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Eq. (2) implies that the momentum fractions xa,b are
determined by PDFs evaluated at the scale µb, which
is parametrically smaller than the scale µ2

h ∼ xaxbE2
CM

of the partonic hard interaction. The renormalization
group evolution (RGE) for the initial state now proceeds
in two stages, µ < µb and µ > µb. As the scale increases
up to µb, the RGE is given by the standard PDF evo-
lution, which sums single logarithms and redistributes
the momentum fractions in the proton to lower x val-
ues. For µ > µb, the jet-like structure of the initial state
becomes relevant and is properly described by an RGE
for the beam function. The evolution of the beam func-
tion is in terms of the invariant-mass variable s and now
sums Sudakov double logarithms. The O(αs(µb)) terms
in Eq. (2) account for effects such as a gluon from the pro-
ton pair-producing a quark that goes on to initiate the
hard interaction and an antiquark that vanishes down
the beam pipe. Such fluctuations are not fully accounted
for by standard PDF evolution, but can be computed
with an expansion in αs(µb). Hence, although beam ef-
fects are important and must be taken into account, this
can be done perturbatively. The standard PDFs are still
sufficient to describe the nonperturbative information re-
quired for the initial state.

It is interesting to ask whether the effects of the initial-
state beam functions as well as their interplay with the
soft radiation are properly captured by current Monte
Carlo generators used to simulate LHC events. In Monte
Carlo these effects should be described by the initial-
state parton shower in conjuction with models for the
underlying event. (Add more stuff...)NOTE

In the next section we describe the general physical pic-
ture and properties of the final result for the factorization
theorem with beam functions. In Sec. III we elaborate on
the definition and properties of the beam function. We
also present explicit results for the RGE and one-loop
perturbative corrections that are relevant for the quark
beam function. In Sec. IV we present the detailed deriva-
tion of the factorization theorem using the soft-collinear
effective theory (SCET) (readers not interested in the
technical details can freely skip this section). We con-
clude in Sec. V with a brief survey of phenomenological
implications of our results.

II. FACTORIZATION WITH BEAMS AT THE
LHC

A. Factorization Theorems

Consider a generic process at the LHC, pp → LXH .
Here L is the leptonic final state, by which we mean
all non-strongly interacting final-state particles, Z and
W bosons decaying to leptons, Higgs decaying to γγ,
etc. The XH contains the observed hadronic final state,
including jets, individual hadrons, etc. The primary goal
of the experimental measurements is to probe the physics
of the hard interaction, so typical observables are based
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FIG. 1: Jet production at the LHC.

on the identification (or absence) of a certain number of
hard jets in the final state (in addition to possible hard
leptons).

A typical event at the LHC with three high-pT jets in
the final state is illustrated in Fig. 1. There are several
complications one has to face, when trying to derive a
factorization theorem in this situation. First, the defini-
tion of the number and properties of the final-state jets
are determined with a jet algorithm. Second, in addi-
tion to the jets produced by the hard interaction, there
is soft radiation everywhere. Third, a fraction of the to-
tal energy in the final state is deposited inside a cone
around the beam axis at rapidities |η| > ηcut, where
the measurements do not identify jets. Although the
collinear and soft radiation inside these beam cones is
not measured and summed over, it cannot be neglected
in the factorization. Finally, to enhance the ratio of sig-
nal over background, the experimental analyses have to
apply kinematic selection cuts.

For example, the typical searches for SUSY or other
new physics that look for missing transverse energy also
require a minimum number of jets with some minimum
pT . To identify the new physics and determine the masses
of new physics particles, one has to reconstruct decay
chains with a certain number of jets and leptons in the
final state.

The jet algorithm identifies jets in XH with more-or-
less isolated groups of energetic particles within a cone
of radius R = [(∆φ)2 + (∆η)2]1/2. (Here φ and η denote
the azimuthal angle and pseudorapidity, and throughout
this paper we will use notation that corresponds to an
infrared-safe cone algorithm. Analyses at the Tevatron
typically use R = 0.7, while those at the LHC plan to use
R = 0.3 (TODO)). For each event, the jet algorithm re- TODO:

correct?turns the number of jets along with their four-momenta,
which are used to calculate some jet observable O (e.g,

Goals

• Show certain LHC observables should
be thought of as colliding partons in
initial jets rather than in protons

• Universal Beam Functions describe 
this e!ect

• Allows factorization to be applied 
away from threshold and inclusive
regions, eg. for                    with    
identified “exclusive jets”

x ∼ 10−1

• Sums large logs for initial state 
radiation

proton
initial state jet

B(x, s, µ) =
∫

dx′ I(s, x′ − x, µ) f(x′, µ)

• Improve the accuracy of our 
description of LHC physics by 
deriving suitable factorization 
theorems

2Thursday, April 30, 2009



Outline
• Final State Factorization:

Precision QCD with Hard, Jet, and Soft Functions•
• RGE, Sum large double logs

• Simult. describe nonperturbative & perturbative e!ects

• Smooth transitions between regions

• Initial State & Factorization:

• Beam Function

Parton Distributions• • Drell"Yan, Kinematics, & Scales

• Jet Production with Beam Functions

• Relation to Experimental Uncertainties at CDF #LHC$ 
#underlying event$

UV divergences and RGE•
IR divergences and matching•

• quark, gluon, antiquark mixing

3Thursday, April 30, 2009



Final State
Jets

B → Xsγ

Q2 ! m2
X !

m4
X

Q2
! Λ2

QCD

µhard ! µJet ! µsoft ! ΛQCD

is

e
+
e
−

→ 2 jets

!!

usoft particles

n-collinear 
       jet

n-collinear 
       jet

qus, A
µ
us

ξn, Aµ
n ξn̄, Aµ

n̄

g

q

q̄e+

e−
γ, Z

Q2

Q = mb
modes pµ = (+,−,⊥)

n-collinear Q(λ2, 1,λ)
n̄-collinear Q(1,λ2,λ)

usoft Q(λ2,λ2,λ2)

