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• The MSSM contains two Higgs doublets: Hu, Hd

Tree-level structure: 2-Higgs-Doublet model of type II

• Both doublets acquire vacuum expectation values: vu , vd .

v2
u + v2

d ≡ v2 =
2m2

w

g2 , tan β ≡
vu

vd

• interesting case for Yukawa unification: yb ≈ yt

−→ tan β =
vu

vd
∼ O

(
mt

mb

)
∼ O(60)

• Large tan β ⇔ small vd
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tan β-enhancement

• consider tree-level amplitude with suppression by vd

• one-loop correction possibly contains vu instead
[Hall,Rattazzi,Sarid; Blazek,Pokorski,Raby]

• well-known example:

bL bR bL bR

vd vu

mb ∝ vd , δmb ∝ loop · vu

δmb

mb
∼ loop · tan β ∼ O(1)

• How can we deal with such O(1) corrections?
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Resummation of tan β-enhanced corrections

1. Effective Lagrangian in the decoupling limit
[Hall,Rattazzi,Sarid; Hamzaoui,Pospelov,Toharia; Babu,Kolda;

Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis;
Beneke,Ruiz-Femenia,Spinrath; Gorbahn,Jäger,UN,Trine]

• assume MSUSY ≫ MEW and integrate out SUSY fields, keep
only Higgs and SM fields, e.g.

bL bR bL bRg̃

b̃L b̃R

vu vu
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Resummation of tan β-enhanced corrections

1. Effective Lagrangian in the decoupling limit
[Hall,Rattazzi,Sarid; Hamzaoui,Pospelov,Toharia; Babu,Kolda;

Buras,Chankowski,Rosiek,Slawianowska; Dedes,Pilaftsis;
Beneke,Ruiz-Femenia,Spinrath; Gorbahn,Jäger,UN,Trine]

• assume MSUSY ≫ MEW and integrate out SUSY fields, keep
only Higgs and SM fields, e.g.

bL bR bL bRg̃

b̃L b̃R

vu vu

2. Calculation in the full MSSM beyond decoupling (this work)
• renormalization of bottom mass via self-energies like

bL bR

g̃

b̃i

∝ tan β ⇒ yb =
mb

ˆ

1 − ∆b + ∆2
b − . . .

˜

v cos β
=

mb

v cos β

1

1 + ∆b

• resummation of Σb = mb∆b = mbǫb tan β to all orders.
[Carena,Garcia,UN,Wagner]
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Why go beyond decoupling limit?

• MSUSY ∼ MEW is natural

• validity of the assumption MSUSY ≫ MEW unclear, test
accuracy

• study tan β-enhanced effects in couplings of SUSY
particles
(impossible in decoupling limit)
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Three applications

Beyond the decoupling limit:

a) definition of the sbottom mixing angle,

b) generalization to the flavour non-diagonal case,

c) new effects in decoupling FCNC processes.
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a) definition of the sbottom mixing angle

Bottom-squark mass matrix: M2
b̃

=

(
m2

b̃L
−y∗

bµvu

−ybµ∗vu m2
b̃R

)

Diagonalise as
R̃bM2

b̃
R̃b† = diag(m2

b̃1
, m2

b̃2
)

with

R̃b =

(
cos θ̃b sin θ̃beiφ̃b

− sin θ̃be−iφ̃b cos θ̃b

)



Introduction: large tan β Three applications Conclusions

a) definition of the sbottom mixing angle

Bottom-squark mass matrix: M2
b̃

=

(
m2

b̃L
−y∗

bµvu

−ybµ∗vu m2
b̃R

)

Diagonalise as
R̃bM2

b̃
R̃b† = diag(m2

b̃1
, m2

b̃2
)

with

R̃b =

(
cos θ̃b sin θ̃beiφ̃b

− sin θ̃be−iφ̃b cos θ̃b

)

Note:

• θ̃b vanishes for vu/MSUSY → 0 .



Introduction: large tan β Three applications Conclusions

a) definition of the sbottom mixing angle

Bottom-squark mass matrix: M2
b̃

=

(
m2

b̃L
−y∗

bµvu

−ybµ∗vu m2
b̃R

)

Diagonalise as
R̃bM2

b̃
R̃b† = diag(m2

b̃1
, m2

b̃2
)

with

R̃b =

(
cos θ̃b sin θ̃beiφ̃b

− sin θ̃be−iφ̃b cos θ̃b

)

Note:

• θ̃b vanishes for vu/MSUSY → 0 .

• θ̃b depends on yb and is affected by the resummation.
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yb depends on θ̃b and the physical squark masses mb̃1
, mb̃2

through ∆b .
θ̃b , mb̃1

and mb̃2
depend on yb through M2

b̃,12
= −y∗

bµvu

Relations like

sin 2θ̃b =

∣∣∣∣∣
−2ybµvu

m2
b̃1

− m2
b̃2

∣∣∣∣∣

can be used to trade θ̃b for µ . . .

