Combining NLO Calculations with Parton

Showers

Ringberg Workshop on New Physics, Flavor and Jets 04/30/09

Christian Bauer LBNL and UCB

In collaboration with
Jesse Thaler and Frank Tackmann

Measurements @ LHC

Goal of LHC is to determine the mechanism of EW symmetry breaking

Main question, is the SM sufficient, or do we need physics beyond the standard model (BSM)

By definition BSM is difference between true distributions in nature and SM predictions

$$
\sigma_{B S M}=\sigma_{\text {true }}-\sigma_{S M}
$$

Measurements @ LHC

Problem:

Measured distributions are convolutions of true distributions with detector effects

$$
\sigma_{\text {meas }}=\text { d } \sigma_{\text {true }} \otimes \text { detector }
$$

For a meaningful comparison between $\sigma_{\text {meas }}$ and SM predictions, need to be able to calculate

$$
\sigma_{\text {pred }}=\text { do }_{S M} \otimes \text { detector }
$$

Why parton showers?

Detector effects depend on details of the fully hadronic events (π^{+}vs π^{0}, details of jets)

Need do $_{\text {SM }}$ including full hadronization effects
Only known way to generate exclusive distributions is using parton shower Monte Carlos (Pythia/Herwig)

$$
d \sigma_{S M}=(\text { Pert }) \otimes \text { Pythia/Herwig }
$$

In order to use LHC data...

For the perturbative part, NLO calculations are the state of the art and should be viewed as mandatory

- Several processes only available at NLO
- Scale dependence only under control starting at NLO
- NLO calculations required to get to $O(10 \%)$ uncertainty

Combine NLO calculations with parton showers

Outline

- Jet Observables and Monte Carlo
- The Parton Shower Algorithm
- Generics of combining with fixed order calculations
- LO Accuracy
- NLO Accuracy
- Some details of our calculation
- Conclusions

Jet observables and Monte Carlo

Jet cross sections

Defined with help of jet algorithm

k particles
in detector
Algorithm
$J\left(\Phi_{k}, \Phi_{n}\right)$
n jets
observed

Jet cross sections

Defined with help of jet algorithm

k particles
in detector

Algorithm
n jets
observed

If jet algorithm is infrared safe, can calculate perturbatively

Jet cross sections

Problem 1:

- Each term in sum separately divergent (cancels in sum)
- In general can only do this calculation numerically by integrating over each term in sum separately

How do we deal with the IR divergences numerically?

$$
\frac{\mathrm{d} \sigma_{n}^{\text {jet }}}{\mathrm{d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\text {parton }}}{\mathrm{d} \Phi_{i}^{\prime}} J\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Jet cross sections

Problem 2:

- Partonic calculations calculated in fixed order PT
- Presence of large ratios in phase space variables gives large logarithmic terms that destroy convergence of PT

How do we sum large logs for all i?

Jet cross sections

Problem 3:

- Partonic calculations can only be obtained for small i
- The jet algorithm depends in general on phase space cuts and efficiencies which requires fully exclusive events

How to get expression for large i?

Jet cross sections

Problem 4:

- Partonic calculations only give partons in final state
- Efficiencies and experimental cuts can depend on the type of hadronic final state, as well as other NP effects

How to get fully hadronized events?

Summary of the 4 problems

1. How do we implement KLN cancellation numerically?
2.How do we get expressions that resum leading logarithms?
3.How do we get expressions for large number of particles?
4.How do we get fully hadronized events?