Jet Invariant Mass

n
µ

X B
γ

ξn, Aµ
n

qus, A
µ
us, hv

ultrasoft
m2

X ! Q2

SCET
Bauer, Fleming, Pirjol, Stewart

Q = 14 to 207 GeV

#talk by Tackmann here$
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Energetic dijets

e
+
e
−

→ 2 jets

Q2 ! m2
X !

m4
X

Q2
! Λ2

QCD

µhard ! µJet ! µsoft ! ΛQCD

IR safe observable: τ = 1− TT = Thrust

m2
X + m2

X
= Q2τ

Q2 ! Q2τ ! Q2τ2 ! Λ2
QCD

logs are ratio of kinematic
scales #from RGE in SCET$

1
σ

dσ

dτ
=

∑

n,m

αn
s

lnm τ

τ
+

∑

n,m

αn
s lnm τ +

∑

n,m

αn
s fm(τ)

τ > 0 singular non"singular

+ f(τ,ΛQCD/Q) nonperturbative
power corrections

∼
(

ΛQCD
Qτ

)k
,
(

ΛQCD
Q

)k

Korchemsky,Sterman;
Bauer,Lee,Manohar,Wise;  Lee,Sterman; Mantry,Fleming,Hoang,I.S.;  
Schwartz; Becher, Schwartz;  Gehrmann et al.;  Weinzierl;
Abbate, Fickinger, Hoang, Mateu, I.S. #talk by V. Mateu here$

,

Power Corrections:
ΛQCD

µS
, ΛQCD

µh
,

Multiple Regions:

i) peak: µh ! µJ ! µS ∼ ΛQCD

ii) tail: µh ! µJ ! µS ! ΛQCD

iii) multi jet: µh ∼ µJ ∼ µS ! ΛQCD

LL, NLL, NNLL, N3LL

τ = 0 (dijet)
τ = 1

2 (multijet)

µ2
S

µ2
J

∼ τ
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Production Current:

n

n ψ̄ Γµψ → (ξ̄nWn)ω Γµ(W †
n̄ξn̄)ω̄ = (ξ̄nWn)ω Y †

n ΓµYn̄(W †
n̄ξn̄)ω̄}

J µ
i SCET

n

}

Y (x) = P exp
(
ig

∫ ∞

0
ds n·Aus(x+ns)

)

Leading Order 
Factorization

τ ! 1

ξn,p picks out the quark annihilation, or antiquark production part of the field [20]. We note

that the sums over collinear states in the collinear jet functions are unrestricted since the

restrictions are now implemented automatically through the amount the jet invariant mass

differs from m2. Thus, the jet functions can be written as the discontinuity of a forward

scattering amplitude after summing over the collinear states:

Jn(Qr+
n − m2) =

−1

2πQ

∫
d4x eirn·x Disc 〈0|T{χn,Q(0)/̂̄nχn(x)}|0〉 ,

Jn̄(Qr−n̄ − m2) =
1

2πQ

∫
d4x eirn̄·x Disc 〈0|T{χ̄n̄(x)/̂nχn̄,−Q(0)}|0〉 . (80)

The collinear fields in the SCET jet functions Jn and Jn̄ are defined with zero-bin sub-

tractions [51], which avoids double counting with the soft-function. Using Eq.(79) and

performing all the remaining integrals in the cross-section of Eq.(76) we arrive at the SCET

result for double differential hemisphere invariant mass cross-section

d2σ

dM2
t dM2

t̄

= σ0 HQ(Q, µ)

∫ ∞

−∞
d%+d%− Jn(st − Q%+, µ)Jn̄(st̄ − Q%−, µ)Shemi(%

+, %−, µ) , (81)

where the hard function HQ(Q, µ) = |C(Q, µ)|2. Here the hemisphere soft function is defined

by

Shemi(%
+, %−, µ) =

1

Nc

∑

Xs

δ(%+ − k+a
s )δ(%− − k−b

s )〈0|Y n̄ Yn(0)|Xs〉〈Xs|Y †
n Y

†
n̄(0)|0〉 . (82)

At tree level for stable top quarks H = 1, Jn(st) = δ(st), Jn̄(st̄) = δ(st̄), and Shemi(%+, %−) =

δ(%+)δ(%−), and integrating Eq. (81) over st and st̄ gives the total tree-level Born cross-section

σ0. This provides a check for the normalization of Eq. (81).

In the factorization theorem in Eq. (81) the jet-functions Jn and Jn̄ describe the dynamics

of the top and antitop jets. In the next section we will see that these jet functions can be

computed in perturbation theory and at the tree level are just Breit-Wigner distributions.

The soft matrix elements 〈0|Y †
nYn̄(0)|Xs〉〈Xs|Ỹ †

n̄ Ỹn(0)|0〉, on the other hand, depends on the

scale ΛQCD, and thus the soft function Shemi(%+, %−) is governed by non-perturbative QCD

effects. The momentum variables %± represent the light cone momentum of the soft particles

in each of the two hemispheres, and Shemi(%+, %−) describes the distribution of soft final state

radiation. Eq. (81) already demonstrates that the invariant mass spectrum for unstable top

quarks is not a Breit-Wigner function even at tree level because the convolution with the

soft function Shemi modifies the observed distribution. The effects of the convolution on the

observable invariant mass distribution are discussed in Sec. IV.

To sum large logs in Eq. (81) the SCET production current can be run from µ = Q

down to µ = m, which then characterizes the typical virtuality of the collinear degrees of

freedom in massive SCET. In the process, large logarithms of Q/m are summed into the

hard function HQ(Q, µ). In the next section we integrate out the scale m and match these

SCET jet functions onto bHQET jet functions.

31

usoft Wilson lines

{ {

Soft Function

Jn(Qr+
n , µ) =

−1
8πNcQ

Disc
∫

d4x eirn·x 〈0|T χ̄n,Q(0)/̂̄nχn(x)|0〉

Jet Function

}

χn,¯!

symmetric projection

Jn̄(Qr−n̄ , µ) = . . .