[Carena,Garcia,UN,Wagner]

. . . but in collider physics it is natural to use θ̃b .
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The resummation depends on the choice of input parameters.
Write ∆b = ∆

g̃
b + ∆χ̃±

b + ∆χ̃0

b :

i) Express ∆b in terms of µ,tan β, mb̃1
, mb̃2

(simplest formula):

yb =
mb

vd (1 + ∆
g̃
b + ∆χ̃±

b + ∆χ̃0

b )
≡

mb

vd (1 + ǫb tan β)
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The resummation depends on the choice of input parameters.
Write ∆b = ∆

g̃
b + ∆χ̃±

b + ∆χ̃0

b :

i) Express ∆b in terms of µ,tan β, mb̃1
, mb̃2

(simplest formula):

yb =
mb

vd (1 + ∆
g̃
b + ∆χ̃±

b + ∆χ̃0

b )
≡

mb

vd (1 + ǫb tan β)

ii) Express ∆b in terms of θb̃, ϕb̃, mb̃1
, mb̃2

(as in diagrams):

yb =
mb(1 − ∆

g̃
b)

vd (1 + ∆χ̃±

b + ∆χ̃0

b )

iii) Express ∆b in terms of µ,tan β, mb̃L
, mb̃R

:
analytic resummation impossible, instead use formula i)
iteratively
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b) Resummation of flavour non-diagonal self-energies

Consider FCNC loops only with charginos (naive MFV).
New feature: Flavour-changing self-energies in external legs:

sL bR bL
ΣRL

bs

bL bR sL
ΣRL∗

bs

New feature: ΣRL
bs ∝ mb tan β and the diagram involves

ΣRL
bs

mb
∝ tan β

If one chooses to introduce flavour-changing wave-function
renormalisation constants δZ L,R

bs , they will contain these
tan β -enhanced effects.
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ũ, c̃, t̃

= mb
ǫFC tan β

1 + ǫb tan β
V ∗

tbVti (i=d,s)
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• how can we account for the flavour non-diagonal analogon:

dL, sL bR

χ̃±

ũ, c̃, t̃

= mb
ǫFC tan β

1 + ǫb tan β
V ∗

tbVti (i=d,s)

• solution: absorb self-energies in matrix-valued field
renormalization




dL

sL

bL




bare

=

(
1 +

δZ L

2

)


dL

sL

bL




and likewise for right-handed fields
[similar approach by Buras,Chankowski,Rosiek,Slawianowska]
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Results: b) Resummation of flavour non-diagonal self-energies

• (ǫFC tan β)n effects can be resummed to all orders. Yields

δZ L
bi

2
= −

ǫFC tan β

1 + (ǫb − ǫFC) tan β
V ∗

tbVti

δZ R
bi

2
= −

mi

mb

[
ǫFC tan β

1 + (ǫb − ǫFC) tan β

+
(1 + ǫb tan β) ǫ∗FC tan β

(1 + ǫ∗i tan β)(1 + (ǫb − ǫFC) tan β)

]
V ∗

tbVti
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Results: b) Resummation of flavour non-diagonal self-energies

• (ǫFC tan β)n effects can be resummed to all orders. Yields

δZ L
bi

2
= −

ǫFC tan β

1 + (ǫb − ǫFC) tan β
V ∗

tbVti

δZ R
bi

2
= −

mi

mb

[
ǫFC tan β

1 + (ǫb − ǫFC) tan β

+
(1 + ǫb tan β) ǫ∗FC tan β

(1 + ǫ∗i tan β)(1 + (ǫb − ǫFC) tan β)

]
V ∗

tbVti

• this results in corrections to the CKM matrix
[Denner,Sack; Gambino,Grassi,Madricardo]

V bare =




Vud Vus K ∗Vub

Vcd Vcs K ∗Vcb

KVtd KVts Vtb


 , K =

1 + ǫb tan β

1 + (ǫb − ǫFC) tan β

(same form as for MSUSY = ∞ , but different ǫb, ǫFC )
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Results: c) New effects in FCNC processes

• δZ L
ij and δZ R

ij yield counterterm Feynman rules for
(s)quark vertices
−→ inclusion of tan β-enhanced corrections to all orders

• some of them are FCNCs known in the decoupling limit:
[Hamzaoui,Pospelov,Toharia; Babu,Kolda;...]

H0, A0
di

dj

here generalized to MSUSY ∼ MEW

• others are new FCNC:

g̃, χ̃0di

d̃j
A “flavour problem” in a flavour-blind MSSM?