Solution to the problems

Define "Monte Carlo cross sections"

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\text {parton }}}{\mathrm{d} \Phi_{i}^{\prime}} J_{\mathrm{MC}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

And define a jet cross section calculated from these

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{jet}, \mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{i}^{\prime}} J_{\overline{\mathrm{MC}}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Solution to the problems

Define "Monte Carlo cross sections"

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\text {parton }}}{\mathrm{d} \Phi_{i}^{\prime}} J_{\mathrm{MC}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

And define a jet cross section calculated from these

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{jet}, \mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{i}^{\prime}} J_{\overline{\mathrm{MC}}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Need to define $\mathrm{do}_{\mathrm{i}}^{\mathrm{MC}}$ such that gives measured jet cross section and solves all 4 problems

Deal with Problem 1

Divide phase space in singular and non-singular regions

Deal with Problem 1

Divide phase space in singular and non-singular regions

$J\left(\Phi_{i}^{\prime}, \Phi_{n}\right)=J\left(\Phi_{i}^{\prime}, \Phi_{n}\right) \Theta\left(\Phi_{i}^{\prime}=\right.$ sing $)+J\left(\Phi_{i}, \Phi_{n}\right) \Theta\left(\Phi_{i=n o n-s i n g}^{\prime}\right)$

Deal with Problem 1

Divide phase space in singular and non-singular regions

$J\left(\Phi_{i}^{\prime}, \Phi_{n}\right)=J\left(\Phi_{i}^{\prime}, \Phi_{n}\right) \Theta\left(\Phi_{i}^{\prime}=\right.$ sing $)+J\left(\Phi_{i}, \Phi_{n}\right) \Theta\left(\Phi_{i=n o n-s i n g}^{\prime}\right)$

$$
J_{M C}\left(\Phi^{\prime}{ }_{i}, \Phi_{n}\right)
$$

Deal with Problem 1

Divide phase space in singular and non-singular regions

$$
\begin{gathered}
J\left(\Phi_{i}^{\prime}, \Phi_{n}\right)=J\left(\Phi_{i}^{\prime}, \Phi_{n}\right) \Theta\left(\Phi_{i}^{\prime}=\operatorname{sing}\right)+J\left(\Phi_{i}, \Phi_{n}\right) \Theta\left(\Phi_{i}^{\prime}=\text { non-sing }\right) \\
J_{M C}\left(\Phi_{i}^{\prime}, \Phi_{n}\right) \quad J_{\overline{M C}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
\end{gathered}
$$

Deal with Problem 1

Divide phase space in singular and non-singular regions

$J\left(\Phi^{\prime}, \Phi_{n}\right)=J\left(\phi_{i}^{\prime}, \Phi_{n}\right) \Theta\left(\Phi_{i}^{\prime}=\right.$ sing $)+J\left(\phi_{i}, \phi_{n}\right) \Theta\left(\phi_{i=\text { non }}^{\prime}\right.$ sing $)$

$$
\mathrm{J}_{M C}\left(\Phi_{\mathrm{i}}^{\prime}, \Phi_{\mathrm{n}}\right) \quad \mathrm{J}_{\overline{M C}}\left(\Phi_{\mathrm{i}}^{\prime}, \Phi_{\mathrm{n}}\right)
$$

Define "Monte Carlo cross sections"

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\text {parton }}}{\mathrm{d} \Phi_{i}^{\prime}} J_{\mathrm{MC}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Deal with Problem 1

Divide phase space in singular and non-singular regions

$$
J\left(\phi_{i}^{\prime}, \Phi_{n}\right)=J\left(\phi_{i}^{\prime}, \phi_{n}\right) \Theta\left(\phi_{i}^{\prime}=\operatorname{sing}\right)+J\left(\phi_{i}, \phi_{n}\right) \Theta\left(\phi_{i}^{\prime}=\text { non-sing }\right)
$$

$$
J_{M C}\left(\Phi_{i}^{\prime}, \Phi_{n}\right) \quad J_{\overline{M C}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Define "Monte Carlo cross sections"

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{n}}=\sum_{i \geq n} \int \mathrm{~d} \Phi_{i}^{\prime} \frac{\mathrm{d} \sigma_{i}^{\text {parton }}}{\mathrm{d} \Phi_{i}^{\prime}} J_{\mathrm{MC}}\left(\Phi_{i}^{\prime}, \Phi_{n}\right)
$$

Since integrate over singular phase space, KLN cancellation guaranteed

Deal with Problem 2

Calculate leading logarithms to $\mathrm{do}_{n} \mathrm{MC}$ to all orders in perturbation theory