JT (Q2τ) symmetric
projection

ST (! )
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Sum Large 
Logarithms

LO Thrust Factorization Theorem:

To minimize large logs we want to evaluate 
these functions at different scales

dσ

dτ
= σ0H(Q,µ) Q

∫
d# JT

(
Q2τ −Q#, µ

)
ST (#, µ)

p2 ∼ Q2 p2 ∼ Q2τ p2 ∼ Q2τ2

∼ µ2
S∼ µ2

J∼ µ2
Q

Match & Run: µQ

µJ

µS

ΛQCD

match QCD to SCET

integrate out Jet Modes

soft function OPE

run H

run J

all orders in αs
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Factorization Thms

1
σ0

dσ

dτ
= QH(Q,µ)JT (Q2τ −Q#, µ)⊗ ST (#, µ)

+H̃i(Q, xi′ , µ)⊗ J̃i(xi′ , Q
2τ, Q"j′)⊗ S̃j("j′ , µ)

αk
s lnj τ

τ

(ΛQCD

Qτ

)i

Peak: Tail:
αk

s lnj τ

τ

(ΛQCD

Qτ

)0,1

Multijet:
αk

s lnj τ

τ

fj′(τ)αk
s lnj τ

(ΛQCD

Qτ

)i
fj′(τ)αk

s lnj τ
(ΛQCD

Qτ

)0,1

fj′(τ)αk
s lnj τ

δαs

αs
∼ ΛQCD

Q
= 0.5%

relative size of important terms is region dependent

+Hi(Q, xi′ , µ)⊗ Ji(xi′ , Q
2τ −Q")⊗ ST (", µ)

residual error

d!
d"

1

!

20

15

10

5

0

0.0 0.1 0.2 0.3 0.4

"

peak
Q2 ! Q2τ ! (Qτ)2 ∼ Λ2

QCD

tail
Q2 ! Q2τ ! (Qτ)2 ! Λ2

QCD

multijet
Q2 ∼ Q2τ ∼ (Qτ)2 " Λ2

QCD

sum logs

sum logs

do NOT sum logs!
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Hoang & I.S. 

S(!, µ) =
∫

d!′ Spart(!− !′, µ) F (!′)

Ligeti, I.S., Tackmann
Factorization for Soft Function: simultaneously describe both 
the peak region #nonpert.$, and tail regions #pert. & nonpert.$

}

partonic soft function
calculated at fixed order

normalized model function 
#exponential fall o!$

}

Perturbative & NonPert. Soft Fn.

Correct µ
dependence
for MS

Multiple Regions

0.0 0.1 0.2 0.3 0.4 0.5
Τ

20

40

60

80

Μ!Τ" ΜS!Τ", ΜJ !Τ", ΜQ!Τ", R!Τ"

µJ(τ) ∝ τ1/2

µS(τ), R(τ) ∝ τ

Profile functions, 
must satisfy 
multi region 
constraints 

τ

scales must be
equal for multijet

region

µ[τ ]

remove u = 1/2
renormalon
with gap ∆(R,µ)

R"RGE
#talk by Jain$
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0.1 0.2 0.3 0.4 0.5

10
!9

10
!7

10
!5

0.001

0.1

black = total

τ

1
Qσ

dσ

dτ

AFHMS

i

cross section
components

Sample Fit results:

0.34 0.36 0.38 0.40 0.42
0.00

0.02

0.04

0.06

0.08

0.10

multijet, Dashed!N3LL, Solid!N3LL', same fit coeffs.

Q = 91.2 GeV
Z data

1
σ

dσ

dτ

0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tail Fit !0.15,0.33", plotted over tail

3 parameters:
αs(mZ), Ω1, c2

LO SCET, N3LL & (ΛQCD/Qτ)k

nonsingular & (ΛQCD/Qτ)!

#see talk by V. Mateu$
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RGE  Constraints on Factorization
top"down = bottom"up

µQ

µJ

µS

H

J

S

=

µ

µQ

µJ

µS

H

J

S

µ0

Non"trivial application:  massive top jet production

µQ

µJ
µS

Hm

Jm

mt

Fleming,Hoang,Mantry,I.S.

H U1/2
Hm

( Q
m , µ, µ0)δ(ŝ) =

∫
d" UJm(ŝ− Q

m", µ, µ0)US(", µ, µ0)

S
ŝ ≡ (m2

X−m2
t )/mt

Constrains type of objects that can consistently   
  appear in the factorization theorem

U1/2
H (Q,µ, µ0)δ(M2

X) =
∫

d" UJ(M2
X −Q", µ, µ0)US(", µ, µ0)
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Initial State Hadrons & Factorization

dσ =
∑

i,j

dσpart
ij (xa, xb, µ, . . .)⊗ fi(xa, µ)fj(xb, µ)

For many processes of interest at the LHC there is no proof of factorization.

parton distribution functions

Strict interpretation:

parton distributions are only nonperturbative input

should be computed in fixed order pert. theory,
behaves like a hard Wilson coe%cient 

Factorization Paradigm:

dσpart
ij•

•

initial state
parton 
shower

hard scattering
fixed order 

perturbative
computation

⊗ ⊗
final state

parton 
showers

⊗

hadronization
model,

underlying event,
pileup

#with parton
distributions$

dσ =

Looser interpretation:

parton distributions are only nonperturbative input

computed as best we can #log resummation,
further factorization,...$

dσpart
ij•

•
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Drell-Yan pp→ X!+!− #Collins, Soper, Sterman$

X = anything = hard  #sum over all final states$

dσ

dM2
=

∫
dxadxb

∑

ij

[ dσ̂ij

dM2
(xa, xb, µ)

]
fi(xa, µ) fj(xb, µ)

Kinematics:

Example: Factorization for Drell-Yan

!−

!+p

p

X

X

dσ

d!
("CM) =

∑

i,j

∫
d#a d#b

dσ̂ij

d$
(#a #b % )&i(#a; % )&j(#b; % )

Proven for invariant mass of the lepton pair,!='2. [Collins, Soper, Sterman; Bodwin]

Why it works:
! Purely leptonic observable:!=$
! Completely inclusive in and independent of(

At the LHC: isolation cuts, jet algorithm...

