function

The soft function is related to the vacuum expectation value of a
Wilson loop constructed from soft gluon fields

eikonal vertex
soft Wilson line

S(ŝ(1− z)2, µ2) =
√

ŝ WHiggs(
√

ŝ(1− z), µ)

= δ(1− z) +
αs
π

[
6

[
1

1− z
ln

m2
H(1− z)2

µ2z

]

+

+ δ(1− z)

(
3
2

ln2 m2
H

µ2 +
π2

4

)]
+ · · ·

S(
√

ŝ(1− z), µ)
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✦ Could avoid large logarithms by choosing the 
scale 
✦ but z is integrated from z=τ...1,         

with                   . Ill-defined convolution 
due to Landau-pole. 

✦ Instead choose scale such that the convolution 
integral does not contain large log’s.

Soft function                       . S(
√

ŝ(1− z), µ)

µ =
√

ŝ(1− z)

∫ 1

τ

dz

z
S(
√

ŝ(1− z), µ) ffgg(τ/z)
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Parton luminosity             .  

✦ Steeply falling function. Convolution integral 
is dominated by y ~ τ.

✦

y

ff
(y

,µ
f
)

10.10.01 0.50.20.050.02

103

10−6

100

1

0.01

10−4

FIG. 2: Fall-off of the gluon luminosity function ff(y, µf ) for µf = 120 GeV. The dashed lines

show the asymptotic behavior for small and large y.

plot the gluon luminosity function ff(y, µf) for µf = 120 GeV in Figure 2, where

ff(y, µf) ≡
∫ 1

y

dx

x
fg/N1

(x, µf) fg/N2
(y/x, µf). (8)

We find that ff(y, µf) ∝ ya for y → 0 and ff(y, µf) ∝ (1 − y)b for y → 1, where a ≈ −2.75

and b ≈ 14.5. Therefore in this case the fall-off of the parton luminosity is even steeper than

in the Drell-Yan case.

III. RESUMMATION IN MOMENTUM SPACE

Our formalism for threshold resummation in Higgs boson production is based on the

soft-collinear effective theory [19–21] and follows essentially the papers on DIS and Drell-

Yan production [15–17]. The key steps are deriving a factorization formula in the threshold

limit and then using renormalization group (RG) directly in momentum space to sum the

logarithms between different scales.

In the threshold region, the total cross section for Higgs boson production can be factor-

ized as

σ = σ0

∣

∣CH(m2
t , µf)

∣

∣

2 ∣

∣CS(−m2
H − iε, µf )

∣

∣

2
∫

dx1

x1

dx2

x2

√
ŝWH(

√
ŝ(1 − z), µf)

× fg/N1
(x1, µf) fg/N2

(x2, µf). (9)

5

ffgg(y)

ffgg(y) ∼ y−a for y < 0.03 with a ≈ 2.5

ffgg(y) ∼ (1− y)b for y > 0.3 with b ≈ 14.5
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Convolution

✦ Since                                 for mH < 350GeV at 
the Tevatron,                         and we can 
approximate

✦ Since a-1=1.5 no strong enhancement of 
the threshold region.

τ = m2
H/s < 0.03

∫ 1

τ

dz

z
S(
√

ŝ(1− z), µ) ffgg(τ/z)

≈ ffgg(τ)
∫ 1

0
dz S(

√
ŝ(1− z), µ) za−1

MSTW2008NNLO PDFs

µf = mH
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Figure 1: Comparison of the complete fixed-order results (solid lines) and the contributions
from the leading singular terms (dashed lines) to the total cross sections for Higgs-boson
production at the Tevatron (left) and the LHC (right). We set µf = mH . Darker lines
represent higher orders in αs.

of the NLO (NNLO) correction to the cross section are due to parton production channels
different from gg → H .

In [28] we have investigated for the case of Drell-Yan production the question to what
extent the dominance of the leading singular terms can be justified based on the strong fall-off
of the parton luminosities. In the present case, setting µf = 120GeV for example, we find
that ffgg(y, µf) ∝ y−a with a ≈ 2.5 for y < 0.05, and ffgg(y, µf) ∝ (1 − y)b with b ≈ 14.5 for
y > 0.3. Due to this strong fall-off, the integral in (1) is dominated by z values near τ . For τ
values exceeding 0.3, the partonic threshold contributions would be enhanced by logarithms of
b ≈ 14.5. However, even at the Tevatron the center-of-mass energy is so high that τ ! 0.02 for
Higgs-boson masses below 300GeV. In this region the cross section (1) is well approximated
by the simple formula [28]

σ ≈ σBorn

∫ 1

0

dz za−1 C(z, mt, mH , µf) ; σBorn = σ0 ffgg(τ, µf) , (10)

with a − 1 ≈ 1.5. Since the weight function za−1 is not strongly peaked near z = 1, the
threshold dominance cannot be explained parametrically in this case. Indeed, we will see later
that threshold resummation alone has a very minor effect on the predictions for the cross
section. As a side remark, we note that (10) implies the scaling σ ∝ m−2(a−1)

H ≈ m−3
H .

Let us now discuss in more detail the different momentum regions that contribute to the
Higgs-boson production cross section. For a not too heavy Higgs boson, the gluon-gluon fusion
process gg → H is well approximated by the effective local interaction [31–35]

Leff = Ct(m
2
t , µ

2)
H

v

αs(µ2)

12π
Gµν,a Gµν

a , (11)

where v ≈ 246GeV is the Higgs vacuum expectation value, and µ denotes the scale at which
the local two-gluon operator is renormalized. The short-distance coefficient Ct is known up to

5
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Choice of the soft scale

✦ Good perturbative behavior with µs ~ mH/2.   
✦ No large logarithms

✦ Soft-gluon resummation is a small effect
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Figure 3: Left: Relative contributions to the total cross section arising from the one-loop
corrections to the soft function s̃Higgs as a function of the soft matching scale µs, obtained
with µf = mH = 120GeV. The numbers on the curves show the corresponding values of
τ . Right: Results for the soft matching scale µs for different values of τ and four different
Higgs-mass values (see text). The upper set of curves corresponds to convergence criterion I,
the lower one to criterion II.

we analytically continue L → ln(m2
H/µ2

h) − iπ. The same happens for the coefficient CV in
Drell-Yan production [18, 19] and for other time-like processes [20]. A vastly better behavior
is obtained when the matching scale is chosen in the time-like region [17]. This gives (all
arguments are defined with a −iε prescription)

CS(−m2
H ,−m2

H) = 1 + 0.393 αs(−m2
H) − 0.152 α2

s(−m2
H) + . . . . (37)

Note that the values of the strong coupling in the space-like and time-like regions are not very
different from each other. For instance, setting mH = 120GeV we find αs(−m2

H)/αs(m2
H) =

0.951 + 0.213i. It follows that the stark difference between (36) and (37) is not due to the
evolution of the running coupling between space-like and time-like values of its argument, but
rather due to the evolution of the effective two-gluon operator (15) driven by its anomalous
dimension. In our phenomenological analysis we will thus use µ2

h = −m2
H as our default

choice. Then the π2-enhanced corrections are resummed into the evolution function U in (30).
In order to illustrate the significance of this resummation, we will sometimes use the naive
choice µ2

h = m2
H for comparison.