Main idea is to use ideas of Sudakov factors and nobranching probabilities to construct $\mathrm{d} \mathrm{\sigma}_{n} \mathrm{MC}$

Straightforward task to obtain LL resummed result, and combination of NLO and LL can be obtained my matching

Deal with Problems 3-4

Parton shower atgorithms generate phase space recursively $\left(\Phi_{2} \rightarrow \Phi_{3} \rightarrow \Phi_{4} \rightarrow \ldots\right)$

- Each step in recursion simple \Rightarrow generate arbitrarily complicated final states
- Simple known ways to implement with models of hadronization
- Gets the collinear and soft limit correct
- Does not change total cross sections

Deal with Problems 3-4

Parton shower algorithms generate phase space recursively $\left(\Phi_{2} \rightarrow \Phi_{3} \rightarrow \Phi_{4} \rightarrow \ldots\right)$

- Each step in recursion simple \Rightarrow generate arbitrarily complicated final states
- Simple known ways to implement with models of hadronization
- Gets the collinear and soft limit correct
- Does not change total cross sections

> If $\mathrm{d} \mathrm{\sigma}_{\mathrm{n}} \mathrm{MC}$ is merged with parton shower, solve all 4 Problems

Combining fixed order

 calculations with Parton
showers

Pictoral phase space

Pictoral phase space

Con+1

$d \Phi_{n+2}$

Pictoral phase space

Pictoral phase space

The parton shower

$d \Phi_{n+2}$

The parton shower

Hadronization

The parton shower

Hadronization

The parton shower

Hadronization

The parton shower

$d \Phi_{n+2} \quad B_{n} \cdot P^{2}$
Hadronization

The parton shower

- Starts from known B_{n}
- Adds extra emissions via simple algorithm

- Is probabilistic (always sums to the answer started from)
- Simple way to attach hadronization at thad

The parton shower

- Starts from known B_{n}
- Adds extra emissions via simple algorithm

- Is probabilistic (always sums to the answer started from)
- Simple way to attach hadronization at thad

Solves Problems 3-4 as advertised

Hadronization

Combining with LO

How do we correct higher dim phase space to LO results?

Double up phase space

$d \Phi_{n} \quad B_{n} \quad \begin{gathered}\text { How do we correct higher } \operatorname{dim} \\ \text { phase space to LO results? }\end{gathered}$

Double up phase space

Double up phase space

 How do we correct higher dim phase space to LO results?

Double up phase space

Separate phase space

$\mathrm{d} \Phi_{n+1}$| | | |
| :--- | :--- | :--- |
| | | |
| | $B_{n} \cdot \Delta_{n}\left(\mu_{n}\right) P S\left(\mu_{n}\right)$ | |
| | | |

Separate phase space

$d \Phi_{n} \quad B_{n} \cdot \Delta_{n}\left(\mu_{n}\right) \quad$| Add new samples to fill the |
| :--- |
| empty regions with fixed |
| order calculations |

Separate phase space

Separate phase space

$d \Phi_{n}$	$\mathrm{B}_{n} \cdot \Delta_{n}\left(\mu_{n}\right)$	Add new sam empty region order calcula
$d \Phi_{n+1}$		$B_{n+1} \cdot \Delta_{n+1}\left(\mu_{n+1}\right)$
	$B_{n} \cdot \Delta_{n}\left(\mu_{n}\right) P S\left(\mu_{n}\right)$	

Separate phase space

Separate phase space

The same at NLO

Double up phase space

$d \Phi_{n+2}$

Double up phase space

Double up phase space

Double up phase space

 \square Need Shower analytically| $d \Phi_{n}$ | $B_{n}+V_{n}+\int B_{n} \cdot P S$ | Gives negative
 Almost impossib |
| :---: | :---: | :---: |
| $d \Phi_{n+1}\left[\begin{array}{c}{\left[B_{n}+V_{n}+\int B_{n} \cdot P S\right]} \\ \cdot P S\end{array}\right.$ | $B_{n+1}-B_{n} \cdot P S$ | |