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 4 / 19

PA

PB

S = (PA + PB)2 = E2
cm

M2

E2
cm

≤ xaxb ≤ 1

Factorization has been proven rigorously for inclusive Drell"Yan•

A di!erent Factorization Thm holds near threshold•

p−a = xaP−a
p+

b ! xbP
+
b

M → Ecm

EX = Ecm − q0 ≤ Ecm −M = Esoft
0 X = soft

xa, xb → 1

Sterman; 
Catani,Trentadue;
Idilbi,Ji,Yuan;
Becher,Neubert,Xu

1
σ0

dσ

dM2

∣∣∣
thresh

= H(M,µ)
∫

dxadxb S
[
M

(
1− M2

xaxbE2
cm

)
, µ

]
f(xa, µ)f(xb, µ)

Q2 = M2 = (dilepton invariant mass)
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X

!+X

Pa

Pb

!−

Soft

Soft

Pa

Pb

!−

!+

dσ = dσ̂ ⊗ f ⊗ f

dσ = H S ⊗ f ⊗ f

Inclusive Drell-Yan

Threshold Drell-Yan

Hard Interactions of Quarks and Gluons: a Primer for LHC Physics 9

Figure 3. Graphical representation of the relationship between parton (x, Q2)
variables and the kinematic variables corresponding to a final state of mass M produced
with rapidity y at the LHC collider with

√
s = 14 TeV.

The double–differential cross section is therefore
dσ

dM2dy
=

σ̂0

Ns

[

∑

k

Q2
k(qk(x1, M

2)q̄k(x2, M
2) + [1 ↔ 2])

]

. (11)

with x1 and x2 given by (10). Thus different values of M and y probe different values

of the parton x of the colliding beams. The formulae relating x1 and x2 to M and y

of course also apply to the production of any final state with this mass and rapidity.
Assuming the factorization scale (Q) is equal to M , the mass of the final state, the

relationship between the parton (x, Q2) values and the kinematic variables M and y is

illustrated pictorially in Figure 3, for the LHC collision energy
√

s = 14 TeV. For a

given rapidity y there are two (dashed) lines, corresponding to the values of x1 and x2.

For y = 0, x1 = x2 = M/
√

s.

In analogy with the Drell–Yan cross section derived above, the subprocess cross
sections for (on–shell) W and Z production are readily calculated to be

σ̂qq̄′→W =
π

3

√
2GFM2

W |Vqq′|2δ(ŝ − M2
W ),

σ̂qq̄→Z =
π

3

√
2GFM2

Z(v2
q + a2

q)δ(ŝ − M2
Z), (12)

M2(GeV2)

x

tree level:

xa = M
Ecm

ey

xb = M
Ecm

e−y

y = 0

y = 2

(!+!−) rapidity y

14Thursday, April 30, 2009



Xb Xa

!+

!−

Pa Pb

ηcut−ηcut

Soft

Soft

X

!+X

Pa

Pb

!−

Soft

Soft

Pa

Pb

!−

!+

dσ = dσ̂ ⊗ f ⊗ f dσ = H S ⊗ f ⊗ f

Inclusive 
Drell-Yan

Threshold 
Drell-Yan

Add a rapidity cuto!,           , and demand that no jets are observed with 
small rapidities 

ηcut

Can now have x < 10−1

Large energy Ecm(1− x)
goes into a cone around the beam

New scale is introduced, µb = e−ηcutQ̂

(Q̂ = M here)

Beam functions, B, describe proton and initial state jets

dσ = H × S ⊗B ⊗B

ηcut → 0 : inclusive DY
ηcut →∞ : threshold DY

E(η < ηcut) ≤ E0 #soft scale        $µs
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X

!+X

Pa

Pb

!−

Soft

Soft

Pa

Pb

!−

!+

dσ = dσ̂ ⊗ f ⊗ f

Factorization Theorems We Know
! Drell-Yan, fully inclusive

σ = σ̂ ⊗ f ⊗ f

"+

"−

! Dijet production at threshold
1 ≥ xa xb ≥ M2

JJ/E2
CM → 1

σ = H ⊗ f ⊗ f ⊗ J ⊗ J ⊗ S

Soft Jet

µ

f

σ̂

µΛ

µh

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 5 / 19

RGE sums up 
single logs in pdf

µh

dσ = H S ⊗ f ⊗ f

5

(a)

f

H

(b)

Sthr
µs

f

H

J

Sthr

(c)

µs

µj

H

J

Sf

B

(d)
µΛ

µs

µb

µh

µj

µ µ µµ

f

σpart

FIG. 3: RGE running. Case a) corresponds to inclusive processes, such as Drell-Yan. Here, the partonic cross section is
evaluated at a high factorization scale µ and the parton distribution functions are evolved up to µ. Case b) corresponds to
2-jet production at threshold, where the kinematics forces all hadrons in the final state to either belong to one of the jets or the
soft radiation. Case c) corresponds to jet production at the LHC. Here, the PDFs freeze out at the intermediate beam scale
µb, above which they are replaced by beam functions.

low scale to the factorization scale µ using their RGE
given by the well-known DGLAP equations. The scale
µ is usually chosen close to the hard scale µ ∼ µh ∼ Q
to minimize large logarithms ln(µ2/Q) in the perturba-
tive expression for σpart

ij . This is another way to see that
Eq. (4) is not adequate to describe jet production, as is
does not contain any information on the relevant energy
scales in the problem.

