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Outline
• Motivations

– Fit lots of data so far unused.
– Treat non-perturbative effects from solid grounds.
– Perform global fits to ALL thrust data.
– Get a precise value of αs(MZ).

• Experimental data
– Definition of event shape variables: thrust.
– Sample of data.

• A theory for all regions
– SCET: fixed order results & resummation of logs & non-perturbative effects.
– Subtraction of renormalons.
– Non-singular terms.
– Power Corrections.

• Preliminary results
– Tail fits: a two-parameter fit.
– Final (preliminary) value for αs(MZ).
– Comparison with other analysis.
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Experimental data
Experiment

ALEPH
DELPHI

OPAL
L3

SLD
TASSO
JADE
AMY

Values of Q

{91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.0, 206.0}
{45.0, 66.0, 76.0, 89.5, 91.2, 93.0, 133.0, 161.0, 172.0, 
183.0, 189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0}
{91.0, 133.0, 177.0, 197.0}
{41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1,
161.3, 172.3, 182.8, 188.6, 194.4, 200.0, 206.2}
{91.2}
{14.0, 22.0, 35.0, 44.0}
{35.0, 44.0}
{55.2}

LEP

SLAC

DESY

KEK
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Soft & collinear Wilson lines

SCET   λ τ∼

†( , ) n n nnn nh YCq Wq YQ Wµ µξ ξµΓ → Γ nχ

2( , ) ( , )h hH Q C Qµ µ=
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The renormalon arises from separating perturbative and non-perturbative effects in 
dim-reg. Subtracting the renormalon gives stability to perturbation theory, and here 
achieves a positive cross section at very small tau.
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Hard, jet and soft pieces

Jet function

Hard coefficient: from matching

QCD

Soft function:

It is non-perturbative

Perturbative for large tau



Ingredients for the calculation
Renormalon
subtraction terms

Matrix 
elements

IR and UV running 
of gap parameter

Order or the 
analysis

From fixed order 
full QCD 
calculations

From a Padé
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and sum of non-log 
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Ingredients for the calculation
Renormalon
subtraction terms

Matrix 
elements

IR and UV running 
of gap parameter

Order or the 
analysis

From fixed order 
full QCD 
calculations

From a Padé
approximant

log information known, 
and sum of non-log 
terms known.

The renormalon subtractions ( , ),  and the  and  running of the 
gap (R, ) are determined from the soft function

IRUVi Rδ µ
µ∆

The ‘primed’ analysis enhances the matching order by one. Relevant !
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Becher & Neubert

NNNLL Moch, Vermaresen & Vogt
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Numerically known up to             NNLO
( )sO α

2( )sO α Becher & Schwartz; Hoang & Kluth

Schwartz; Fleming et al
Soft function

Adding the           cusp with a Padé approximation             NNNLL’ analysis4( )sO α

Fixed order

1 - loop            Known analytically           Ellis et al.

2 -, 3 - loops    Known only numerically   Glover et al, Gehrmann et al.

Weinzierl
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≈
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Numerically irrelevant
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0.5%QCDs

s Q
δα
α

Λ
∼ ∼Theoretical 

uncertainty

Concerning renormalons and gap subtraction, we treat the non-singular in the 
same way as the singular, to ensure complete cancellation in the far tail and it is 
consistent with the subleading factorization theorem. We convolute it with the 
same Soft function model. 
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Subleading perturbative contributions

0 model
 non-singular

( ,d dd
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parto

T
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S SH Q J Qτ µµ µσ σσ
τ τ
= + ⊗−∫

Peak and tail Tail & far tail

In the far tail region, fixed order perturbation theory is the optimal description.

We no longer have three scales, resummation messes up cancellation.

Use of factorization theorems at subleading order derived with SCET.

We define the non-singular terms as the full QCD fix order result with the

expanded SCET subtracted.
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How do we determine non-singular?
Subleading terms 

(do not have a resummation of logs

but do know factorization theorem)

 SCET(no res

0,1...
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τ τ
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Full QCD SCET expanded out

known analytically to 
three-loop accuracy*

 fixed or non-s d  SCET(no reingula sume mationr )r

d
d

d
d

d
d
σ
τ τ τ

σ σ
≡ −

known numerically at 2 -, 3 - loops

Gets very noisy at 
small   !τ

Log binning

Linear 
binning

We use a fit function at small    and an 
interpolating function for the rest 

τ
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Non-perturbative contributions Hoang & Stewart

