A Global Fit for Thrust at NNNLL: Precision determination for $\alpha_s(M_z)$

Vicent Mateu

Max-Plank-Institute for Physics Munich

Ringberg Worshop 2009

30 - 04 - 2009

Taskforce : A. Hoang & V. Mateu - MPI R. Abbate & I. Stewart - MIT M. Fickinger - University of Arizona

[AFHMS]

Outline

Motivations

- Fit lots of data so far unused.
- Treat non-perturbative effects from solid grounds.
- Perform global fits to ALL thrust data.
- Get a precise value of $\alpha_s(M_Z)$.

Experimental data

- Definition of event shape variables: thrust.
- Sample of data.

A theory for all regions

- SCET: fixed order results & resummation of logs & non-perturbative effects.
- Subtraction of renormalons.
- Non-singular terms.
- Power Corrections.

Preliminary results

- Tail fits: a two-parameter fit.
- Final (preliminary) value for $\alpha_s(M_Z)$.
- Comparison with other analysis.

Determinations of $\alpha_s(M_z)$

 $\alpha_s(M_z)$ is a key parameter for the analysis of all collider experiments.

not all measurements are used for this average

Summary of Results

theory errors dominate

measurements used in avg.

```
e^+e^- event shapes
```

	Q			$\Delta \alpha_{\rm s}$	$M_{Z^0})$	
Process	[GeV]	$\alpha_s(Q)$	$lpha_{ m s}(M_{ m Z^0})$	exp.	theor.	Theory
DIS [pol. SF]	0.7 - 8		$0.113 \stackrel{+ 0.010}{- 0.008}$	± 0.004	$+0.009 \\ -0.006$	NLO
DIS [Bj-SR]	1.58	$0.375 \stackrel{+}{_{-}} \stackrel{0.062}{_{-}} \stackrel{0.081}{_{-}}$	$0.121 \stackrel{+}{}{}^{0.005}_{-0.009}$	<u></u>	- <u>-</u>	NNLO
DIS [GLS-SR]	1.73	$0.280 \stackrel{+}{_{-}} \stackrel{0.070}{_{-}} \stackrel{0.080}{_{-}}$	$0.112 \stackrel{+}{}{}^{0.009}_{-}$	$^{+0.008}_{-0.010}$	0.005	NNLO
au-decays	1.78	0.345 ± 0.010	0.1215 ± 0.0012	0.0004	0.0011	NNLO
DIS $[\nu; xF_3]$	2.8 - 11		$0.119 \stackrel{+}{}{}^{0.007}_{-}$	0.005	$+0.005 \\ -0.003$	NNLO
DIS $[e/\mu; F_2]$	2 - 15		0.1166 ± 0.0022	0.0009	0.0020	NNLO
DIS [e-p \rightarrow jets]	6 - 100		0.1186 ± 0.0051	0.0011	0.0050	NLO
Υ decays	4.75	0.217 ± 0.021	0.118 ± 0.006		-	NNLO
$Q\overline{Q}$ states	7.5	0.1886 ± 0.0032	0.1170 ± 0.0012	0.0000	0.0012	LGT
$e^+e^- [F_2^{\gamma}]$	1.4 - 28		$0.1198 \stackrel{+}{_{-}} \stackrel{0.0044}{_{-}} \stackrel{0.0054}{_{-}}$	0.0028	+ 0.0034 - 0.0046	NLO
$e^+e^- [\sigma_{had}]$	10.52	0.20 ± 0.06	$0.130 \stackrel{+}{_{-}} \stackrel{0.021}{_{-}}$	+ 0.021 - 0.029	0.002	NNLO
e ⁺ e ⁻ [jets & shps]	14.0	$0.170 \stackrel{+}{_{-}} \stackrel{0.021}{_{-}} \stackrel{0.017}{_{-}}$	$0.120 \stackrel{+}{_{-}} \stackrel{0.010}{_{-}} \stackrel{0.010}{_{-}}$	0.002	$^{+0.009}_{-0.008}$	resum