Let us now discuss the choice of the soft matching scale µs, which is non-trivial since the
soft function S in (18) depends on the convolution variable z. For the determination of the
soft scale we follow the method proposed in [27], i.e., we choose the value of µs so that the
perturbative expansion of the soft function exhibits a good convergence after the integration
over z has been performed. The result thus depends on the process (in particular, on the
value of the Higgs-boson mass) and on the shape of the gluon distribution function. The
left panel in Figure 3 shows the relative contributions to the cross section (normalized to 1)
arising from the one-loop terms in the soft function s̃Higgs as a function of µs. We choose
µf = mH = 120 GeV and consider different values of τ = m2

H/s between 0.00005 and 0.03,

13

mH = 120GeV
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Summary
✦ Evaluate each part at its characteristic scale, 

evolve to common scale:

m2
H

−m2
H

0

m2
t

µ2

ffgg(τ/z, µf )

S(ŝ(1− z), µ2
s)

H(m2
H , µ2

h)

Ct(m2
t , µ

2
t )

µ2
f
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Resummed kernel

✦ Contribution of all scales separated, evolution 
factor U evolves from one scale to another.

✦ Have matching to 2 loops, evolution to 3-loop 
accuracy.

The result (28) agrees with a corresponding expressions derived in [16].
Putting everything together, we arrive at our final formula for the RG-improved expression

for the hard-scattering coefficient in (7). It can be written in the form

C(z, mt, mH , µf) =
[
Ct(m

2
t , µ

2
t )

]2 ∣∣CS(−m2
H − iε, µ2

h)
∣∣2 U(mH , µt, µh, µs, µf)

×
z−η

(1 − z)1−2η
s̃Higgs

(
ln

m2
H(1 − z)2

µ2
sz

+ ∂η, µ
2
s

)
e−2γEη

Γ(2η)
,

(30)

where

U(mH , µt, µh, µs, µf) =
α2

s(µ
2
s)

α2
s(µ

2
f)

[
β
(
αs(µ2

s)
)
/α2

s(µ
2
s)

β
(
αs(µ2

t )
)
/α2

s(µ
2
t )

]2 ∣∣∣∣∣

(
−m2

H − iε

µ2
h

)−2aΓ(µ2
h,µ2

s)
∣∣∣∣∣

×
∣∣exp

[
4S(µ2

h, µ
2
s) − 2aγS(µ2

h, µ
2
s) + 4aγB(µ2

s, µ
2
f)

]∣∣ .

(31)

Apart from the factor containing the β-function, which is related to the evolution of the
two-gluon operator in (11), and the ratio of running couplings, which compensates the scale
dependence of the Born-level cross section σ0 in (1), this result is of the same form as the
corresponding expression arising in Drell-Yan production and given in equations (50) and
(51) of [27]. Some comments on the effect of the resummation of π2-enhanced terms in the
Drell-Yan case will be made in Section 6.1.

It is instructive to consider the special limit in which all matching scales are set equal to a
common scale µf ∼ mH , while µ2

h = −µ2
f − iε is still chosen in the time-like region. We then

obtain [17]

ln U(mH , µf ,−iµf , µf , µf) =
ΓA

0

2β2
0

{
4π

αs(m2
H)

[
2a arctan(a) − ln(1 + a2)

]

+

(
ΓA

1

ΓA
0

−
β1

β0
−

γS
0 β0

ΓA
0

)
ln(1 + a2)

+
β1

4β0

[
4 arctan2(a) − ln2(1 + a2)

]
+ O(αs)

}
,

(32)

where a ≡ a(m2
H). Note that the result is µf -independent at this order. The expression for

the evolution function simplifies considerably if we treat a(m2
H) ≈ 0.2 as a parameter of order

αs. Using the fact that γS
0 = 0, we then find

ln U(mH , µf ,−iµf , µf , µf) =
π2

2
ΓA

cusp[αs(m
2
H)] + O(α3

s) . (33)

This result makes explicit that the π2-enhanced corrections are terms of the form (CAπαs)n

in perturbation theory and exponentiate at leading order. Numerically, setting µf = mH =
120 GeV we obtain lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from the exact
expression for the evolution function derived from (31), indicating that the leading-order terms
give by far the dominant effect after RG improvement. The analytical expressions (32) and (33)

11
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Phenomenological results



Cross section at the LHC

✦ Different MSTW PDFs at each order. 

✦ Faster convergence, smaller scale dependence. K-factor close to 
1. (Note: with ’04 PDFs resummed result had K=1.3.) 

✦ Note: for µf = mH/2, fixed order result is close to resummed. 
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].
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Cross section at the LHC

✦ Same plot, but using the same PDF everywhere.
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Figure 5: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). Darker bands correspond to higher orders in perturbation theory.

results. This makes it easier to judge the actual size of the perturbative corrections to the
hard-scattering kernels. The results obtained after RG improvement show significantly faster
convergence and reduced scale dependence in higher orders. The NNLO resummed predictions
have a perturbative uncertainty of less than 3% for both the Tevatron and the LHC, while the
scale dependence of the NNLO fixed-order results is approximately ±15% for the Tevatron
and ±10% for the LHC. Numerical values for the cross section at NNLO are shown in Table 1.
The first error accounts for scale variations, while the second one reflects the uncertainty in the
PDFs. The additional uncertainty of ±6% due to the value of αs(m2

Z) is not shown explicitly.
We emphasize that the effect of RG improvement is significant even at NNLO, where the
resummed cross sections at the Tevatron and the LHC exceed the fixed-order predictions by
about 13% and 8%, respectively (for mH = 120GeV). These differences are as important
numerically as the differences between the NLO and NNLO resummed results.

In Figure 6, we show for comparison the results obtained when the PDFs are switched
according to the order of the calculation. When this is done, the higher-order bands obtained
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Scale dependence for mH=120GeV

✦ Negligible dependence on µt is not shown
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Figure 4: Dependence of the resummed cross section for Higgs-boson production at the LHC on
the scales µh (upper left) and µs (upper right), and on the factorization scale µf (lower left), for
mH = 120GeV. The darker curves correspond to higher orders in RG-improved perturbation
theory. For comparison, we also show the dependence on µf in fixed-order perturbation theory
(lower right). The corresponding curves for the Tevatron would look very similar except for
the overall scale.

5 Predictions for the cross section

We now present numerical results for the Higgs-boson production cross sections at the Teva-
tron and the LHC. To estimate the theoretical uncertainties we combine the various scale
dependences as described in the previous section. The effect of the uncertainties in the PDFs
is estimated by scanning over the 30 different sets provided by [30]. The uncertainty in the
value of the running coupling αs(m2

Z) = 0.1171± 0.0036 introduces an additional error in the
cross-section predictions of about ±6%. We compare our RG-improved results for the cross
sections with those obtained in fixed-order perturbation theory. In the latter case we vary the
factorization and renormalization scales together in the range mH/2 < µf < 2mH .

In Figure 5 we show the scale dependence of our predictions for the cross sections at
different orders in perturbation theory. Note that we use the same PDFs (MSTW2008NNLO)
in all cases, i.e., we do not switch to LO or NLO distribution functions in the lower-order

16
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Comparison with ordinary threshold resummation

✦ additional uncertainty from αs. 
✦ threshold resummation only has a small effect.
✦ both resummations increase cross section.