Separate phase space

Separate phase space

Separate phase space

Separate phase space

Our Method

Our Method

Our Method

Determining the $\sigma^{\text {excl }}$

- Obtain the correct expression at fixed order
- Need careful definition of JMC to have analytical results - Write expression that has correct logarithmic structure - Use parton shower ideas as a guidline - Combine the two results by a simple matching

Fixed order results

Deriving a generic expression

$$
\frac{\mathrm{d} \sigma_{n}^{\text {excl }}\left(\mu_{n}\right)}{d \Phi_{n}}=\frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\text {parton }}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Fixed order results

Deriving a generic expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}} & =\frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\text {parton }}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
& =B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} B_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
\end{aligned}
$$

Fixed order results

Deriving a generic expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}= & \frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\mathrm{parton}}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} B_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
& +\int \mathrm{d} \Phi_{n+1}^{\prime}\left[B_{n+1}\left(\Phi_{n+1}^{\prime}\right)-S_{n+1}\left(\Phi_{n+1}^{\prime}\right)\right] J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
\end{aligned}
$$

Fixed order results

Deriving a generic expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}= & \frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\mathrm{parton}}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} B_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
& +\int \mathrm{d} \Phi_{n+1}^{\prime}\left[B_{n+1}\left(\Phi_{n+1}^{\prime}\right)-S_{n+1}\left(\Phi_{n+1}^{\prime}\right)\right] J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
\end{aligned}
$$

Fixed order results

Deriving a generic expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{\text {excl }}\left(\mu_{n}\right)}{d \Phi_{n}}= & \frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\text {parton }}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} B_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
& +\int \mathrm{d} \Phi_{n+1}^{\prime}\left[B_{n+1}\left(\Phi_{n}^{\prime}\right)=S_{n+1}\left(\Phi_{n+1}\right)\right] \mathrm{JMC}_{\mathrm{MC}}\left(\Phi_{n+1}, \Phi_{n}, \mu_{n}\right)
\end{aligned}
$$

Final result for small μ_{n}

Fixed order results

Deriving a generic expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}= & \frac{\mathrm{d} \sigma_{n}^{\text {parton }}}{d \Phi_{n}}+\int \mathrm{d} \Phi_{n+1}^{\prime} \frac{\mathrm{d} \sigma_{n+1}^{\text {parton }}}{d \Phi_{n}} J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} B_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
= & B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right) \\
& +\int \mathrm{d} \Phi_{n+1}^{\prime}\left[B_{n+1}\left(\Phi_{n+1}^{\prime}\right)-S_{n+1}^{\left.\left(\Phi_{n+1}^{\prime}\right)\right] J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}\right.} 0^{\prime} \Phi_{n}, \mu_{n}\right)
\end{aligned}
$$

Final result for small μ_{n}

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}=B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Fixed order results

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}=B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Need to choose JMc such that analytically calulable

Fixed order results

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}=B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Need to choose JMc such that analytically calulable Write S as sum over different terms

$$
S_{n+1}\left(\Phi_{n+1}^{\prime}\right)=\sum_{i} S_{n+1}^{(i)}\left(\Phi_{n+1}^{\prime}\right)
$$

Fixed order results

$$
\frac{\mathrm{d} \sigma_{n}^{\mathrm{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}=B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Need to choose JMc such that analytically calulable Write S as sum over different terms

$$
S_{n+1}\left(\Phi_{n+1}^{\prime}\right)=\sum_{i} S_{n+1}^{(i)}\left(\Phi_{n+1}^{\prime}\right)
$$

For each i can find $J_{M C}{ }^{(i)}$ that allows to integrate

$$
\int \mathrm{d} \Phi_{n+1} S_{n+1}^{(i)}\left(\Phi_{n+1}\right) J_{\mathrm{MC}}^{(i)}\left(\Phi_{n+1}, \Phi_{n}, \mu_{n}\right)
$$