e^+e^- [jets & shps]	22.0	$0.151 \stackrel{+}{_{-}} \stackrel{0.015}{_{-}} \stackrel{0.013}{_{-}}$	$0.118 \stackrel{+}{_{-}} \stackrel{0.009}{_{-}} \stackrel{0.009}{_{-}}$	0.003	$^{+0.009}_{-0.007}$	resum
e ⁺ e ⁻ [jets & shps]	35.0	$0.145 \stackrel{+}{_{-}} \stackrel{0.012}{_{0.007}}$	$0.123 \stackrel{+}{_{-}} \stackrel{0.008}{_{-}} \stackrel{0.008}{_{-}}$	0.002	$^{+0.008}_{-0.005}$	resum
$e^+e^- [\sigma_{had}]$	42.4	0.144 ± 0.029	0.126 ± 0.022	0.022	0.002	NNLO
e^+e^- [jets & shps]	44.0	$0.139 \stackrel{+ 0.011}{- 0.008}$	$0.123 \stackrel{+ 0.008}{- 0.006}$	0.003	$+0.007 \\ -0.005$	resum
e ⁺ e ⁻ [jets & shps]	58.0	0.132 ± 0.008	0.123 ± 0.007	0.003	0.007	resum
$p\bar{p} \rightarrow b\bar{b}X$	20.0	$0.145 \stackrel{+}{}{}^{+}{}^{0.018}_{-}$	0.113 ± 0.011	+ 0.007 - 0.006	$^{+0.008}_{-0.009}$	NLO
$p\bar{p}, pp \rightarrow \gamma X$	24.3	$0.135 \stackrel{+}{-} \stackrel{0.012}{_{-} 0.008}$	$0.110 \stackrel{+}{-} \stackrel{0.008}{_{-} 0.005}$	0.004	+ 0.007 - 0.003	NLO
$\sigma(p\bar{p} \rightarrow jets)$	40 - 250		0.118 ± 0.012	$^{+0.008}_{-0.010}$	$^{+0.009}_{-0.008}$	NLO
$e^+e^- \ \Gamma(\mathbf{Z} \to \mathrm{had})$	91.2	$0.1226^{+0.0058}_{-0.0038}$	$0.1226^{+0.0058}_{-0.0038}$	± 0.0038	$+0.0043 \\ -0.0005$	NNLO
e^+e^- 4-jet rate	91.2	0.1176 ± 0.0022	0.1176 ± 0.0022	0.0010	0.0020	NLO
e^+e^- [jets & shps]	91.2	0.121 ± 0.006	0.121 ± 0.006	0.001	0.006	resum
e^+e^- [jets & shps]	133	0.113 ± 0.008	0.120 ± 0.007	0.003	0.006	resum
e^+e^- [jets & shps]	161	0.109 ± 0.007	0.118 ± 0.008	0.005	0.006	resum
e^+e^- [jets & shps]	172	0.104 ± 0.007	0.114 ± 0.008	0.005	0.006	resum
e ⁺ e ⁻ [jets & shps]	183	0.109 ± 0.005	0.121 ± 0.006	0.002	0.005	resum
e^+e^- [jets & shps])	189	0.109 ± 0.004	0.121 ± 0.005	0.001	0.005	resum
e^+e^- [jets & shps]	195	0.109 ± 0.005	0.122 ± 0.006	0.001	0.006	resum
e^+e^- [jets & shps]	201	0.110 ± 0.005	0.124 ± 0.006	0.002	0.006	resum
e ⁺ e ⁻ [jets & shps]	206	0.110 ± 0.005	0.124 ± 0.006	0.001	0.006	resum

Thrust experimental data $e^+e^- \xrightarrow{Q} jets$

LEP 2 jet event

OPAL 3 jet event

$$1 - \tau = \max_{\hat{n}} \frac{\sum_{i} |\hat{n} \cdot \vec{p}_{i}|}{Q}$$

Experimental data

	Experiment	Values of Q
LEP {	ALEPH DELPHI	{91.2, 133.0, 161.0, 172.0, 183.0, 189.0, 200.0, 206.0} {45.0, 66.0, 76.0, 89.5, 91.2, 93.0, 133.0, 161.0, 172.0, 183.0, 189.0, 192.0, 196.0, 200.0, 202.0, 205.0, 207.0}
Ĺ	OPAL L3	{91.0, 133.0, 177.0, 197.0} {41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8, 188.6, 194.4, 200.0, 206.2}
SLAC	SLD	{ 91.2 }
DESY {	TASSO JADE	{14.0, 22.0, 35.0, 44.0} {35.0, 44.0}
KEK	AMY	{55.2}