µ2
h > 0 µ2

h < 0

pdf uncertainty
scale uncertainty
cross section at LHC in pb for mH =120 GeV

Table 3: Cross sections (in pb) for mH = 120GeV. We compare fixed-order results (first
column) with RG-improved results (remaining three columns) corresponding to standard soft-
gluon resummation with µ2

h = +m2
H , resummation of π2-enhanced terms (µ2

h = −m2
H) only,

and the combination of both. The uncertainties are due to scale and PDF variation.

fixed order threshold π2-enhanced threshold + π2

LO 15.5+2.4+0.4
−2.1−0.5 17.8+3.3+0.4

−2.7−0.6 27.1+4.0+0.6
−3.8−0.8 31.2+5.7+0.8

−4.8−1.0

LHC NLO 35.5+5.9+0.8
−4.6−1.1 37.7+3.6+0.9

−1.2−1.2 45.0+3.0+1.1
−3.3−1.4 46.6+2.5+1.1

−1.1−1.5

NNLO 47.6+4.5+1.1
−4.2−1.5 48.5+2.5+1.2

−0.5−1.5 51.4+1.7+1.2
−1.6−1.6 51.4+1.4+1.2

−0.3−1.6

LO 0.281+0.105+0.018
−0.071−0.019 0.389+0.062+0.023

−0.046−0.024 0.491+0.180+0.031
−0.127−0.033 0.681+0.105+0.040

−0.080−0.042

Tevatron NLO 0.650+0.172+0.041
−0.131−0.044 0.764+0.077+0.045

−0.026−0.048 0.855+0.125+0.053
−0.130−0.056 0.954+0.046+0.055

−0.022−0.059

NNLO 0.901+0.126+0.056
−0.124−0.060 0.961+0.048+0.058

−0.012−0.062 1.003+0.051+0.061
−0.074−0.065 1.022+0.025+0.061

−0.005−0.065

order higher in logarithmic accuracy, (ii) instead of the scale choice µs ∼ mH/N inherent in
the moment-space formalism we set the scale as discussed in Section 4, and (iii) while the two
formalisms are equivalent in the threshold region, the power-suppressed terms differ between
the two formulations. Neither the additional higher-log contributions nor the scale-setting
prescription can account for the difference. To compare the two scale-setting prescriptions, we
have evaluated the effective-theory moment-space result (38) both with µs ∼ mH/N and with
our choice of the soft scale and find that the difference is small. Using our default choice for the
soft scale, the effective-theory moment-space result is 50.1 pb, very close to what is obtained
in the traditional framework. The difference thus arises from power corrections suppressed by
(1 − z) or 1/N , respectively. If we use the same scale setting in the moment-space formula
(38) and momentum-space expression (30), then the difference between the two formulations
amounts to an overall factor of

√
z, see (39). To check that this factor indeed accounts for the

difference, we have multiplied our momentum space formula (30) by
√

z. After adjusting the
matching corrections, we find σ = 49.9pb instead of 48.5pb.2 The factor

√
z appears artificial,

since it does not occur in the fixed-order expressions. On the other hand, with this factor
included, the singular terms are larger and amount numerically to 96% of the full NNLO
result (without this factor, they amount to 86%). As stressed above, the threshold dominance
is observed numerically but not enforced parametrically. For this reason, equivalent definitions
of the leading contribution can lead to somewhat different results.

To conclude our discussion, let us briefly discuss the case of Higgs production with a jet-
veto, i.e. the cross section for the production of the Higgs boson and QCD radiation with
pT ≡ |#pT | < pveto

T . Such a veto reduces the background to H → W+W− → l+l−νν̄ from
tt̄-production with subsequent t → b%+ν̄ decay. It was observed that the K-factor for Higgs
production gets reduced when such a cut is imposed [8, 58, 59]. For example, at the LHC

2Note that the enhancement is very counter-intuitive: we multiply ff(τ/z) by
√

z which is smaller than 1
over the entire integration range and nevertheless get a larger result. The enhancement arises because the
kernel is a distribution and its plus-distribution part is sensitive to the derivative of

√
z ff(τ/z).
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RG improvement for
other time-like processes



µ2<0 for other processes 

✦ Interesting to see the effect of choosing a time-
like renormalization point for other processes, 
in particular
✦  Higgs decay H → X
✦ e+e− → hadrons

✦  τ-decays

✦ Drell-Yan process pp → γ*/Z +X → l+l− +X

} no Sudakov
double log’s
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Hadronic Higgs decay H → X

✦ Analogous to e+e− → hadrons
✦ No Sudakov log’s in inclusive decay rate, 

therefore no associated  π2  terms in the analytic 
continuation.

✦ Only effect is due to the running of αs  from −µ2 
to +µ2, which is a small effect at high energies.
✦ Equivalent to Contour Improved PT
✦ π2 only at NNLO

✦ however large β0αs term at NLO, so this 
effect might be more important
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Drell-Yan: pp → γ*/Z +X → l+l− +X

✦ Near the partonic threshold DY fulfills a 
factorization theorem similar to Higgs 
production

✦ Corresponding hard function is given by 
quark vector form factor

✦ effect is smaller by CF/CA

Table 4: Predictions for the Drell-Yan cross section dσ/dq2 at
√

s = 38.76GeV for an invariant
mass of

√
q2 = 8 GeV of the lepton pair. Units are pb/GeV2.

fixed order threshold threshold + π2

LO 0.299+0.051
−0.040 0.436+0.062

−0.071 0.700+0.091
−0.106

NLO 0.449+0.051
−0.041 0.493+0.011

−0.014 0.559+0.014
−0.035

NNLO 0.505+0.021
−0.025 0.512+0.002

−0.004 0.534+0.009
−0.006

6.1 Drell-Yan process

Near the partonic threshold, the Drell-Yan cross section factors into a hard and a soft function,
and threshold resummation proceeds in complete analogy to the Higgs case [27]. Instead of
the scalar two-gluon operator (11), Drell-Yan production is mediated by the electromagentic
current q̄γµq. The hard function is given by the renormalized on-shell vector form factor
CV (−q2, µ2

h). The same hard function also appears in deep-inelastic scattering, but evaluated
at space-like momentum transfer. The analytic continuation of the form factor to the time-like
region produces π2 terms, which were resummed in [18–21]. The Drell-Yan case can be treated
in exactly the same way as Higgs-boson production. The quantity CV fulfills a RG equation of
the same form as (21) for CS, however the relevant cusp anomalous dimension ΓF

cusp is smaller
by a factor CF /CA = 4/9. The resummation effects are thus smaller than in the case of Higgs-
boson production and have the form exp(CF αsπ/2) at leading order, see (33). Comparing the
expansion of the hard function at time-like and space-like renormalization points, we find

|CV (−q2, q2)|2 = 1 + 0.0845 + 0.0292 + . . . ,

|CV (−q2,−q2)|2 = 1 − 0.1451 − 0.0012 + . . . .
(38)

The two-loop correction is reduced for µ2 = −q2, however, at one-loop order the correction
increases since there is a partial cancellation between the π2-enhanced terms and the constant
piece for µ2

h > 0. Numerical results for the resummed Drell-Yan cross section are given in
Table 4 for the case of E866/NuSea [54], i.e., proton-proton collisions at

√
s = 38.76GeV

and q2 = (8 GeV)2. The scales |µh|, µs, and µf in the resummation formula for Drell-Yan
production have been chosen as in [27], and MRST2004 PDFs were used [48]. The numbers
in the table include the matching to fixed-order perturbation theory at the corresponding
order. At NNLO, the difference between ordinary threshold resummation with µ2

h > 0 and
the combined resummation with µ2

h < 0 is about 4%, significant because of the large αs value
at such low energies. Convergence is similar in both cases, with negative instead of positive
corrections for µ2

h < 0. The numbers obtained in the two cases do not agree within their
respective scale uncertainties. They would be compatible if the hard scale would be varied up
and down by a factor 2 as we do in the present paper. However, a smaller variation

√
q2 <

µh < 2
√

q2 was used in [27]. In view of the disagreement, a variation by the conventional
factor of 2 seems more appropriate.