Fixed order results

$$
\frac{\mathrm{d} \sigma_{n}^{\operatorname{excl}}\left(\mu_{n}\right)}{d \Phi_{n}}=B_{n}\left(\Phi_{n}\right)+V_{n}\left(\Phi_{n}\right)+\int \mathrm{d} \Phi_{n+1}^{\prime} S_{n+1}\left(\Phi_{n+1}^{\prime}\right) J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Need to choose JMc such that analytically calulable

Write S as sum over different terms

$$
S_{n+1}\left(\Phi_{n+1}^{\prime}\right)=\sum_{i} S_{n+1}^{(i)}\left(\Phi_{n+1}^{\prime}\right)
$$

For each i can find $J_{M C}{ }^{(i)}$ that allows to integrate

$$
\int \mathrm{d} \Phi_{n+1} S_{n+1}^{(i)}\left(\Phi_{n+1}\right) J_{\mathrm{MC}}^{(i)}\left(\Phi_{n+1}, \Phi_{n}, \mu_{n}\right)
$$

Therefore, can choose

$$
J_{\mathrm{MC}}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)=\sum_{i} \frac{S_{n+1}^{(i)}\left(\Phi_{n+1}^{\prime}\right)}{S_{n+1}\left(\Phi_{n+1}^{\prime}\right)} J_{\mathrm{MC}}^{(i)}\left(\Phi_{n+1}^{\prime}, \Phi_{n}, \mu_{n}\right)
$$

Example: Catani-Seymour

Different term for each of three partons [(i) $\rightarrow \mathrm{ij}, \mathrm{k}$]
singularity $\mathrm{p}_{\mathrm{i}}{ }^{\circ} \mathrm{p}_{\mathrm{j}} \rightarrow 0$ with k recoil

$$
S_{n+1}^{(i)}\left(\Phi_{n+1}\right) \equiv \mathcal{D}_{n+1}^{i j, k}\left(\Phi_{n+1}\right)
$$

Factorization for

 each \{ij,k\}$\mathrm{d} \Phi_{n+1} \equiv \mathrm{~d} \Phi_{n}^{i j, k} \mathrm{~d} \Phi_{\mathrm{rad}}^{i j, k}$ $d y^{i j, k} d z^{i j, k} d \phi^{i j, k}$

$$
J_{\mathrm{MC}}^{i j, k}\left(\Phi_{n+1}, \Phi_{n}, \mu_{n}\right)=\delta\left(\Phi_{n}-\Phi_{n}^{i j, k}\right) \Theta\left(y^{i j, k}<\mu_{n}\right)
$$

Gives rise to analytically calculable integrals Nagy, Trocsanyi ('98)

Correct logarithmic structure

Use the fact that parton shower resums leading logarithmic terms

Write cross section in recursive form
$\left[\frac{\mathrm{d} \sigma_{n}^{\mathrm{PS}}}{\mathrm{d} \Phi_{n}}\right]=\left[\frac{\mathrm{d} \sigma_{n-1}^{\mathrm{PS}}}{\mathrm{d} \Phi_{n-1}}\right] \times P S$

Several subtleties, but can be done

Combine results

Use slightly generalized LL result

$$
\left[\frac{\mathrm{d} \sigma_{n}^{\mathrm{MC}}\left(\mu_{n}\right)}{\mathrm{d} \Phi_{n}}\right]=\sum_{i}\left(\left[\frac{\mathrm{~d} \sigma_{n-1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{n-1}}\right] Q^{(i)}\left(\Phi_{n-1 \rightarrow n}\right)+M_{n}^{(i)}\left(\Phi_{n}\right)\right) \Delta_{n}\left(\mu_{n}\right)
$$

Choose splitting functions as

$$
Q^{(i)}\left(\Phi_{n-1 \rightarrow n}\right)=\frac{S_{n}^{(i)}\left(\Phi_{n}\right)}{B_{n-1}\left(\Phi_{n-1}\right)}
$$