Three jet events are proportional to α_s , good sensitivity

Theoretical motivation

In fact logs dominate even for moderate τ

Theoretical motivation

In fact logs dominate even for moderate τ

Improvements on earlier work

~ 1 year ago three interesting papers appear

→

T. Gehrmann et al

NNNLO fixed order result

Weinzierl

In our work we have...

Improvements on earlier work

~ 1 year ago three interesting papers appear

Becher, Schwartz → NNNLL' perturbative analysis T. Gehrmann et al

→

NNNLO fixed order result

In our work we have...

Weinzierl

- 1. Full treatment of non-perturbative effects with field theory (systematic treatment of errors from power corrections).
- 2. Renormalon subtraction.
- 3. Simultaneous description of all three regions.
- 4. Account for factorization theorem for subleading orders.
- 5. b mass effects.
- 6. QED effects.

Improvements on earlier work

~ 1 year ago three interesting papers appear

Becher, Schwartz → NNNLL' perturbative analysis T. Gehrmann et al

NNNLO fixed order result

In our work we have...

Weinzierl

- 1. Full treatment of non-perturbative effects with field theory (systematic treatment of errors from power corrections).
- 2. Renormalon subtraction.
- 3. Simultaneous description of all three regions.
- 4. Account for factorization theorem for subleading orders.
- 5. b mass effects.
- 6. QED effects.

AimGlobal fit for all values of τ and QFit for $\alpha_s(m_z)$ and non-perturbative effects simultaneously

$$e^+e^- \xrightarrow{\gamma, Z} 2 \text{ jets} + X_{soft}$$

Particles in each hemisphere have

$$p_{+} = E + p_{n} \sim O(Q)$$
$$p_{-} = E - p_{n} \sim O(\Lambda_{QCD})$$

	SCET $\lambda \sim \sqrt{\tau}$	
	<i>n</i> -collinear (ξ_n, A_n^{μ})	$p_n^\mu\!\sim\!Q(\lambda^2,1,\lambda)$
	\bar{n} -collinear $(\xi_{\bar{n}}, A^{\mu}_{\bar{n}})$	$p^{\mu}_{ar{n}}\!\sim\!Q(1,\lambda^2,\lambda)$
Crosstalk:	soft (q_s, A_s^{μ})	$p_s^\mu\!\sim\!Q(\lambda^2,\lambda^2,\lambda^2)$

	SCET $\lambda \sim \sqrt{\tau}$	
	<i>n</i> -collinear (ξ_n, A_n^{μ})	$p_n^\mu\!\sim\!Q(\lambda^2,1,\lambda)$
	\bar{n} -collinear $(\xi_{\bar{n}}, A^{\mu}_{\bar{n}})$	$p^{\mu}_{\bar{n}}\!\sim\!Q(1,\lambda^2,\lambda)$
Crosstalk:	soft (q_s, A_s^{μ})	$p_s^\mu\!\sim\!Q(\lambda^2,\lambda^2,\lambda^2)$

$$Y_n^{\dagger}(x) = \mathbf{P} \exp\left(ig \int_0^\infty ds \, n \cdot A_s(ns+x)\right)$$
$$W_n = P \exp\left(ig \int_0^\infty ds \, \bar{n} \cdot A_n(s\bar{n})\right)$$

Soft & collinear Wilson lines

	SCET $\lambda \sim \sqrt{\tau}$	
	<i>n</i> -collinear (ξ_n, A_n^{μ})	$p_n^\mu\!\sim\!Q(\lambda^2,1,\lambda)$
	\bar{n} -collinear $(\xi_{\bar{n}}, A^{\mu}_{\bar{n}})$	$p^{\mu}_{\bar{n}}\!\sim\!Q(1,\lambda^2,\lambda)$
Crosstalk:	soft (q_s, A_s^{μ})	$p_s^\mu\!\sim\!Q(\lambda^2,\lambda^2,\lambda^2)$

$$Y_n^{\dagger}(x) = \mathbf{P} \exp\left(ig \int_0^\infty ds \, n \cdot A_s(ns+x)\right)$$
$$W_n = P \exp\left(ig \int_0^\infty ds \, \bar{n} \cdot A_n(s\bar{n})\right)$$