The main goal of the E866/NuSea experiment was to provide a determination of the sea-
quark PDFs of the proton. The resummation of π2 terms would affect this determination in the
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Drell-Yan vs. DIS

✦ While DY involves the time-like form factor, 
DIS involves the space-like form factor

✦ Parisi first pointed this out ‘80; Sterman and 
Magnea derived resummation formula ’90.

Xp
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Drell-Yan process
✦ For                    ,                      :

✦ NNLO difference scales like α(q2)3. For high 
values of the invariant mass of the lepton pair, 
the effect is small.

Table 4: Predictions for the Drell-Yan cross section dσ/dq2 at
√

s = 38.76 GeV for an invariant
mass of

√
q2 = 8 GeV of the lepton pair. Units are pb/GeV2.
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−0.041 0.493+0.011
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−0.004 0.534+0.009
−0.006
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Near the partonic threshold, the Drell-Yan cross section factors into a hard and a soft function,
and threshold resummation proceeds in complete analogy to the Higgs case [27]. Instead of
the scalar two-gluon operator (11), Drell-Yan production is mediated by the electromagentic
current q̄γµq. The hard function is given by the renormalized on-shell vector form factor
CV (−q2, µ2

h). The same hard function also appears in deep-inelastic scattering, but evaluated
at space-like momentum transfer. The analytic continuation of the form factor to the time-like
region produces π2 terms, which were resummed in [18–21]. The Drell-Yan case can be treated
in exactly the same way as Higgs-boson production. The quantity CV fulfills a RG equation of
the same form as (21) for CS, however the relevant cusp anomalous dimension ΓF

cusp is smaller
by a factor CF /CA = 4/9. The resummation effects are thus smaller than in the case of Higgs-
boson production and have the form exp(CF αsπ/2) at leading order, see (33). Comparing the
expansion of the hard function at time-like and space-like renormalization points, we find

|CV (−q2, q2)|2 = 1 + 0.0845 + 0.0292 + . . . ,

|CV (−q2,−q2)|2 = 1 − 0.1451 − 0.0012 + . . . .
(38)

The two-loop correction is reduced for µ2 = −q2, however, at one-loop order the correction
increases since there is a partial cancellation between the π2-enhanced terms and the constant
piece for µ2

h > 0. Numerical results for the resummed Drell-Yan cross section are given in
Table 4 for the case of E866/NuSea [54], i.e., proton-proton collisions at

√
s = 38.76GeV

and q2 = (8 GeV)2. The scales |µh|, µs, and µf in the resummation formula for Drell-Yan
production have been chosen as in [27], and MRST2004 PDFs were used [48]. The numbers
in the table include the matching to fixed-order perturbation theory at the corresponding
order. At NNLO, the difference between ordinary threshold resummation with µ2

h > 0 and
the combined resummation with µ2

h < 0 is about 4%, significant because of the large αs value
at such low energies. Convergence is similar in both cases, with negative instead of positive
corrections for µ2

h < 0. The numbers obtained in the two cases do not agree within their
respective scale uncertainties. They would be compatible if the hard scale would be varied up
and down by a factor 2 as we do in the present paper. However, a smaller variation

√
q2 <

µh < 2
√

q2 was used in [27]. In view of the disagreement, a variation by the conventional
factor of 2 seems more appropriate.

The main goal of the E866/NuSea experiment was to provide a determination of the sea-
quark PDFs of the proton. The resummation of π2 terms would affect this determination in the
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Summary
✦ Have performed an EFT analysis of Higgs production near 

the partonic threshold region

✦ there are no numerically large Sudakov log’s to be 
resummed, but large corrections arise in the analytic 
continuation of these log’s from space-like to time-like 
kinematics

✦ these can be avoided by evaluating the hard function H 
for µ2<0 and using the renormalization group to evolve 
to positive µ2 values.

✦ RG-improved prediction has improved convergence and 
smaller scale dependence. At NNLO, for mH=120GeV , the 
cross section is 8% larger at LHC (13% at the Tevatron) 
than the fixed order result.
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extra slides



Fixed-order cross section

✦ The prefactor is

✦  

✦ Asymptotic behavior of A

✦ Contribution of light quarks strongly suppressed. 
Negligible except for interference of top and 
bottom (a few % effect).

energies and for the relevant values of the Higgs-boson mass the scale of the soft emission is
not much lower than mH , so that no numerically large logarithms arise from soft emissions.
The main numerical effect of RG improvement is thus due to the resummation of the (CAπαs)n

terms in the virtual corrections. In our RG framework, this resummation is accomplished by
evaluating the hard matching corrections at a scale µ2

h = −m2
H − iε instead of the conventional

choice µ2
h = +m2

H .
We begin our analysis with a brief review of the fixed-order results for the total cross section

and study to which extent the cross section is dominated by the leading singular terms near the
partonic threshold. We then discuss the factorization properties of the hard-scattering kernels
in the threshold region and derive the formulas for the RG resummation of large perturbative
corrections in momentum space. After determining the default values of the matching scales,
we present a detailed phenomenological analysis and make predictions for the Higgs-boson
production cross sections at the Tevatron and the LHC. Compared with previous studies,
we find significantly faster convergence and improved stability of the perturbative expansion.
We finally comment on applications of RG-improved perturbation theory to other time-like
processes, such as Drell-Yan production, the e−e− → hadrons cross section, and the total
hadronic Higgs-boson decay rate. In particular, we explain why the latter two processes do not
contain π2-enhanced corrections of the type present in Drell-Yan or Higgs-boson production.

2 Fixed-order results

We consider the production of a Higgs boson in hadron-hadron collisions at center-of-mass
energy

√
s. The total cross section can be written as

σ = σ0

∑

i,j

∫ 1

τ

dz

z
Cij(z, mt, mH , µf) ffij(τ/z, µf ) , (1)

where τ = m2
H/s,

ffij(y, µ) =

∫ 1

y

dx

x
fi/N1

(x, µ) fj/N2
(y/x, µ) (2)

are the effective parton luminosities, and Cij are hard-scattering kernels, which are known to
NNLO in perturbation theory [4–6]. The quantity

σ0 =
GF√

2

m2
H α2

s(µ
2
f)

288πs

∣∣∣
∑

q

A(xq)
∣∣∣
2
; A(xq) =

3xq

2

[
1 + (1 − xq) f(xq)

]
(3)

with xq ≡ 4m2
q/m

2
H and

f(xq) =






arcsin2 1
√

xq
; xq ≥ 1

−
1

4

[

ln
1 +

√
1 − xq

1 −
√

1 − xq

− iπ

]2

; xq < 1

(4)
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hadronic Higgs-boson decay rate. In particular, we explain why the latter two processes do not
contain π2-enhanced corrections of the type present in Drell-Yan or Higgs-boson production.