Renormalon
subtracted No subtraction

Parametrizes the non-
perturbative effects

part model( , 2 2) )( ,d ) (SS Sδµ µ′− − −= ∆′ ′∫
Gives the right 
anomalous dimension

Contains an infrared 
renormalon

Removes 
renormalon

“Infrared subtraction scale”
dependence ‘R’

( ) ( )sR τ µ τ<~
[See A. Jain’s Talk]

0 0 0

( , ) must be evolved to avoid large logs.
We evolve from ( , )  to ( , ) 
to sum them up.
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Treatment of non-perturbative effects
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Q Qτ
τ τ

µσ σ τ α
τ τ

+∆
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∼ ∼

Predictible from QCD/SCET 
factorization !

softIn the tail region  

and we can expand the soft function
QCDQ τ Λ∼

Most LEP analyses used montecarlo
generators to estimate NP corrections

1 1
pert pert pert 1

2 2( ) ( ) ( )      QCDS S S S
Q Q

τ τ τ τ
⎛ ⎞Ω Ω′= − ≈ − Ω Λ⎜ ⎟
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∼ Is a non-perturbative
parameter

Shifts distributions to the right !

Definite pattern in Q

1  is defined in field theoryΩ
Lee & Sterman

Davison & Webber’s Model: freezes     below some scale Iµα

Becher Schwartz ‘08
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Treating all regions together
The renormalon subtraction introduces a scheme parameter R( ).

The gap function ∆ has both ultraviolet (µ) and infrared (R) running.

τ

We must turn off the 
resummation in the 
multijet region

Let us ,   and R depend on J sµ µ τ

So all scales merge to the hard scale for the multijet region, and the transition 
occurs smoothly.

Still there is room for estimating the perturbative uncertainties by varying these 
profile functions within the constraints. 
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distribution

function

( , , )  Fourier transform           
( , ) ( , , )

( , , )  Treat in momentum spaceT T
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Non-singular piece analytically known [AFHMS] Important for bottom

Small for charmThe one-loop mass corrections 
are about a 2% effect
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QED corrections [AFHMS]

Affect all matrix elements: Hard, Jet and Soft Different for up and down 
quarks! Need to take into 
account electroweak factors.( ) and ( ) have coupled evolution equations.

One can solve them perturbatively.
sα µ α µ

2One can consider O( )sα α≤
The non-singular term is trivially obtained No renormalon

subtractions for QED
All running kernels are affected. There are 
interesting QED – QCD mixing effects !
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Affect all matrix elements: Hard, Jet and Soft Different for up and down 
quarks! Need to take into 
account electroweak factors.( ) and ( ) have coupled evolution equations.

One can solve them perturbatively.
sα µ α µ

2One can consider O( )sα α≤
The non-singular term is trivially obtained No renormalon

subtractions for QED
All running kernels are affected. There are 
interesting QED – QCD mixing effects !

Do not need to worry about initial 
state radiation, since these effects 
are minimized in the normalization 
procedure.

Stick to NLO in Matrix elements and 
NNLL for the running.

They have a small effect on 

They shift Ω1

( )s Zmα



Effects of various pieces



Two parameter fit in tail region
In the tail                   only the shift matters. So we fit for Ω1 & α(MZ) simultaneously[ ],0.14,0.33τ

ZQ M=



The two-parameter fit gives 
an excellent description for 

many Q’s

Two parameter fit in tail region



Estimate of theory uncertainties
• Four-loop anomalous cusp coefficient (small)

• Three-loop unknown non-logarithmic terms (subdominamt)

• Non-singular fit functions errors (small)

• Non-singular renormalization scale & profile functions (dominant)

• Treatment of mass effects (negligible)

• Basis function (small effect in tail)

Final error here is work in progress

0.0007sα∆ = ±



Estimate of theory uncertainties
• Four-loop anomalous cusp coefficient (small)

• Three-loop unknown non-logarithmic terms (subdominamt)

• Non-singular fit functions errors (small)

• Non-singular renormalization scale & profile functions (dominant)

• Treatment of mass effects (negligible)

• Basis function (small effect in tail)

Final error here is work in progress

0.0009sα∆ = ±



Two parameter fit in tail region
In the tail                   only the shift matters. So we fit for Ω1 & α(MZ) simultaneously[ ],0.14,0.33τ