III. THE BEAM FUNCTION

In this section we discuss the properties of the beam
function, its relation to the standard PDF, and give ex-
plicit results for the quark beam function at one loop.

A. Definition and Factorization

The quark beam function, Bq(s, z; µ), is defined by

Bq(b+ω, ω/P−; µ) =
1
ω

∫
dy−

4π
eib+y−/2

×
〈
pn(P−)

∣∣∣χ̄n

(
y−

n

2

)
δ(ω − Pn)

n̄/

2
χn(0)

∣∣∣pn(P−)
〉

,

(10)

where χn(y) is a (n-collinear) quark field in SCET, to
be discussed later, and pn(P−) denotes the proton state
with light-like momentum P µ = P−nµ/2. In general,
the beam function will be convoluted with the soft func-
tion through the variable b+ and with the hard function
through the variable ω.

The definition in Eq. (10) can be compared with that
of the standard quark PDF, which can be written either
in terms of SCET fields in momentum space, or in terms

of standard QCD fields in position space

fq(ω/P−; µ)

=
〈
pn(P−)

∣∣∣χ̄n(0) δ(ω − Pn)
n̄/

2
χn(0)

∣∣∣pn(P−)
〉

(11)

=
∫

dy+

4π
e−iy+ω/2

×
〈
pn(P−)

∣∣∣ψ̄
(
y+ n

2

)
Wn

(
y+ n

2
, 0

) n̄/

2
ψ(0)

∣∣∣pn(P−)
〉

,

where Wn is a light-like Wilson line along the n direction.
The factorization theorem for the quark beam function

is

Bq(s, x; µ) =
∑

i=q,g,q̄

∫
dx′ Iqi(s, x− x′; µ) fi(x′; µ) ,

(12)

where we defined x = ω/P− and s = b+ω. Here, Iqi is a
perturbative Wilson coefficient that describes the forma-
tion of an initial-state jet prior to the hard interaction,
as well as the accompanying radiation into the final-state
inside the beam cone around the beam axis. The quark
beam function gets contributions from the quark, gluon,
and antiquark PDFs. For example, if an incoming gluon
from the proton pair-produces, with the quark partici-
pating in the hard interaction and the antiquark going
into the beam cone, then this corresponds to a contribu-
tion of the gluon PDF fg(x) to the quark beam function
Bq(s, x).

The Wilson coefficient Iqi in Eq. (12) can be deter-
mined by computing both sides of Eq. (12) with the pro-
ton state replaced by quark and gluon states. At tree
level, the Wilson coefficients are

Itree
qq (s, x− x′) = δ(s) δ(x − x′) ,

Itree
qg = Itree

qq̄ = 0 . (13)

µΛ

RGE sums 
double 
Sudakov logsUHδ = US ⊗ Uff

Xb Xa

!+

!−

Pa Pb

ηcut−ηcut

Soft

Soft

dσ = H × S ⊗B ⊗B

U1/2
H δ = US ⊗ UB

H

Sf

B

µ

µ s

µ b

µ

µ h

!

µh

µΛ

RGE 
sums 
double 
Sudakov 
logscan’t have just pdfs !
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Soft

Soft

Pa

Pb

!−

!+

dσ = H S ⊗ f ⊗ f

Xb Xa

!+

!−

Pa Pb

ηcut−ηcut

Soft

Soft

dσ = H × S ⊗B ⊗B

Let’s add Final State Jets
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Soft

Soft

Pa

Pb

!−

!+

Xb Xa

!+

!−

Pa Pb

ηcut−ηcut

Soft

Soft

Jet 2

Jet 1

Soft

Soft

Xb

Pa

−ηcut ηcut

Pb

Xa

SoftJet 2

Jet 1Soft

Pa

Pb

dσ = H S ⊗ J ⊗ J ⊗ f ⊗ f

Threshold Jet Production

dσ = H × S ⊗ J ⊗ J ⊗B ⊗B

 “Exclusive” Jet Production
I.S., Tackmann,
Waalewijn

Kidonakis,
Orderda, Sterman

MJJ → Ecm xa,b → 1,

Require: 
final state jets #defined by jet algorithm$ are well 
separated from each other, from the beam 
direction, and from soft radiation #pTmin, Esoft<E0$10

η

φ

ρs

ρs

ρa

ρb

nb

−π

π

na

n1

ρ1

∞−∞ 0 ηcut−ηcut ηdet−ηdet

0

n2

ρ2

η

φ

ρs

ρs

nb

−π

π

na

n1

ρ1

0

n2

ρ2

ρb

ρa

∞−∞ 0 ηdet−ηdet

FIG. 6: 2-jet kinematics in the η-φ plane. On the left, only jets at |η| < ηcut are identified, so the beam cone is defined by
|η| > ηcut. Possible additional jets at |η| > ηcut are part of the na or nb collinear radiation in the beam function. On the
right, any jets inside the detector are identified, in which case the beam cone is defined by the acceptance limit of the detector,
|η| > ηdet.

pseudorapidities |η| > ηcut. Similarly to the cones for
the jets, this beam cone should be implemented as a
smooth infrared-safe cutoff. The total momentum along
the beam direction within a cone of size ηcut is thus

Bµ
a,b = P µ

a,b![ρa,b] + P µ
a,b![ρs] ≡ qµ

a,b + #µ
a,b . (45)

Similarly to R for the final-state jets, ηcut determines the
size of the region which is considered the beam direction.
Thus, to avoid the collinear sectors of the beams, na,b,
to overlap with the collinear sectors of the jets, nJ , we
require λ ∼ e−ηcut (TODO). Then, qa,b has the sameTODO:

check
and
explain

power counting as ba,b and the large and small compo-
nents of Ba,b in Eq. (45) are

n̄a ·Ba = n̄a ·qa +O(λ2Q) ,

na ·Ba = na ·qa + na ·#a ∼ O(λ2Q) ,

Ba⊥ = qa⊥ + #a⊥ ∼ O(λ2Q) , (46)

and similarly for Bb. In contrast to the final-state jets,
for which PJ⊥ = 0, we can have a nonzero residual Ba⊥,
because we chose na and nb to lie along the direction of
the incoming proton momentum, which can be different
from the direction of Ba,b by O(λ2).