2 Fixed-order results

We consider the production of a Higgs boson in hadron-hadron collisions at center-of-mass
energy

√
s. The total cross section can be written as

σ = σ0

∑

i,j

∫ 1

τ

dz

z
Cij(z, mt, mH , µf) ffij(τ/z, µf ) , (1)

where τ = m2
H/s,

ffij(y, µ) =

∫ 1

y

dx

x
fi/N1

(x, µ) fj/N2
(y/x, µ) (2)

are the effective parton luminosities, and Cij are hard-scattering kernels, which are known to
NNLO in perturbation theory [4–6]. The quantity

σ0 =
GF√

2

m2
H α2

s(µ
2
f)

288πs

∣∣∣
∑

q

A(xq)
∣∣∣
2
; A(xq) =

3xq

2

[
1 + (1 − xq) f(xq)

]
(3)

with xq ≡ 4m2
q/m

2
H and

f(xq) =






arcsin2 1
√

xq
; xq ≥ 1

−
1

4

[

ln
1 +

√
1 − xq

1 −
√

1 − xq

− iπ

]2

; xq < 1

(4)

2

g

g

H

g

g

H

(a) (b)

Figure 1: Leading order diagram to the process gg → H: (a) in the full and (b) in
the effective theory. The “⊗” denotes the effective vertex of Eq. (2).

The dominant production mechanism for a Higgs boson with a mass below 1 TeV at the
LHC will be through gluon-gluon fusion (for a review see [3]). The coupling of the gluons
to the Higgs boson is mediated through a quark loop, Fig. 1 (a). In the heavy quark limit,
the corresponding form factor becomes independent of the quark mass. Thus, this process
can be used, for example, to count the number of heavy quarks that may exist beyond the
third generation.

The current theoretical prediction for this reaction carries an uncertainty of about a factor
of 1.5 to 2. It is therefore important to improve on the theoretical accuracy. In this paper
we provide a gauge invariant ingredient to the complete next-to-next-to-leading order
prediction, namely the virtual corrections up to order α4

s. The calculation is, to our
knowledge, the first application of a recently introduced method that allows to relate the
relevant set of vertex diagrams to the more familiar class of three-loop two-point functions.

2 Effective Lagrangian

As it was mentioned before, the coupling of the gluons to the Higgs boson is mediated
through a quark loop, Fig. 1 (a). Since all quarks except for the top are much lighter than
the current lower limit on the Higgs mass, we will neglect their masses in the following. In
this case, the top quark is the only one that couples directly to the Higgs boson, because
the Higgs-fermion vertex is proportional to the fermion mass. The leading order result
has been known for quite a while [4]. At the parton level it reads:

σLO(gg → H) =
GFα2

s(µ
2)

128
√

2π
τ2 δ(1 − z) |1 + (1 − τ)f(τ)|2 ,

f(τ) =







arcsin2 1√
τ

, τ ≥ 1 ,

−1
4

[

log 1+
√

1−τ
1−

√
1−τ

− iπ
]2

, τ < 1 ,

τ = 4M2
t /M2

H , z = M2
H/s ,

(1)

where s is the partonic cms energy and GF is the Fermi coupling constant. αs is the strong
coupling constant which depends on the renormalization scale µ. Mt is the pole mass of
the top quark, and MH is the Higgs mass. In order to arrive at the cross section for hadron
collisions, σLO has to be folded with the gluon distribution functions.

2

A(xq)→ 1 for xq →∞ (heavy quark)
A(xq) ∝ xq for xq → 0 (light quark)
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Time dependence of PDFs
✦ Shifts in Higgs cross section in updated PDF sets have 

turned out to be larger than the assigned uncertainties.

✦ NNLO cross section in pb Anastasiou, Boughezahl and Petriello ’09

✦ Cross section  σ(10 TeV) ≈ 0.6 σ(14 TeV). 

✦ Note: LHC numbers above do not include b-quark and EW 

MRST01 MRST04 MRST06 MRST08

Tevatron
mH=170 GeV

0.3833 0.3988 0.3943±5% 0.3444±10%

LHC,10 TeV
mH=120 GeV

28.9 29.9 32.6 35.4
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✦ Third order coefficient is sizable
✦ Space-like:

✦ Time-like

✦

Three-loop form factor

44

CS(Q2, Q2) = 1 + 0.393αs − 0.152α2
s − 2.05α3

s

CS(−q2, q2) = 1 + 2.75 αs + (4.84 + 2.07i) α2
s + (2.57 + 6.33i) α3

s

H(−q2,−q2) = 1 + 5.5αs + 17.2α2
s + 31.8α3

s

H(−q2,−q2) = 1 + 0.79αs − 0.15α2
s − 4.22α3

s

Baikov, Chetyrkin, Smirnov, Steinhauser ’09 



New Tevatron exclusionConclusions 

03/13/2009 53 Sergo Jindariani, Fermilab Wine and Cheese Seminar 
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March 5, 2009

•! Great results in both low 
and high mass sectors!

•! SM Higgs exclusion in the 
range 160-170 GeV @95% CL!

•! Stay tuned for further 
Tevatron improvements in 
Higgs searches!

•! Better than 3xSM 
sensitivity at all masses 
below 190 GeV !

•! 2.4*SM @115 GeV!
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✦ gluon fusion dominates
✦ note: production cross section is ~50% lower at 10TeV. 
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Jet veto

Anastasiou, Dissertori, Stöckli ‘07

σ(fb) LO NLO NNLO

µ = Mh
2 152.63 ± 0.06 270.61 ± 0.25 301.23 ± 1.19

µ = 2Mh 103.89 ± 0.04 199.76 ± 0.17 255.06 ± 0.81

Table 1: The cross-section through NNLO with no experimental cuts applied.

K(N)NLO(µ) =
σ(N)NLO(µ)

σLO(µ)
, (4.1)

range from 1.77 to 1.92 at NLO and from 1.97 to 2.45 at NNLO, depending on the scale

choice 4.

It is important to compare the perturbative expansions for the inclusive cross-section

and differential Higgs boson observables. We find many kinematic distributions which

exhibit a different perturbative pattern than the inclusive cross-section. We present here

integrated differential distributions

σ(X) =

∫ X ∂σ

∂x
dx;

the result for a bin x ∈ [X1,X2] can be obtained from the difference

σ(x ∈ [X1,X2]) = σ(X2) − σ(X1).

Figure 1: On the left plot, the cross-section to produce a Higgs boson vetoing events with jets
in the central region |η| < 2.5 and pjet

T > pveto
T (no other cut is applied). On the right plot, the

K-factor as a function of pveto
T . The dashed horizontal lines correspond to the NLO and NNLO

K-factors for the inclusive cross-section. The vertical solid line denotes the value of pveto
T in the

signal cuts of Section 3.