We use LEP working groups 
correlation model for systematic 
errors



Two parameter fit in tail region

( )s ZMα

12 / GeVΩ

In the tail                   only the shift matters. So we fit for Ω1 & α(MZ) simultaneously[ ],0.14,0.33τ

Massless
no QED

( ) 0.1136 0.0010 0.0011s ZMα = ± ±

~ Perturbative error

( ) 0.1135 0.0010 0.0011s ZMα = ± ±

We use LEP working groups 
correlation model for systematic 
errors

( Preliminary )

Mass & QED
Massless
no QED Mass

Massless no QED

Full result

Syst.,Stat., & hadronic error

reduced by a factor of 2 - 3 !
2

0.82
d.o.f.
χ

=



Two parameter fit in tail region
In the tail                   only the shift matters. So we fit for Ω1 & α(MZ) simultaneously[ ],0.14,0.33τ

( )s ZMα

12 / GeVΩ

Our value is lower than 
the World average

montecarlo hadronization
gives larger values

Syst.,Stat., & hadronic error

reduced by a factor of 2 - 3 !
2

0.82
d.o.f.
χ

=

We use LEP working groups 
correlation model for systematic 
errors

Bethke
average

( Preliminary )

Massless
no QED MassMass & QED

( ) 0.1136 0.0010 0.0011s ZMα = ± ±

( ) 0.1135 0.0010 0.0011s ZMα = ± ±
Massless no QED

Full result

~ Perturbative error

PDG world average





Comparison with other α3 analyses

Becher & Schwartz

Data: Aleph & Opal

Resummation: In the amplitude (EFT RG Equations) 

No non-perturbative effects in central value

Result ( ) 0.1172 0.0021ZMα = ±
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No non-perturbative effects in central value

Result ( ) 0.1172 0.0021ZMα = ±

Davison & Webber

Data: Many Q´s

Resummation: In the distribution [ NLL+O(α3) ] 

Non-perturbative effects in a model (large logs in subtraction)

Result ( ) 0.1164 0.0040ZMα = ±



Comparison with other α3 analyses
our number:

Becher & Schwartz

Data: Aleph & Opal

Resummation: In the amplitude (EFT RG Equations) 

No non-perturbative effects in central value

Result ( ) 0.1172 0.0021ZMα = ±

( ) 0.1136 0.0010 0.0011s ZMα = ± ±

Davison & Webber

Data: Many Q´s

Resummation: In the distribution [ NLL+O(α3) ] 

Non-perturbative effects in a model (large logs in subtraction)

Result ( ) 0.1164 0.0040ZMα = ±

Dissertori,

Gehrmann-De Ridder

Gehrmann, Glover

& Heinrich

Data: Aleph

Resummation: fixed order

Non-perturbative effects treatment: Montecarlo generator

Result ( ) 0.1240 0.0029ZMα = ±



Conclusions
• The Soft-Collinear Effective Theory provides a powerful formalism for deriving 
factorization theorems and analyzing processes with Jets.

• SCET has finally provided theorists with a mean to catch up to the experimental 
precision of LEP.

• Global fit of all data with all Q’s and all         .

• Field theoretical treatment of non-perturbative effects (unlike Montecarlos).

• Similar computations can be carried out for other event shapes.

' sτ
( ) 0.1136 0.0010 0.0011s ZMα = ± ±
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• The Soft-Collinear Effective Theory provides a powerful formalism for deriving 
factorization theorems and analyzing processes with Jets.

• SCET has finally provided theorists with a mean to catch up to the experimental 
precision of LEP.

• Global fit of all data with all Q’s and all         .

• Field theoretical treatment of non-perturbative effects (unlike Montecarlos).

• Similar computations can be carried out for other event shapes.
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• Perform a fit to all regions (including peak and far tail).

• Soft function determination (useful for bottom and top production).

• ILC ...



Conclusions
• The Soft-Collinear Effective Theory provides a powerful formalism for deriving 
factorization theorems and analyzing processes with Jets.

• SCET has finally provided theorists with a mean to catch up to the experimental 
precision of LEP.

• Global fit of all data with all Q’s and all         .

• Field theoretical treatment of non-perturbative effects (unlike Montecarlos).

• Similar computations can be carried out for other event shapes.

' sτ
( ) 0.1136 0.0010 0.0011s ZMα = ± ±

Outlook

The future for high precision determinations 
of the strong coupling constant looks good!

• Perform a fit to all regions (including peak and far tail).

• Soft function determination (useful for bottom and top production).

• ILC ...

Thanks for your attention !
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