Charm and Bottom Quark Masses, and Multi-Loop Results

Johann H. Kühn

I. WHY precise masses?

B-decays: $\Gamma(B \to X_{u} l \bar{\nu}) \sim G_{\mathsf{F}}^{2} m_{\mathsf{b}}^{5} |V_{ub}|^{2}$ $\Gamma(B \to X_{\mathsf{c}} l \bar{\nu}) \sim G_{\mathsf{F}}^{2} m_{\mathsf{b}}^{5} f(m_{\mathsf{c}}^{2}/m_{\mathsf{b}}^{2}) |V_{\mathsf{cb}}|^{2}$ $B \to X_{\mathsf{S}} \gamma$

 $\Upsilon\text{-spectroscopy:}$ $m(\Upsilon(1s)) = 2M_{b} - \left(\frac{4}{3}\alpha_{s}\right)^{2}\frac{M_{b}}{4} + \dots$

Higgs decay (ILC)

$$\Gamma(H \to b\bar{b}) = \frac{G_{\mathsf{F}} M_{\mathsf{H}}}{4\sqrt{2}\pi} m_{\mathsf{b}}^2(M_{\mathsf{H}}) \tilde{R}$$

 $\tilde{R} = 1 + 5.6667a_{s} + 29.147a_{s}^{2} + 41.758a_{s}^{3} - 825.7a_{s}^{4}$ $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)^{4}$ a_{s}^{4} -term = 5-loop calculation [Baikov,...]

Yukawa Unification

 $\lambda_{\tau} \sim \lambda_{b}$ or $\lambda_{\tau} \sim \lambda_{b} \sim \lambda_{t}$ at GUT scale top-bottom $\rightarrow m_{t} / m_{b} \sim$ ratio of vacuum expectation values request $\frac{\delta m_{b}}{m_{b}} \sim \frac{\delta m_{t}}{m_{t}} \Rightarrow \delta m_{t} \approx 1 \text{ GeV} \Rightarrow \delta m_{b} \approx 25 \text{ MeV}$

II. m_q from SVZ Sum Rules, Moments and Tadpoles

Main Idea (SVZ)

Some definitions:

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$
$$\left(-q^2 g_{\mu\nu} + q_\mu q_\nu \right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_\mu(x) j_\nu(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

$$\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s}{\pi} \bar{C}_n^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}_n^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}_n^{(3)} + \dots$$

Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2

(Chetyrkin, JK, Steinhauser, 1996)

up to n = 30 (Boughezal, Czakon, Schutzmeier 2007)

also \bar{C}_0 and \bar{C}_1 in order α_s^3 (four loops!) (2006)

➡ reduction to master integrals through Laporta algorithm

(Chetyrkin, JK, Sturm; confirmed by Boughezal, Czakon, Schutzmeier) evaluation of master integrals numerically through difference equations (30 digits) or Padé method or analytially in terms of transcendentals (Schröder + Vuorinen, Chetyrkin et al., Schröder + Steinhauser, Laporta, Broadhurst, Kniehl et al.) recently also \bar{C}_2 (Maier, Maierhöfer, Marquard, arXiv:0806.3405 [hep-ph]) and \bar{C}_3 (in preparation)

Analysis in NNLO

Coefficients \overline{C}_n from three-loop one-scale tadpole amplitudes with "arbitrary" power of propagators;

FORM-program MATAD

Analysis in N³LO

Algebraic reduction to 13 master integrals (Laporta algorithm); numerical and analytical evaluation of master integrals

○ : heavy quarks, ○ : light quarks,

- n_f : number of active quarks
- ⇒ About 700 Feynman-diagrams

recall:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

 \bar{C}_n depend on the charm quark mass through $l_{m_c} \equiv \ln(m_c^2(\mu)/\mu^2)$

$$\bar{C}_{n} = \bar{C}_{n}^{(0)} + \frac{\alpha_{s}(\mu)}{\pi} \left(\bar{C}_{n}^{(10)} + \bar{C}_{n}^{(11)} l_{m_{c}} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \left(\bar{C}_{n}^{(20)} + \bar{C}_{n}^{(21)} l_{m_{c}} + \bar{C}_{n}^{(22)} l_{m_{c}}^{2} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{3} \left(\bar{C}_{n}^{(30)} + \bar{C}_{n}^{(31)} l_{mc} + \bar{C}_{n}^{(32)} l_{mc}^{2} + \bar{C}_{n}^{(33)} l_{ms}^{3} \right)$$