4Note that the K-factor is often defined in the literature as the ratio of the NLO or the NNLO cross-

section at a scale µ over the LO cross-section at a fixed scale µ0 (e.g. µ0 = Mh). Since we allow with our

definition in Eq. 4.1 both numerator and denominator to vary, a large scale variation of the K-factor does

not necessarily indicate a big scale variation of the NLO or the NNLO cross-section in the numerator.

– 6 –
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e+e− → hadrons

✦ Standard expansion:

✦ Expansion of           using time-like scale

✦ same as contour improved PT

✦ Inclusive rate: no Sudakov log’s, no associated π2‘s. Only 
effect is running of the coupling. Numerically, small 
except for very low values as s (such as s=mτ).

form of an overall normalization factor. The absolute normalization of the cross section is also
interesting at higher energies, e.g. for using the Drell-Yan process to monitor the luminosity
at the LHC. However, at NNLO the difference between the two scale-setting prescriptions
scales as α3

s and would thus be four times smaller at
√

q2 = mZ than at
√

q2 = 8GeV, and
completely negligible for higher-mass Drell-Yan pairs.

6.2 e
+
e

−
→ hadrons and hadronic τ decays

The total e+e− → hadrons cross section satisfies the relation

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

(∑

q

e2
q

)
4π ImΠqq̄(−s + iε) , (39)

where the sum extends over all quark flavors with 2mq <
√

s, and the current-current vacuum
correlator Πqq̄(Q2) is related to the Adler D-function as

D(Q2) = 4π2 dΠqq̄(Q2)

d ln Q2
. (40)

The quantity Πqq̄(−q2 + iε) denotes its analytic continuation to the region of time-like mo-
mentum transfer. For simplicity, we neglect the masses of the light quarks and assume that s
is far away from quark thresholds.

The Adler function in massless QCD is RG invariant, implying that its evolution equa-
tion dD(Q2)/d lnµ = 0 is trivially free of the cusp contributions associated with Sudakov
logarithms and the large π2 terms encountered in the case of Higgs-boson and Drell-Yan pro-
duction. It follows that the perturbative expansion of the Adler function can be written as

D(Q2) = 1 +
∞∑

n=1

dn

(
αs(Q2)

4π

)n

, (41)

where the expansion coefficients dn are pure numbers, independent of the renormalization
scale. Explicitly we have (setting Nc = 3) [55–57]

d1 = 4 , d2 = (22 − 16ζ3)β0 +
4

3
≈ 2.77β0 + 1.33 . (42)

In contrast to the case of Higgs-boson production, π2-enhanced perturbative corrections enter
the Adler function and the e+e− → hadrons cross section only at O(α3

s) and higher. Re-
expressing the QCD coupling in terms of αs(µ2), integrating relation (40), and analytically
continuing to the time-like region, Q2 → −s + iε, we obtain

4π2 ImΠqq̄(−s + iε) = 1 + d1
αs(s)

4π
+ d2

(
αs(s)

4π

)2

+ . . . . (43)

This formula is routinely used in the calculation of the total cross section. Differences between
the perturbative series in (41) and (43) arise starting at O(α3

s).
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form of an overall normalization factor. The absolute normalization of the cross section is also
interesting at higher energies, e.g. for using the Drell-Yan process to monitor the luminosity
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The RG-improved expression for the imaginary part of the correlator is obtained by ex-
panding the result for the current-current correlator Πqq̄(−s + iε) in powers of αs(−s + iε),
i.e., using perturbation theory at time-like momentum transfer [22, 58]. Integrating relation
(40), we have

4π Πqq̄(−s + iε) =
2

π

αs(−s+iε)∫
dα

D(α)

β(α)
+ const.

=
1

π
ln(−s + iε) −

1

πβ0

[
d1 ln αs(−s + iε) +

(
d2 −

d1β1

β0

)
αs(−s + iε)

4π
+ . . .

]
+ const.,

(44)

where β1/β0 = (102 − 38nf/3)/(11 − 2nf/3). Eliminating the time-like coupling in favor of
the space-like one using (25), we obtain

4π ImΠqq̄(−s + iε) = 1 + d1
αs(s)

4π

arctan(as)

as

+
d2

1 + a2
s

(
αs(s)

4π

)2 [
1 +

d1β1

d2β0

(
arctan(as)

as
−

ln(1 + a2
s)

2
− 1

)]
+ . . . ,

(45)

where as ≡ β0αs(s)/4. This formula was first derived in [22]. It is the RG-improved version
of (43), which should be used whenever as is an O(1) parameter. For example, with as = 0.7
as appropriate for s = m2

τ we find

4π ImΠqq̄(−s + iε) = 1 + 0.872 d1
αs(s)

4π
+ d2

(
αs(s)

4π

)2 (
0.671 − 0.219

d1β1

d2β0

)
+ . . . , (46)

which for nf = 4 yields a reduction of the two-loop coefficient by a factor of 0.45. For higher
values of s corresponding to weak-scale processes, on the other hand, the modifications with
respect to (43) are very small.

Relation (45) shows that π2-enhanced corrections to the e+e− → hadrons cross sec-
tions arise first at O(α3

s) in fixed-order perturbation theory. The leading term results from
the expansion of the arctan(as)/as factor in the first line and yields (−π2β2

0/48)(αs/π)3 ≈
−14.3 (αs/π)3 for nf = 4, which is a rather large correction. For this reason, it was argued in
[22] that for time-like processes ᾱs(s) ≡ (4/β0) arctan(as) is a better expansion parameter than
αs(s). As an alternative choice, the authors of [58] suggested to use |αs(−s)| ≈ αs(s)/

√
1 + a2

s

for the expansion parameter. Note that both quantities have the property that they “freeze”
in the infrared.

Our RG-improved result (45) coincides with the expression for the cross section obtained
using contour-improved perturbation theory [23, 24]. The analytic properties of the Adler
function imply the relation

4π ImΠqq̄(−s + iε) =
1

2πi

∮

|s′|=s

ds′

s′
D(−s′) =

1

2π

∫ π

−π

dϕ D(eiϕs) . (47)
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where here and below αs(−µ2) is to be understood with a −iε prescription. This relation
allows us to define the running coupling at time-like argument in terms of that at space-like
momentum transfer. At NLO we obtain

αs(µ2)

αs(−µ2)
= 1 − ia(µ2) +

β1

β0

αs(µ2)

4π
ln

[
1 − ia(µ2)

]
+ O(α2

s) , (25)

where we count a(µ2) ≡ β0αs(µ2)/4 as an O(1) parameter. It is important that (24) is
independent of the path. For example, the evolution of the coupling can be performed on a
circle with fixed radius in the complex momentum plane, thereby avoiding the region near the
origin, where perturbation theory breaks down. Note that the perturbation-theory coupling
αs(µ2) is analytic in the complex µ2-plane with a cut along the negative real axis. It has
an unphysical Landau pole at µ2 = Λ2

MS
, which is of no concern to our discussion since we

are interested in very large |µ2| values. In practice, we obtain αs(µ2
h) for µ2

h < 0 by simply
evaluating the three-loop running coupling at negative values of its argument.