Soft & collinear Wilson lines

$$\begin{split} S(\ell^{+},\ell^{-},\mu) &\equiv \frac{1}{N_{c}} \sum_{X_{s}} \delta(\ell^{+}-k_{s}^{+a}) \delta(\ell^{-}-k_{s}^{-b}) \langle 0|(\overline{Y}_{\bar{n}})^{cd} (Y_{n})^{ce}(0)|X_{s}\rangle \langle X_{s}|(Y_{n}^{\dagger})^{ef} (\overline{Y}_{\bar{n}}^{\dagger})^{df}(0)|0\rangle \\ J_{n}(Qr_{n}^{+},\mu) &= \frac{-1}{8\pi N_{c}Q} \operatorname{Disc} \int d^{4}x \ e^{ir_{n} \cdot x} \left\langle 0|\mathrm{T} \ \bar{\chi}_{n,Q}(0) \hat{n}\chi_{n}(x)|0\rangle \\ H(Q,\mu_{h}) &= \left|C(Q,\mu_{h})\right|^{2} \end{split}$$

Complete basis!

$$S_{\text{model}}(\ell) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n\left(\frac{\ell}{\lambda}\right) \right]^2$$

Complete basis!
$$S_{\text{model}}(\ell) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n\left(\frac{\ell}{\lambda}\right) \right]$$

There is a u=1/2 renormalon ambiguity in S_{partonic}

$$\Delta S_{\text{partonic}}(\ell) \sim \Lambda_{\text{QCD}} \frac{d}{d\ell} S_{\text{partonic}}(\ell)$$
 Hoang & Stewart

The renormalon arises from separating perturbative and non-perturbative effects in dim-reg. Subtracting the renormalon gives stability to perturbation theory, and here achieves a positive cross section at very small tau.

 $\Delta = \delta(R, \mu) + \Delta(R, \mu)$ Renormalon-free gap shift $\delta(R, \mu) = \sum_{n} \left(\frac{\alpha}{4\pi}\right)^{n} \delta_{n}(R, \mu)$ Infrared scheme [See A. Jain's Talk]
parameter

Resummation of Logs

$$\mu_h \sim Q \qquad \qquad \mu_j \sim Q \sqrt{\tau} \qquad \qquad \mu_s \sim Q \tau$$

Resummation of Logs

Hard, jet and soft pieces

Hard coefficient: from matching

Hard, jet and soft pieces

Hard, jet and soft pieces

The 'primed' analysis enhances the matching order by one. Relevant !

Known up to $O(\alpha_s^2)$ NNLO

Hard coefficient

Anomalous dimension known up to $O(\alpha_s^3)$ Cusp anomalous dimension known up to $O(\alpha_s^3)$ Moch, Vermaresen & Vogt NNLL

Adding the $O(\alpha_s^4)$ cusp with a Padé approximation \longrightarrow NNNLL' analysis

Power corrections

$$\frac{\Lambda_{QCD}}{\mu_s} \approx \frac{\Lambda_{QCD}}{Q\tau}$$
$$\frac{\mu_s^2}{\mu_J^2} \approx \tau$$

 $\frac{d\sigma_{\text{nonsingular}}}{d\tau} \otimes S_{T}^{\text{model}}$

 $H J_T \otimes S_T^{pert} \otimes S_T^{model}$

 $\frac{\Delta_{QCD}}{\mu_h} \approx \frac{\Lambda_{QCD}}{Q}$

Requires SCET subleading calculation Same effect for all tau Numerically irrelevant

The relative importance is region-dependent.

Power corrections

$$\frac{\Lambda_{QCD}}{\mu_s} \approx \frac{\Lambda_{QCD}}{Q\tau}$$
$$\frac{\mu_s^2}{\mu_J^2} \approx \tau$$

It is the same model function!