For the choice of ηcut we can distinguish two different
scenarios, as shown in Fig. 6. In one case, the experimen-
tal measurements only identify central jets with |η| < ηcut

(for jet measurements at the Tevatron typically ηcut = 1).
In this case there might be additional jets at larger ra-
pidities, which are summed over and are thus considered
as part of the beam cone, as shown in the right panel in
Fig. 6. They are thus part of the beam functions and are
produced by the collinear radiation from the initial-state
jet shown in Fig. 4. If ηcut is increased, these jets will
be identified as separate jets and will be described by
their own final-state collinear sector, while at the same
time the size of the beam cone is reduced and the scale

of the beam function is lowered. In the other extreme
case, shown in the right panel of Fig. 6, all jets within
the acceptance limit of the detector, ηdet, are identified.
Now, the beam cone is literally defined by the edges of
the detector ηcut = ηdet. As this is a much more exclusive
measurement, the beam scale λ ∼ e−ηdet is a correspond-
ingly much smaller scale.

C. Factorization Theorem

The cross section in full QCD is given by (TODO) TODO:
avg.
over
proton
spins

dσ

dO
=

1
2E2

CM

∑

X

∣∣M(pp→ X)
∣∣2 δ[O − fO(X)]

× (2π)4δ4(Pa + Pb − PX) , (47)

where M(pp → X) is the matrix element in full QCD
to scatter the incoming protons with momenta Pa and
Pb into the hadronic final state X with momentum PX .
The final-state phase-space integrations are included in
the sum over all X . The function fO(X) returns the value
of the observable for a given hadronic final state X . It
encodes both the details of the jet algorithm and how the
observable O is calculated from the thus reconstructed jet
momenta. The δ function in the first line then picks out
all final states that contribute to a certain value of O.

In the first step, we match QCD onto SCET at the
hard scale by integrating out fluctuations of O(Q2). In
SCET the hard interaction becomes localized and can be
written as the matrix element of a local operator,

M(pp→ X) =
〈
X

∣∣Q
∣∣pp

〉
, (48)

which is discussed further below [see Eq. (50)].
To derive the factorization theorem for dσ/dO we uti-

lize the formalism introduced in Ref. [? ]. The majority
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Comparison to concepts used at CDF/Pythia
R.D. Field

“Underlying event is everything but the 
outgoing hard jets #and accompanying 
radiation$. It consists of particles
arising from the beam"beam remnants
and multiple parton interactions.”

Event generators such as Pythia implement initial state 
showers & model the underlying event with a treatment of 
the beam"remnants and multiple interactions.  

measured at mid-rapidity,  
transverse to central jets

&This radiation should be described by 
soft functions in Factorization Theorems.'

&Consistent with soft radiation convoluted with the beam function.'
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Derivation of Factorization Theorem
       for Exclusive Jet Production 
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Energy Flow Operator

! Lets derive the factorization theorem to see where B comes from

! Most observables only depend on the
energy distribution ρX(Ω)

! For example:
X has n particles with pi = (Ei, "pi)

ρX(Ω) =
∑

i

Ei δ(Ω − Ωi)

! Energy flow operator:

E(Ω)|X〉 = ρX(Ω)|X〉

[Korchemsky, Oderda, Sterman; Lee, Sterman, Bauer, Fleming;

We follow: Bauer, Hornig, Tackmann]

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 8 / 19

Energy Flow Operator

21Thursday, April 30, 2009



Energy Flow & Factorization

! QCD cross section:
dσ

dO
=

1

2E2
CM

∑

X

∣∣M(pp → X)
∣∣2 δ[O − fO(X)]

× (2π)4δ4(Pa + Pb − PX)

! Match onto SCET
M(pp → X) =

〈
X

∣∣Q
∣∣pp

〉

! Use energy flow to do sum over the final states

dσ

dO
=

1

2E2
CM

∑

X

〈pp|Q†|X〉〈X|Q|pp〉 δ(O − fO[ρX ])

× (2π)4δ4(Pa + Pb − PX)

=
1

2E2
CM

∫
Dρ

∫
d4x 〈pp|Q†(x) δ[ρ − E]Q(0)|pp〉 δ(O − fO[ρ])

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 9 / 19

Energy Flow & Factorization
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Soft-Collinear Factorization

! SCET Lagrangian: [Bauer et. al.]

L = Lna + Lnb +
∑

i

Lni + Ls

! Decouple collinear and soft [BPS]

ξn,p(x) → Yn(x) ξ(0)
n,p(x)

Aµ
n,p(x) → Yn(x) A(0)µ

n,p (x) Y †
n (x)

ks, ρs

p1, ρ1

ba, ρabb, ρb

p2, ρ2

! Energy flow factorizes [Bauer, Hornig, Tackmann]

E(Ω) = Ea(Ω) + Eb(Ω) +
∑

i

Ei(Ω) + Es(Ω)

∫
Dρ δ[ρ − E] =

∫
Dρa δ[ρa − Ea] Dρb δ[ρb − Eb]

∏

i

Dρi δ[ρi − Ei]

× Dρs δ[ρs − Es]

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 10 / 19

Soft-Collinear Factorization
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Starting Point for Factorization

dσ

dO
=

1

2E2
CM

∫
Dρ d4x 〈pp|Q†(x) δ[ρ − E]Q(0)|pp〉 δ[O − fO[ρ]]

=
∫

d4ba,b Dρa,b d4p1,2 Dρ1,2 d4ks Dρs δ[O − fO[ρ]]

× H(ŝ, . . . ) B(ba, ρa) B(bb, ρb) J(p1, ρ1) J(p2, ρ2) S(ks, ρs)