• No, because: δZ L
bi ∝ V ∗

tbVtiǫFC tan β
⇒ CKM structure of MFV preserved

Estimate: ǫFC tan β → −
y2

t
32π2 tan β for equal SUSY masses
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Asess the flavour-changing gluino-squark loops entering
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eff :
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Asess the flavour-changing gluino-squark loops entering
the Wilson coefficients in H∆B=1

eff :

negligible effects on coefficients of four-quark operators
and C7 , but important for chromomagnetic coefficient C8 :
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Results: c) New effects in FCNC processes

g̃, χ̃0di

d̃j

Asess the flavour-changing gluino-squark loops entering
the Wilson coefficients in H∆B=1

eff :

negligible effects on coefficients of four-quark operators
and C7 , but important for chromomagnetic coefficient C8 :

200-400 400-600 600-800 800-1000
Μ HGeVL

0.16 0.18 0.20 0.22 0.24 0.26
È C8

new
È

0.15

0.16

0.17

0.18

0.19

0.20

È C8
old
È

-0.5 0.5
argHC8

new
L-Π

-0.6

-0.4

-0.2

0.2

0.4

argHC8
old
L-Π
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Results: c) New effects in FCNC processes

• Mixing-induced CP asymmetry in B0 → φKS in naive
factorization, including tan β -enhanced corrections to C8 :

400 600 800 1000 1200
È AtÈ HGeVL

0.2

0.3

0.4

0.5

0.6

0.7

SΦKS

SM + chargino + gluino

SM + chargino

SM

Here a rather large value µ = 800 GeV is used,
compatible with B(B̄ → Xsγ) .
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Conclusions

• Effects of tan β-enhanced (flavour-diagonal and
flavour-non-diagonal) self-energies can be resummed in
the full MSSM for MSUSY ∼ MEW .

• The resummation formula for the Yukawa coupling
depends on the renormalization (input) scheme.

• At large tan β not only the neutral Higgs bosons but also
gluino and neutralino have flavour-changing couplings.

• These couplings enter H∆B=1
eff and lead to a sizeable

modification of C8(mb) .
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Backup: Scheme dependence in mb-resummation

• observation: sbottom-mixing can (but need not) be
expressed by mb and SUSY-breaking parameters
→ some freedom to choose input parameters...

bL bR

g̃

b̃i

bL bR

χ̃±
m

ũi , c̃i , t̃i

bL bR

χ̃0
m

b̃i
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Backup: Scheme dependence in mb-resummation

• observation: sbottom-mixing can (but need not) be
expressed by mb and SUSY-breaking parameters
→ some freedom to choose input parameters...

bL bR

g̃

b̃i

bL bR

χ̃±
m

ũi , c̃i , t̃i

bL bR

χ̃0
m

b̃i

• to clarify things, write ∆b = ∆
g̃
b + ∆χ̃±

b + ∆χ̃0

b
• from Feynman diagrams:

• gluino contribution depends on θb̃, ϕb̃, mb̃1
, mb̃2

• chargino contribution depends on mb from Yukawa coupling
• neutralino contribution depends on mb and θb̃, ϕb̃, mb̃1

, mb̃2
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Backup: parameter points

Scan ranges for C7 and C8: tan β = 40 − 60, any value for ϕAt ,

min (GeV) max (GeV)
m̃QL

, m̃uR , m̃dR
250 1000

|At | 100 1000
µ, M1, M2 200 1000

M3 300 1000
mA0 200 1000

Parameter point used for SφKS
:

m̃QL
, m̃uR , m̃dR

600 GeV tan β 50
µ 800 GeV mA0 350 GeV

M1 300 GeV M2 400 GeV
M3 500 GeV ϕAt 3π/2
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Backup: C7 and other operators

• effect of gluino-squark contribution in C7(mb) accidentally small
(suppressed by a numerical factor from loop function)

200-400 400-600 600-800 800-1000
Μ HGeVL

0.30 0.32 0.34 0.36
È C7

new
È

0.30

0.32

0.34

0.36

È C7
old
È

-0.4 -0.2 0.2 0.4
argHC7

new
L-Π

-0.4

-0.2

0.2

0.4

argHC7
old
L-Π
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Backup: C7 and other operators

• effect of gluino-squark contribution in C7(mb) accidentally small
(suppressed by a numerical factor from loop function)

200-400 400-600 600-800 800-1000
Μ HGeVL

0.30 0.32 0.34 0.36
È C7

new
È

0.30

0.32

0.34

0.36

È C7
old
È

-0.4 -0.2 0.2 0.4
argHC7

new
L-Π

-0.4

-0.2

0.2

0.4

argHC7
old
L-Π

• effective four-quark operators in H∆B=1 and H∆B=2: gluino-squark
loops suppressed by GIM-like cancellation between b̃- and
s̃-loops → negligible compared to chargino-squark loops
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Backup: Non-local tan β-enhanced effects

• some couplings of H+ and h0 are suppressed by cos β at
tree-level

• they obtain enhanced vertex corrections ∼ sin β, e.g.

H+

tR sL

∼ cosβ

+

H+

sLtR

∼ sin β

g̃

s̃t̃

• this effect is local only in the decoupling limit, but cannot be
cast into a Feynman rule in the full calculation
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Backup: relation to effective CKM matrix from BCRS

• Buras, Chankowski, Rosiek, Slawianowska find for the effective
CKM matrix:

V eff
ji = (V + ∆U†

L V + V ∆DL)ji

• They start with V = V eff to calculate ∆DL , set ∆UL = 0 and
proceed iteratively

• They find that the result agrees numerically with the formula from
eff. Lagrangian if ǫ-factors are replaced by full self-energies

• We prove this analytically via the resummation (iteration not
needed!)
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