- In the peak region one cannot expand
- Tail and far tail: expansion causes shift

Requires SCET subleading calculation Same effect for all tau Numerically irrelevant

The relative importance is region-dependent.

Power corrections

$$\frac{\Lambda_{QCD}}{\mu_s} \approx \frac{\Lambda_{QCL}}{Q\tau}$$
$$\frac{\mu_s^2}{\mu_J^2} \approx \tau$$

It is the same model function!

- In the peak region one cannot expand
- Tail and far tail: expansion causes shift

Requires SCET subleading calculation Same effect for all tau Numerically irrelevant

The relative importance is region-dependent.

Theoretical
$$\frac{\delta \alpha_s}{\alpha_s} \sim \frac{\Lambda_{QCD}}{Q} \sim 0.5\%$$

uncertainty α_s

Concerning renormalons and gap subtraction, we treat the non-singular in the same way as the singular, to ensure complete cancellation in the far tail and it is consistent with the subleading factorization theorem. We convolute it with the same Soft function model.

Subleading perturbative contributions

In the far tail region, fixed order perturbation theory is the optimal description. We no longer have three scales, resummation messes up cancellation.

Subleading perturbative contributions

In the far tail region, fixed order perturbation theory is the optimal description. We no longer have three scales, resummation messes up cancellation.

Use of factorization theorems at subleading order derived with SCET.

We define the non-singular terms as the full QCD fix order result with the expanded SCET subtracted.

How do we determine non-singular?

How do we determine non-singular?

Non-perturbative contributions Hoang & Stewart

$$S(\ell, \mu) = \int d\ell' S_{\text{part}} (\ell - \ell' - 2\delta, \mu) S_{\text{model}} (\ell' - 2\overline{\Delta})$$

Gives the right Parametrizes the nonanomalous dimension perturbative effects

Non-perturbative contributions Hoang & Stewart

$$S(\ell,\mu) = \int d\ell' S_{\text{part}} (\ell - \ell' - 2\delta,\mu) S_{\text{model}} (\ell' - 2\overline{\Delta})$$

Gives the right Parametrizes the nonanomalous dimension perturbative effects

Ligeti, *Stewart* & *Tackmann*
$$S_{\text{model}}(\ell) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n \left(\frac{\ell}{\lambda} \right) \right]^2$$
 [See talk by F. Tackmann]

Non-perturbative contributions Hoang & Stewart

 $\overline{\Delta}(R,\mu)$ must be evolved to avoid large logs. We evolve from $\overline{\Delta}(R_0,\mu_0) \equiv \Delta_0$ to $\overline{\Delta}(R,\mu)$ to sum them up.

[See A. Jain's Talk]

R is a scheme parameter Δ_0 is a model parameter

Treatment of non-perturbative effects

Most LEP analyses used montecarlo generators to estimate NP corrections

Treatment of non-perturbative effects

Most LEP analyses used montecarlo generators to estimate NP corrections

Davison & Webber's Model: freezes α below some scale μ_I

$$\Delta \tau \sim \alpha_{\rm eff} \, \frac{\mu_I}{Q} \sim \frac{\Lambda_{QCD}}{Q}$$

Definite pattern in Q

Treatment of non-perturbative effects

Most LEP analyses used montecarlo generators to estimate NP corrections

Davison & Webber's Model: freezes α below some scale μ_I

Predictible from QCD/SCET factorization !

$$\Delta \tau \sim \alpha_{\rm eff} \, \frac{\mu_I}{Q} \sim \frac{\Lambda_{QCD}}{Q}$$

Definite pattern in Q

In the tail region $\ell_{\text{soft}} \sim Q \tau \gg \Lambda_{QCD}$ and we can expand the soft function

$$S(\tau) = S_{\text{pert}}(\tau) - S'_{\text{pert}}(\tau) \frac{2\Omega_1}{Q} \approx S_{\text{pert}} \left(\tau - \frac{2\Omega_1}{Q} \right) \qquad \Omega_1 \sim \Lambda_{QCD} \qquad \text{Is a non-perturbative parameter}$$
$$\Omega_1 \text{ is defined in field theory}$$
$$\text{Lee \& Sterman} \qquad \text{Shifts distributions to the right !}$$

Treating all regions together

The renormalon subtraction introduces a scheme parameter $R(\tau)$.