× (2π)4δ4(Pa + Pb − ba − bb − p1 − p2 − ks)

with

H(ŝ, . . . ) = hard function
B(ba, ρa) = beam distribution
J(pi, ρi) = jet distribution
S(ks, ρs) = soft distribution

ks, ρs

p1, ρ1

ba, ρabb, ρb

p2, ρ2

! These distributions are not inclusive, they depend on ρi

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 11 / 19

Step I1

24Thursday, April 30, 2009



Kinematics
! P µ

i"[ρ] ≡ P µ
" ("ni, R)[ρ] = momentum in cone of radius R around "ni

P µ
1 = P µ

1"[ρ]

= P µ
1"[ρ1]+P µ

1"[ρs]

= qµ
1 + #µ

1

Bµ
a = P µ

a"[ρa]+P µ
a"[ρs]

= qµ
a+ #µ

a

ρ1

ρa

ρs

! Expanding:

P −
i = n̄i ·Pi = q−

i P +
i = ni ·Pi = q+

i + #+
i

B−
a = n̄a ·Ba = q−

a B+
a = na ·Ba = q+

a + #+
a

! b−
a = (1 − xa) ECM

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 12 / 19

Jet Kinematics
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Factorization

dσ =
∫

d4ba,b Dρa,b d4p1,2 Dρ1,2 d4ks Dρs

× H(ŝ, . . . ) B(ba, ρa) B(bb, ρb) J(p1, ρ1) J(p2, ρ2) S(ks, ρs)

× (2π)4δ4(Pa + Pb − ba − bb − p1 − p2 − ks)

× d%+
a,b,1,2 δ(%+

a,b − P +
!a,b[ρs]) δ(%+

1,2 − P +
!1,2[ρs])

× dq+
a,b δ(q+

a,b − P +
! [ρa,b]) dB+

a,b δ(B+
a,b − q+

a,b − %+
a,b)

× dq+
1,2 δ(q+

1,2 − P +
! [ρ1,2]) dP +

1,2 δ(P +
1,2 − q+

1,2 − %+
1,2)

× dP −
1,2 δ(P −

1,2 − P −
! [ρ1,2])

=
∫

d%+
a,b,1,2 S!(%+

a , %+
b , %+

1 , %+
2 )

× dxa,b dB+
a,b B!(xa, B+

a − %+
a ) B!(xb, B+

b − %+
b )

× d4p1,2 J!(p−
1 , P +

1 − %+
1 ) J!(p−

2 , P +
2 − %+

2 )

× H(xa, xb, p−
1 , p−

2 ) dO δ[O − fO(xa, xb, B+
a , B+

b , p−
1 , p−

2 )]

× (2π)4δ4( 1
2xa ECM na + 1

2xb ECM nb − p1 − p2)

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 13 / 19

Factorization

S!(!+a , !+b , !+1 , !+2 , E0)

B(p−a (B+
a −!+a ), xa) B(p−b (B+

b −!+b ), xb)

26Thursday, April 30, 2009



Factorization

dσ

dO
=

∫
d"+

a,b,1,2 S!("+
a , "+

b , "+
1 , "+

2 )

× dxa,b dB+
a,b B!(xa, B+

a − "+
a ) B!(xb, B+

b − "+
b )

× d4p1,2 J!(p−
1 , P +

1 − "+
1 ) J!(p−

2 , P +
2 − "+

2 )

× H(xa, xb, p−
1 , p−

2 ) δ[O − fO(xa, xb, B+
a , B+

b , p−
1 , p−

2 )]

× (2π)4δ4( 1
2xa ECM na + 1

2xb ECM nb − p1 − p2)

" Pick an observable, e.g.

M2
JJ = 2P1 ·P2 =

P −
1 P −

2

p−
1 p−

2

xa xb E2
CM

Does not depend on B+
a,b

Bµ
a

P µ
1

P µ
2

Bµ
b

" Cannot integrate away B+
a,b to give PDF: B → f

" Can only integrate B+
a,b up to B+

a,b max, e.g. B+
a,b is restricted by exp. cuts

µ2
b ∼ B+

max(xECM) ∼ e−2ycutx(1 − x)E2
CM ∼ (50 − 200 GeV)2

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 14 / 19

Final Formula

S!(!+a , !+b , !+1 , !+2 , E0)

Can only integrate up to upper cuto! given by            restrictionηcut

but

Beam Function Factorizes:

B(p−a (B+
a −!+a ), xa) B(p−b (B+

b −!+b ), xb)

∫ (Q̂e−ηcut )

0
dB+

a Ba(p−a (B+
a −!+a ), xa)

B(x, s, µ) =
∫

dx′ I(s, x′ − x, µ) f(x′, µ) (next)

Same H as for threshold 
Factorization Theorem 

&Talks here by
Neubert, Becher,
Manohar'
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Beam Functions
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Bq

(
b+ω,

ω

P−a
, µ

)
=

1
ω

∫
dx−

4π
eib+x−/2

〈
pn(P−a )

∣∣∣χ̄n

(
x−

n

2
) n̄/

2
[
δ(ω − P̄)χn

(
0
)]∣∣∣pn(P−a )

〉

Quark Beam Function χn = W †ξn

Quark Parton Distribution

proton
initial state jet

ω ∼ λ0
b+ ∼ λ2

b+ ∼ λ2

fq

( ω

P−a
, µ

)
= θ(ω)

〈
pn(P−a )

∣∣∣χ̄n(0)
n̄/

2
[
δ(ω − P̄)χn(0)

]∣∣∣pn(P−a )
〉

(Fourier transform of standard definition)

Beam Function

! We now consider the inclusive B (drop the cone restriction B")

! Quark beam function Bq(b+ω, z; µ)

Bq(b
+ω, ω/P −

a ; µ) =
1

ω

∫
dx−

4π
eib+x−/2

×
〈
pn

∣∣χ̄n(x−n/2)
n̄/

2
δ(ω − P̄) χn(0)

∣∣pn

〉

! Compare with PDF fq(z; µ)

fq(ω/P −
a ; µ) =

〈
pn

∣∣χ̄n(0)
n̄/

2
δ(ω−P̄) χn(0)

∣∣pn

〉

pp

ω,−b+

pp

ω,−b+

pp

ω

pp

ω

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 15 / 19

, . . .