The soft Wilson loop WHiggs in (18) obeys an integro-differential evolution equation, which
is analogous to that for the soft function in Drell-Yan production discussed in [27]. The general
solution to this equation can be obtained using a Laplace transformation [25]. It can be written
with the help of an associated function s̃Higgs, which is given by the Laplace transform of the
soft Wilson loop at a matching scale µs. The solution is then obtained from

ω WHiggs(ω
2, µ2

f) = exp
[
−4S(µ2

s, µ
2
f) + 2aγW (µ2

s, µ
2
f)

]
s̃Higgs(∂η, µ

2
s)

(
ω2

µ2
s

)η
e−2γEη

Γ(2η)
, (26)

where ∂η denotes a derivative with respect to an auxiliary parameter η, which is then set to
η = 2aΓ(µ2

s, µ
2
f). As written above, the solution is valid as long as η > 0. From the RG

invariance of the Higgs-boson production cross section one can derive a relation between the
anomalous dimension γW entering in the above solution and the anomalous dimensions of the
remaining components in the factorization formula for the cross section [27]. It reads

γW =
β(αs)

αs
+ γt + γS + 2γB , (27)

where 2γB is coefficient of the δ(1− x) term in the Altarelli-Parisi splitting function Pg←g(x).
The three-loop expression for this quantity was obtained in [45], and we collect the correspond-
ing expansion coefficients in Appendix A. At two-loop order, relation (18) implies that the
associated soft function s̃Higgs is obtained from that in the Drell-Yan case by the replacement
CF → CA. This gives

s̃Higgs(L, µ2) = 1 +
αs(µ2)

4π
CA

(
2L2 +

π2

3

)
+

(
αs(µ2)

4π

)2 (
C2

A WA + CATFnf Wf

)
, (28)

with

WA = 2L4 −
22

9
L3 +

134

9
L2 +

(
−

808

27
+ 28ζ3

)
L +

2428

81
+

67π2

54
−

5π4

18
−

22

9
ζ3 ,

Wf =
8

9
L3 −

40

9
L2 +

224

27
L −

656

81
−

10π2

27
+

8

9
ζ3 .

(29)
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The RG-improved expression for the imaginary part of the correlator is obtained by ex-
panding the result for the current-current correlator Πqq̄(−s + iε) in powers of αs(−s + iε),
i.e., using perturbation theory at time-like momentum transfer [22, 58]. Integrating relation
(40), we have

4π Πqq̄(−s + iε) =
2

π

αs(−s+iε)∫
dα

D(α)

β(α)
+ const.

=
1

π
ln(−s + iε) −

1

πβ0

[
d1 ln αs(−s + iε) +

(
d2 −

d1β1

β0

)
αs(−s + iε)

4π
+ . . .

]
+ const.,

(44)

where β1/β0 = (102 − 38nf/3)/(11 − 2nf/3). Eliminating the time-like coupling in favor of
the space-like one using (25), we obtain

4π ImΠqq̄(−s + iε) = 1 + d1
αs(s)

4π

arctan(as)

as

+
d2

1 + a2
s

(
αs(s)

4π

)2 [
1 +

d1β1

d2β0

(
arctan(as)

as
−

ln(1 + a2
s)

2
− 1

)]
+ . . . ,

(45)

where as ≡ β0αs(s)/4. This formula was first derived in [22]. It is the RG-improved version
of (43), which should be used whenever as is an O(1) parameter. For example, with as = 0.7
as appropriate for s = m2

τ we find

4π ImΠqq̄(−s + iε) = 1 + 0.872 d1
αs(s)

4π
+ d2

(
αs(s)

4π

)2 (
0.671 − 0.219

d1β1

d2β0

)
+ . . . , (46)

which for nf = 4 yields a reduction of the two-loop coefficient by a factor of 0.45. For higher
values of s corresponding to weak-scale processes, on the other hand, the modifications with
respect to (43) are very small.

Relation (45) shows that π2-enhanced corrections to the e+e− → hadrons cross sec-
tions arise first at O(α3

s) in fixed-order perturbation theory. The leading term results from
the expansion of the arctan(as)/as factor in the first line and yields (−π2β2

0/48)(αs/π)3 ≈
−14.3 (αs/π)3 for nf = 4, which is a rather large correction. For this reason, it was argued in
[22] that for time-like processes ᾱs(s) ≡ (4/β0) arctan(as) is a better expansion parameter than
αs(s). As an alternative choice, the authors of [58] suggested to use |αs(−s)| ≈ αs(s)/

√
1 + a2

s

for the expansion parameter. Note that both quantities have the property that they “freeze”
in the infrared.

Our RG-improved result (45) coincides with the expression for the cross section obtained
using contour-improved perturbation theory [23, 24]. The analytic properties of the Adler
function imply the relation
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d1β1

d2β0

(
arctan(as)

as
−

ln(1 + a2
s)

2
− 1

)]
+ . . . ,

(45)

where as ≡ β0αs(s)/4. This formula was first derived in [22]. It is the RG-improved version
of (43), which should be used whenever as is an O(1) parameter. For example, with as = 0.7
as appropriate for s = m2

τ we find

4π ImΠqq̄(−s + iε) = 1 + 0.872 d1
αs(s)

4π
+ d2

(
αs(s)

4π

)2 (
0.671 − 0.219

d1β1

d2β0

)
+ . . . , (46)

which for nf = 4 yields a reduction of the two-loop coefficient by a factor of 0.45. For higher
values of s corresponding to weak-scale processes, on the other hand, the modifications with
respect to (43) are very small.

Relation (45) shows that π2-enhanced corrections to the e+e− → hadrons cross sec-
tions arise first at O(α3

s) in fixed-order perturbation theory. The leading term results from
the expansion of the arctan(as)/as factor in the first line and yields (−π2β2

0/48)(αs/π)3 ≈
−14.3 (αs/π)3 for nf = 4, which is a rather large correction. For this reason, it was argued in
[22] that for time-like processes ᾱs(s) ≡ (4/β0) arctan(as) is a better expansion parameter than
αs(s). As an alternative choice, the authors of [58] suggested to use |αs(−s)| ≈ αs(s)/

√
1 + a2

s

for the expansion parameter. Note that both quantities have the property that they “freeze”
in the infrared.

Our RG-improved result (45) coincides with the expression for the cross section obtained
using contour-improved perturbation theory [23, 24]. The analytic properties of the Adler
function imply the relation

4π ImΠqq̄(−s + iε) =
1

2πi

∮

|s′|=s

ds′

s′
D(−s′) =

1

2π

∫ π

−π

dϕ D(eiϕs) . (47)
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as = 0.7 for µ = 1.5 GeV
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Traditional soft-gluon resummation

Figure 6: Scale dependence of the Higgs production cross section at the LHC for MH = 115 GeV
at a) (upper) LO, NLO, NNLO and b) (lower) LL, NLL, NNLL accuracy.

As expected from the QCD running of αS, the cross sections typically decrease when µR

increases around the characteristic hard scale MH , at fixed µF = MH . In the case of variations
of µF at fixed µR = MH , we observe the opposite behaviour. In fact, when MH = 115 GeV,
the cross sections are mainly sensitive to partons with momentum fraction x ∼ 10−2, and in
this x-range scaling violation of the parton densities is (moderately) positive. Varying the two
scales simultaneously (µF = µR) leads to a compensation of the two different behaviours. As a
result, the scale dependence is mostly driven by the renormalization scale, because the lowest-order
contribution to the process is proportional to α2

S, a (relatively) high power of αS.