The gap function $\overline{\Delta}$ has both ultraviolet (µ) and infrared (R) running.

We must turn off the resummation in the multijet region

Treating all regions together

The renormalon subtraction introduces a scheme parameter $R(\tau)$.

The gap function $\overline{\Delta}$ has both ultraviolet (µ) and infrared (R) running.

We must turn off the resummation in the multijet region

Let us μ_J , μ_s and R depend on τ

Treating all regions together

The renormalon subtraction introduces a scheme parameter $R(\tau)$.

The gap function $\overline{\Delta}$ has both ultraviolet (µ) and infrared (R) running.

We must turn off the resummation in the multijet region

So all scales merge to the hard scale for the multijet region, and the transition occurs smoothly.

Still there is room for estimating the perturbative uncertainties by varying these profile functions within the constraints.

Mass corrections

Now the electroweak effects tell apart the up- and down-type quarks

Hard, soft and running kernels unchanged.

Use MS running mass at the jet scale.

Shifts thresold to $\frac{2m^2}{Q^2} \longrightarrow 1 - \sqrt{1 - \frac{4m^2}{Q^2}}$

Fleming , Hoang, Mantry & Stewart

Our theoretical uncertainty for a massless production is at the 1% level

Mass corrections

Now the electroweak effects tell apart the up- and down-type quarks

Hard, soft and running kernels unchanged.

Use MS running mass at the jet scale.

Shifts thresold to $\frac{2m^2}{Q^2} \longrightarrow 1 - \sqrt{1 - \frac{4m^2}{Q^2}}$

Fleming , Hoang, Mantry & Stewart

Our theoretical uncertainty for a massless production is at the 1% level

$$J_T(p,\mu) \to J_T(p,m,\mu) = \begin{cases} J_{\text{distribution}}(p,m,\mu) \to \text{Fourier transform} \\ J_{\text{function}}(p,m,\mu) \to \text{Treat in momentum space} \end{cases}$$

Non-singular piece analytically known [AFHMS]

The one-loop mass corrections are about a 2% effect

One-loop level suffices

Important for bottom

Small for charm

Theoretical distribution = $\frac{\sqrt{q}}{\sqrt{q}}$

QED corrections [AFHMS]

Affect all matrix elements: Hard, Jet and Soft

 $\alpha_s(\mu)$ and $\alpha(\mu)$ have coupled evolution equations. One can solve them perturbatively.

The non-singular term is trivially obtained

All running kernels are affected. There are interesting QED – QCD mixing effects !

Different for up and down quarks! Need to take into account electroweak factors.

One can consider $\alpha \leq O(\alpha_s^2)$

No renormalon subtractions for QED

QED corrections [AFHMS]

Affect all matrix elements: Hard, Jet and Soft

 $\alpha_s(\mu)$ and $\alpha(\mu)$ have coupled evolution equations. One can solve them perturbatively.

The non-singular term is trivially obtained

All running kernels are affected. There are interesting QED – QCD mixing effects !

Stick to NLO in Matrix elements and NNLL for the running.

They have a small effect on $\alpha_s(m_z)$

They shift Ω_1

Different for up and down quarks! Need to take into account electroweak factors.

One can consider $\alpha \leq O(\alpha_s^2)$

No renormalon subtractions for QED

Do not need to worry about initial state radiation, since these effects are minimized in the normalization procedure.