Determine matching coefficient by explicit comparison with previous NLO result

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
\begin{gathered}
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{B_{n}\left(\Phi_{n}\right)}{S_{n}\left(\Phi_{n}\right)}-1\right) \\
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{S_{n}\left(\Phi_{n}\right)}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)}-\Delta_{n}^{(1)}\left(t_{n}^{i_{n}}, \mu_{n}\right)\right)
\end{gathered}
$$

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
\begin{gathered}
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{\left(B_{n}\left(\Phi_{n}\right)\right.}{S_{n}\left(\Phi_{n}\right)}-1\right) \\
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{S_{n}\left(\Phi_{n}\right)}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)}-\Delta_{n}^{(1)}\left(t_{n}^{i_{n}}, \mu_{n}\right)\right)
\end{gathered}
$$

The tree level diagrams

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{B_{n}\left(\Phi_{n}\right)}{S_{n}\left(\Phi_{n}\right)}-1\right)
$$

$$
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right)}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{\left.B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)\right)}-\Delta_{n}^{(1)}\left(t_{n}^{i_{n}}, \mu_{n}\right)\right)
$$

The tree level diagrams

Known

subtraction

functions

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
\begin{gathered}
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{B_{n}\left(\Phi_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-1\right) \\
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{\left(B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)\right.}-\Delta_{n}^{(1)}\left(t_{n}^{i_{n}}, \mu_{n}\right)\right)
\end{gathered}
$$

The tree level diagrams

Known subtraction functions

The virtual
(1-loop)
diagrams

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
\begin{gathered}
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{B_{n}\left(\Phi_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-1\right) \\
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{\left(B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)\right)}-\Delta_{n}^{(1)}\left(t_{n}^{\left.i_{n}, \mu_{n}\right)}\right)\right)
\end{gathered}
$$

The tree Known The virtual Expansion of level subtraction (1-loop) diagrams functions

diagrams

the Sudakov function

Determining the $\sigma^{\text {excl }}$

By expanding to NLO order and comparing with known results, can obtain M_{n}

$$
\begin{gathered}
M_{n}^{i_{n},(0)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\Phi_{n}\right)\left(\frac{B_{n}\left(\Phi_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-1\right) \\
M_{n}^{i_{n},(1)}\left(\Phi_{n}\right)=S_{n}^{i_{n}}\left(\frac{V_{n}^{S}\left(\Phi_{n}, \mu_{n}\right)}{\left(S_{n}\left(\Phi_{n}\right)\right.}-\frac{V_{n-1}^{S}\left(\Phi_{n-1}^{i_{n}}, t_{n}^{i_{n}}\right)}{\left(B_{n-1}\left(\Phi_{n-1}^{i_{n}}\right)\right)}-\Delta_{n}^{(1)}\left(t_{n}^{i_{n}}, \mu_{n}\right)\right)
\end{gathered}
$$

The tree Known The virtual Expansion of level subtraction (1-loop) the Sudakov diagrams functions diagrams function

Everything known analytically!

Status of the work?

Status of the work?

Have all the analytical results worked out in detail for $e^{+} e^{-}$

Status of the work?

Have all the analytical results worked out in detail for $e^{+} e^{-}$

Currently debugging implementation in GenEvA for $e^{+} e^{-}$

Status of the work?

Have all the analytical results worked out in detail for $e^{+} e^{-}$

Currently debugging implementation in GenEvA for $e^{+} e^{-}$

Working on extension to allow for hadron colliders

Status of the work?

Have all the analytical results worked out in detail for $e^{+} e^{-}$

Currently debugging implementation in GenEvA for $e^{+} e^{-}$

Working on extension to allow for hadron colliders

Hope to have first numerical results by the summer

Conclusions

- Both NLO calculations and parton shower algorithms crucial to have detailed understanding of signals and backgrounds
- Need to merge the two approaches to get reliable and trustworthy results
- Four main problems that need to be addressed
- Believe we have a fast and efficient algorithm that should give us first results by the summer