Figure 6a shows that the scale dependence is reduced when higher-order corrections are in-
cluded. When resummation effects are implemented (Fig. 6b), we typically observe a further
(slight) reduction of the scale dependence, with the exception of the factorization-scale depen-
dence at fixed µR = MH that is marginally stronger after resummation. This suggests that the
rather flat dependence on µF at NNLO can be an accidental effect, as also suggested by the fact
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Catani, de Florian, Grazzini, Nason ’03
numerical update: de Florian and Grazzini ’09
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Moment space resummation
✦ Our soft-gluon resummation effects are 

numerically smaller than what Catani et al. find. 
✦ After matching (for mH=120GeV at LHC) 50.4pb 

[trad. method] vs. 48.5pb [RGI] vs. 47.6pb [FO].
✦ Differences

✦ they work in Mellin moment space, expand in 
1/N instead of (1-z): different power corr’s

✦ scale choice                      is built into 
traditional framework (this leads to Landau-
pole ambiguities)

✦ NNLL vs. NNNLL

µs ∼ mH/N
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EFT analysis in moment space
✦ Can easily do EFT analysis in moment space. 

✦ Numerical results close to traditional approach.
✦ Mellin inversion

✦ difference is factor of 

provide accurate approximations to the exact results. The first equation gives lnU = 0.557,
while the second one yields lnU = 0.565. The close agreement of these two numbers shows
that the running of the coupling between µ2

f and −µ2
f is a minor effect compared with the

evolution driven by the anomalous dimension of the effective two-gluon operator in (15).
The RG-improved prediction for the leading singular contributions to the Higgs-boson

production cross section is obtained by integrating the above expression for the resummed
kernel C with the gluon-gluon luminosity function ffgg, see (1). In order to also account for the
remaining contributions to the cross section, we add to this result the fixed-order contributions
arising from the non-singular terms in the hard-scattering kernels, which at NLO have been
compiled in (9). In the momentum-space approach the subtractions required to avoid double
counting of the resummed terms are straightforwardly implemented as [27, 28]

σRGI = σresummed
∣∣∣
µt,µh,µs,µf

+

(
σfixed order

∣∣∣
µf

− σresummed
∣∣∣
µt=µh=µs=µf

)
. (34)

We have used this prescription to calculate the fixed-order expressions for the two terms on
the right-hand side of (6). Note that only after this matching step the cross section is formally
independent of the factorization scale µf .

Traditionally, threshold resummation is performed in moment space rather than momen-
tum space. For the case at hand, one considers moments of the cross section in τ = m2

H/s at
fixed mH :

σN =

∫ 1

0

dτ τN−1 σ . (35)

After this Mellin transformation, the convolution integrals in (1) and (2) reduce to products
of moments. For the gluon contribution to the cross section, one has

σN = σ0 CN+1(mt, mH , µf) f g/N1

N+1 (µf) f g/N2

N+1 (µf) . (36)

Having the analytical result (26) for the RG equation of the soft function at hand allows us
to work directly in momentum space. However, to compare to the results obtained using
traditional methods, it is instructive to transform our result (30) for the hard-scattering co-
efficient to moment space. This was discussed in detail in [27] for DIS and [28] for Drell-Yan
production. The discussion for Higgs production is completely analogous to the Drell-Yan
case, but for the numerical discussion below, it will be useful to have explicit formulae also
for the present case. To obtain the moment-space result we note that [50]

∫ 1

0

dz zN−1 S(m2
H(1 − z)2, µ2) = s̃Higgs

(
ln

m2
H

N̄2µ2
, µ2

)
+ O

(
1

N

)
, (37)

with N̄ = eγEN . Solving the associated RG equation and combining it with the hard function
we obtain

CN(mt, mH , µf) =
[
Ct(m

2
t , µ

2
t )

]2 ∣∣CS(−m2
H − iε, µ2

h)
∣∣2

× U(mH , µt, µh, µs, µf) s̃Higgs

(
ln

m2
H

µ2
s

+ ∂η, µ
2
s

)
N̄−2η + O

(
1

N

)
.

(38)

12The result has exactly the same structure as (30). Evaluating the derivatives with respect to

η produces logarithms ln
m2

H

N̄2µ2
s
, which can be eliminated choosing µ2

s =
m2

H

N̄2 . For fixed µs, the

result (38) has a very simple N -dependence, and we can Mellin-invert it analytically using

1

2πi

∫ c+i∞

c−i∞
dN z−N N̄−2η = (− ln z)−1+2η e−2γEη

Γ(2η)

=
√

z
z−η

(1 − z)1−2η

e−2γEη

Γ(2η)

[
1 + O

(
(1 − z)2

)]
. (39)

The main difference to (30) is an overall factor of
√

z, which amounts to a first-order power
correction in the threshold region z → 1. The numerical impact of this factor will be discussed
below.

The result (38) can be compared to the expressions used in the traditional formulation
of resummation. For DIS and Drell-Yan production, it has been shown in [27, 28] that the
two methods give identical results for the threshold-enhanced terms when expanded to any
fixed order in αs. In these papers, an exact relation between the radiation functions appearing
in the traditional framework and the anomalous dimensions and Wilson coefficients in the
effective theory was derived. For the Higgs case, the corresponding relation reads

e2γE∇ Γ(1 + 2∇)
D(αs)

2
= γW (αs) + ∇ ln s̃Higgs(0, µ

2) −
e2γE∇ Γ(1 + 2∇) − 1

∇
Γcusp(αs) , (40)

where αs ≡ αs(µ), and ∇ = d/d lnµ2 = [β(αs)/2] ∂/∂αs. Using this result, we reproduce the
perturbative expression for the radiation function D(αs) given in [13, 14] up to third order
in αs.

4 Choice of the matching and factorization scales

The RG-improved cross section in (34) is formally independent of each of the three matching
scales µt, µh, and µs, as well as of the factorization scale µf at which the parton densities are
evaluated. However, in practice a residual scale dependence remains due to the truncation of
perturbation theory. It is a standard procedure to take this residual dependence on the scales
as an estimate of yet unknown higher-order effects. In our analysis we will independently
vary the various matching scales about their default values, whose determination we will now
discuss. In the spirit of effective field theory, the matching scales should be chosen such that
the matching conditions (i.e., the Wilson coefficients evaluated at the matching scales) in (30)
have well-behaved perturbative expansions. All large corrections are then resummed into the
evolution function U .

The characteristic scale of the top-quark loop integrated out in the construction of the
effective local interaction (11) is the top-quark mass, and we thus take µt = mt as our default
choice for the first matching scale. With this choice, the perturbation series for the matching
coefficient Ct is well behaved. Setting nf = 5 for the number of light quark flavors, we find

Ct(m
2
t , m

2
t ) = 1 + 0.875 αs(m

2
t ) + 0.623 α2

s(m
2
t ) + . . . . (41)

13

√
z
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Moment space

✦ Multiplying resummed kernel in momentum 
space by       gives numerical result close to 
moment space approach, [50.1pb].

✦ Factor      is power correction near threshold 
z→1.

✦ Appears artificial since the factor is not there 
in the fixed order result, however, including it 
makes singular terms larger (96% of full result 
instead of 80%).

√
z

√
z
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