Effects of various pieces

In the tail $[\tau, 0.14, 0.33]$ only the shift matters. So we fit for $\Omega_1 \& \alpha(M_Z)$ simultaneously

Estimate of theory uncertainties

- Four-loop anomalous cusp coefficient (small)
- Three-loop unknown non-logarithmic terms (subdominamt)
- Non-singular fit functions errors (small)
- Non-singular renormalization scale & profile functions (dominant)
- Treatment of mass effects (negligible)
- Basis function (small effect in tail)

Final error here is work in progress

Estimate of theory uncertainties

- Four-loop anomalous cusp coefficient (small)
- Three-loop unknown non-logarithmic terms (subdominamt)
- Non-singular fit functions errors (small)
- Non-singular renormalization scale & profile functions (dominant)
- Treatment of mass effects (negligible)
- Basis function (small effect in tail)

Final error here is work in progress

In the tail $[\tau, 0.14, 0.33]$ only the shift matters. So we fit for $\Omega_1 \& \alpha(M_Z)$ simultaneously

We use LEP working groups correlation model for systematic errors

In the tail $[\tau, 0.14, 0.33]$ only the shift matters. So we fit for $\Omega_1 \& \alpha(M_Z)$ simultaneously

In the tail $[\tau, 0.14, 0.33]$ only the shift matters. So we fit for $\Omega_1 \& \alpha(M_Z)$ simultaneously

Tail Fit & first Moment Fit Results

Comparison with other α³ analyses

Data: Aleph & Opal

Becher & Schwartz <

Resummation: In the amplitude (EFT RG Equations)

No non-perturbative effects in central value

Result $\alpha(M_z) = 0.1172 \pm 0.0021$

Comparison with other α³ **analyses**

Becher & Schwartz ≺	Data: Aleph & Opal			
	Resummation: In the amplitude (EFT RG Equations)			
	No non-perturbative effects in central value			
	Result $\alpha(M_z) = 0.1172 \pm 0.0021$			
Davison & Webber ≺	Data: Many Q´s			
	Resummation: In the distribution [NLL+O(α^3)]			
	Non-perturbative effects in a model (large logs in subtraction)			
	Result $\alpha(M_z) = 0.1164 \pm 0.0040$			

Comparison with other α³ analyses

our number

Becher & Schwartz -	Data: Aleph & Opal	$\alpha_s(M_Z) = 0.1136 \pm 0.0010 \pm 0.0011$		
	Resummation: In the amplitude (EFT RG Equations)			
	No non-perturbative effects in central value			
	Result $\alpha(M_z) = 0.1172 \pm 0.0021$			
	Ó Data: Many Q´s			
Deviser 8 Webber	Resummation: In the distribution [NLL+O(α^3)]			
	Non-perturbative effects in a model (large logs in subtraction)			
	Result $\alpha(M_z) = 0.1164 \pm 0.0040$			
Dissertori,	Data: Aleph			
Gehrmann-De Ridder	Resummation: fixed order			
Gehrmann, Glover	hrmann, Glover Non-perturbative effects treatment: Montecarlo ge			
& Heinrich	Result $\alpha(M_z) = 0.1240 \pm 0.0029$			

Conclusions

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets.
- SCET has finally provided theorists with a mean to catch up to the experimental precision of LEP. $\alpha_{c}(M_{z}) = 0.1136 \pm 0.0010 \pm 0.0011$
- Global fit of all data with all Q's and all τ 's.
- Field theoretical treatment of non-perturbative effects (unlike Montecarlos).
- Similar computations can be carried out for other event shapes.

Conclusions

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets.
- SCET has finally provided theorists with a mean to catch up to the experimental precision of LEP. $\alpha_s(M_z) = 0.1136 \pm 0.0010 \pm 0.0011$
- Global fit of all data with all Q's and all τ 's.
- Field theoretical treatment of non-perturbative effects (unlike Montecarlos).
- Similar computations can be carried out for other event shapes.

Outlook

- Perform a fit to all regions (including peak and far tail).
- Soft function determination (useful for bottom and top production).
- ILC ...

Conclusions

- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets.
- SCET has finally provided theorists with a mean to catch up to the experimental precision of LEP. $\alpha_s(M_z) = 0.1136 \pm 0.0010 \pm 0.0011$
- Global fit of all data with all Q's and all τ 's.
- Field theoretical treatment of non-perturbative effects (unlike Montecarlos).
- Similar computations can be carried out for other event shapes.

Outlook

- Perform a fit to all regions (including peak and far tail).
- Soft function determination (useful for bottom and top production).
- ILC ...

The future for high precision determinations of the strong coupling constant looks good!

Thanks for your attention !