n	$\bar{C}_n^{(0)}$	$ar{C}_n^{(10)}$	$\bar{C}_n^{(11)}$	$ar{C}_n^{(20)}$	$\bar{C}_n^{(21)}$	$\bar{C}_{n}^{(22)}$	$ar{C}_n^{(30)}$	$ar{C}_n^{(31)}$	$\bar{C}_n^{(32)}$	$ar{C}_n^{(33)}$
1	1.0667	2.5547	2.1333	2.4967	3.3130	- 0.0889	-5.6404	4.0669	0.9590	0.0642
2	0.4571	1.1096	1.8286	2.7770	5.1489	1.7524	-3.4937	6.7216	6.4916	-0.0974
3	0.2709	0.5194	1.6254	1.6388	4.7207	3.1831		7.5736	13.1654	1.9452
4	0.1847	0.2031	1.4776	0.7956	3.6440	4.3713		4.9487	17.4612	5.5856

estimate
$$-6 < C_n^{(30)} < 6$$
 , $n = 3, 4$

confirmed by exact calculation (n=3) and Padé estimate (n=4)

Define the moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{d}{dq^{2}} \right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}} \right)^{n} \bar{C}_{n}$$

Perturbation theory: \bar{C}_n is function of α_s and $\ln \frac{m_c^2}{\mu^2}$ dispersion relation:

$$\Pi_{c}(q^{2}) = \frac{q^{2}}{12\pi^{2}} \int ds \frac{R_{c}(s)}{s(s-q^{2})} + \text{subtraction}$$
$$\Leftrightarrow \mathcal{M}_{n}^{\exp} = \int \frac{ds}{s^{n+1}} R_{c}(s)$$
$$\text{constraint: } \mathcal{M}_{n}^{\exp} = \mathcal{M}_{n}^{\mathsf{th}}$$

 $r > m_c$

SVZ:

 $\mathcal{M}_n^{\mathsf{th}}$ can be reliably calculated in pQCD:

low *n*: dominated by scales of $\mathcal{O}(2m_Q)$

- fixed order in α_s is sufficient, in particular no resummation of 1/v - terms from higher orders required
- condensates are unimportant
- pQCD in terms of short distance mass : m_c(3 GeV) ⇔ m_c(m_c) stable expansion : no pole mass or closely related definition (1S-mass, potential-subtracted mass) involved
- moments available in NNLO
- and \bar{C}_1 , \bar{C}_2 , \bar{C}_3 in N³LO

Ingredients (charm)

experiment:

- $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & Babar
- $\psi(3770)$ and R(s) from BES
- $\alpha_{\rm S} = 0.1187 \pm 0.0020$

theory:

- N³LO for n = 1, 2, 3
- N^3LO estimate for n = 4
- include condensates

$$\delta \mathcal{M}_n^{\mathsf{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_{\mathsf{s}}}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha_{\mathsf{s}}}{\pi} \overline{b}_n \right)$$

- estimate of non-perturbative terms (oscillations, based on Shifman)
- careful extrapolation of R_{uds}
- careful definition of R_c

Contributions from

- narrow resonances: $R = \frac{9 \prod M_R \Gamma_e}{\alpha^2(s)} \delta(s M_R^2)$
- threshold region $(2 m_D 4.8 \text{ GeV})$
- perturbative continuum ($E \ge 4.8 \text{ GeV}$)

n	\mathcal{M}_n^{res}	\mathcal{M}_n^{thresh}	\mathcal{M}_n^{cont}	\mathcal{M}_n^{exp}	$\mathcal{M}_n^{\sf np}$
	$ imes$ 10 $^{(n-1)}$	$ imes 10^{(n-1)}$	$ imes$ 10 $^{(n-1)}$	$ imes 10^{(n-1)}$	$ imes 10^{(n-1)}$
1	0.1201(25)	0.0318(15)	0.0646(11)	0.2166(31)	-0.0001(2)
2	0.1176(25)	0.0178(8)	0.0144(3)	0.1497(27)	0.0000(0)
3	0.1169(26)	0.0101(5)	0.0042(1)	0.1312(27)	0.0007(14)
4	0.1177(27)	0.0058(3)	0.0014(0)	0.1249(27)	0.0027(54)

Results $(m_{\rm C})$

n	$m_{\rm C}(3 {\rm ~GeV})$	exp	$lpha_{\sf S}$	μ	np	total	$\delta \bar{C}_n^{30}$	$m_{C}(m_{C})$
1	0.986	0.009	0.009	0.002	0.001	0.013		1.286
2	0.976	0.006	0.014	0.005	0.000	0.016		1.277
3	0.978	0.005	0.014	0.007	0.002	0.016		1.278
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309

n = 1:

$$n = 2$$
:

• $m_{\rm C}(3\,{\rm GeV}) = 976 \pm 16\,{\rm MeV}$

• $m_{\rm C}(m_{\rm C}) = 1286 \pm 13 \,{\rm MeV}$

• $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$

• $m_{\rm C}(m_{\rm C}) = 1277 \pm 16 \,{\rm MeV}$

$$n = 3:$$
• $m_{\rm C}(3 \,{\rm GeV}) = \begin{cases} 982 \pm 26 \,{\rm MeV} \,{\rm old}, \, C_3^{(3)} \,{\rm estimated} \\ 978 \pm 16 \,{\rm MeV} \,{\rm new}, \, C_3^{(3)} \,{\rm calculated} \end{cases}$
• $m_{\rm C}(m_{\rm C}) = 1278 \pm 16 \,{\rm MeV}$

n

Experimental Ingredients for m_b

Contributions from

- narrow resonances $(\Upsilon(1S) \Upsilon(4S))$
- threshold region (10.618 GeV 11.2 GeV)
- perturbative continuum ($E \ge 11.2 \text{ GeV}$)

n	$\mathcal{M}_n^{res,(1S-4S)}$	\mathcal{M}_n^{thresh}	\mathcal{M}_n^{cont}	\mathcal{M}_n^{exp}
	$ imes 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$
1	1.394(23)	0.296(32)	2.911(18)	4.601(43)
2	1.459(23)	0.249(27)	1.173(11)	2.881(37)
3	1.538(24)	0.209(22)	0.624(7)	2.370(34)
4	1.630(25)	0.175(19)	0.372(5)	2.178(32)

Results (m_b)

n	$m_{b}(10 \text{ GeV})$	ехр	$lpha_{\sf S}$	μ	total	$\delta \bar{C}_n^{30}$	$m_{b}(m_{b})$
1	3.593	0.020	0.007	0.002	0.021		4.149
2	3.607	0.014	0.012	0.003	0.019		4.162
3	3.617	0.010	0.014	0.006	0.019		4.172
4	3.631	0.008	0.015	0.021	0.027	0.012	4.185

n = 2:

• $m_{\rm C}(3\,{\rm GeV}) = 3607 \pm 19\,{\rm MeV}$

•
$$m_{\rm C}(m_{\rm C}) = 4162 \pm 19 \,{
m MeV}$$

$$n = 3:$$
• $m_b(10 \text{ GeV}) = \begin{cases} 3618 \pm 27 \text{ MeV old}, C_3^{(3)} \text{ estimated} \\ 3617 \pm 19 \text{ MeV new}, C_3^{(3)} \text{ calculated} \end{cases}$

• $m_{\rm b}(m_{\rm b}) = 4172 \pm 19 \,{\rm MeV}$

Improvements Based on Recent Babar Results (Preliminary)

uncertainties after "renormalization" estimated to be 10% \Rightarrow dominant contribution to error

2% systematic experimental error Deconvolute ISR and apply radiative corrections \Rightarrow

Preliminary Analysis

- consistency between BABAR and CLEO
- reduction of experimental error in this region by factor 3, total error by factor 2/3
- slight upwards shift of m_b by 5-10 MeV

recent analysis: lattice & pQCD

(HPQCD + Karlsruhe, Phys. Rev. D78, 054513)

lattice evaluation of pseudoscalar correlator

 \Rightarrow replace experimental moments by lattice simulation

input: $M(\eta_c) = m_c$, $M(\Upsilon(1S)) - M(\Upsilon(2s)) = \alpha_s$

pQCD for pseudoscalar correlator available:

"all" moments in $\mathcal{O}(\alpha_s^2)$

three lowest moments in $\mathcal{O}(\alpha_s^3)$.

lowest moment: dimensionless: $\sim \left(\bar{C}^{(0)} + \frac{\alpha_s}{\pi}\bar{C}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}^{(3)} + \dots\right)$

$$\Rightarrow \alpha_{s}(3\text{GeV}) \Rightarrow \alpha_{s}(M_{Z}) = 0.1174(12)$$

higher moments: $\sim m_{\rm C}^2 \times \left(1 + ... \frac{\alpha_{\rm S}}{\pi} ...\right)$

$$\Rightarrow$$
 $m_{\rm C}(3{\rm GeV}) = 986(10) {\rm MeV}$

to be compared with 986(13) MeV from e^+e^- !

$$m_{\rm C}(3 \,\,{\rm GeV}) = 0.986(13) \,\,{\rm GeV}$$

$$e^+e^-$$
 + pQCD

 $m_{\rm C}(3 \,\,{\rm GeV}) = 0.986(10) \,\,{\rm GeV}$

lattice + pQCD

$$m_{\rm b}(10 \text{ GeV}) = 3.607(19) \text{ GeV}$$

$$e^+e^-$$
 + pQCD + $\bar{C}_2^{(3)}$

confirmed by recent BABAR analysis