, . . .

Bq(s, x, µ)

fq(x, µ)

like jet function in initial state, BUT also transitions to pdf
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Beam Function Factorizes

! B factorizes (matching SCETI → SCETII )

Bq(b
+ω, z; µ) =

∑

i=q,g,q̄

∫
dz′ Iqi(b

+ω, z − z′; µ) fi(z
′; µ)

pp

ω,−b+

pp

ω,−b+

pp

ω

pp

ω

+ + · · · = Iqq ⊗
(

+ + . . .

)

! At tree level Itree
qq (b+ω, z) = δ(b+ω) δ(z) and Itree

qg = Itree
qq̄ = 0 so

Btree
q (b+ω, z) = δ(b+ω) fq(z)

! At one-loop Iqg $= 0

pp

ω,−b+

gluon PDF fg mixes
into Bq

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 16 / 19

Beam Function Factorization

Beam Function at Tree Level

perturbatively calculable
initial state jet coefficient 

3

Re b

Im b

+

+

a+a+-

FIG. 2: Cuts for the T-product with a+ = −p+
a ≥ 0.

To work out the value of Iqq in the factorization theorem at tree level we consider Fig. 1. We can use any states for
the computation of the Wilson coefficient as long as they have nonzero overlap with our operator, and so we pick a
free quark state with momentum (p+, p−) where p− > 0 is the large momentum. When necessary (in later sections)
we will use a small p+ < 0 as an IR regulator (which may be otherwise set to zero). From Eq. (1) with this state we
have

〈
q(p)

∣∣ξ̄n(x−n/2)
n̄/

2

[
δ(ω − P)ξn(0)

]∣∣q(p)
〉

= ū(p)
n̄/

2
u(p) eix−p+/2 δ(ω − p−) = eix−p+/2 δ(1− ω/p−) . (6)

Including the extra Fourier transform present in Eq. (1) and setting p+ = 0 we have 1/(4πω)
∫

dx−eix−b+/2δ(1−ω/p−).
Using a hat to denote the partonic beam function this gives

B̂tree
q (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (7)

For the PDF we have f̂ tree
q (z) = δ(1− z), so the matching requires the tree level remnant coefficient function

Itree
qq (b+ω, x− z) = δ(b+ω) δ(x− z) . (8)

This result for Iqq is valid for use with both the hadronic beam function and the partonic beam function.
We also consider the tree level matching for the Igg with a single gluon state, averaging over gluon colors A to

maintain the same normalization as for the proton state. From Eq. (1)

−2
Nc − 1

∑

A

〈
g(p, εA)

∣∣tr
[
Bµ

n⊥(x−n/2)δ(ω − P)B⊥nµ(0)
]∣∣g(p, εA)

〉
=

−2
Nc − 1

∑

A

ε∗A ·εA TF eix−p+/2 δ(ω − p−)

= eix−p+/2 δ(ω − p−) , (9)

so integrating 1/(4π)
∫

dx−eix−b+/2 the partonic gluon beam function is

B̂tree
g (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (10)

For the gluon PDF we have f̂ tree
g (z) = δ(1− z) so

Itree
gg (b+ω, x− z) = δ(b+ω) δ(x− z) . (11)

III. RELATION TO TIME-ORDERED PRODUCTS

We would like to relate the beam function to a T-product to simplify the computation of Feynman diagrams.
Lets consider a Fourier transform of the time-ordered product of fields that is similar to our quark beam function,
T (b+ω, ω/p−a ). Suppressing the contraction of spin and color indices for simplicity we examine

T (b+ω, ω/p−a ) ≡ 1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣T χ̄n(x)
n̄/

2
χn(0)

∣∣pn

〉
(12)

=
1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣θ(x++ x−)χ̄n(x)
n̄/

2
χn(0)− θ(−x+− x−)

n̄/

2
χn(0)χ̄n(x)

∣∣pn

〉
.

3

Re b

Im b

+

+

a+a+-

FIG. 2: Cuts for the T-product with a+ = −p+
a ≥ 0.

To work out the value of Iqq in the factorization theorem at tree level we consider Fig. 1. We can use any states for
the computation of the Wilson coefficient as long as they have nonzero overlap with our operator, and so we pick a
free quark state with momentum (p+, p−) where p− > 0 is the large momentum. When necessary (in later sections)
we will use a small p+ < 0 as an IR regulator (which may be otherwise set to zero). From Eq. (1) with this state we
have

〈
q(p)

∣∣ξ̄n(x−n/2)
n̄/

2

[
δ(ω − P)ξn(0)

]∣∣q(p)
〉

= ū(p)
n̄/

2
u(p) eix−p+/2 δ(ω − p−) = eix−p+/2 δ(1− ω/p−) . (6)

Including the extra Fourier transform present in Eq. (1) and setting p+ = 0 we have 1/(4πω)
∫

dx−eix−b+/2δ(1−ω/p−).
Using a hat to denote the partonic beam function this gives

B̂tree
q (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (7)

For the PDF we have f̂ tree
q (z) = δ(1− z), so the matching requires the tree level remnant coefficient function

Itree
qq (b+ω, x− z) = δ(b+ω) δ(x− z) . (8)

This result for Iqq is valid for use with both the hadronic beam function and the partonic beam function.
We also consider the tree level matching for the Igg with a single gluon state, averaging over gluon colors A to

maintain the same normalization as for the proton state. From Eq. (1)

−2
Nc − 1

∑

A

〈
g(p, εA)

∣∣tr
[
Bµ

n⊥(x−n/2)δ(ω − P)B⊥nµ(0)
]∣∣g(p, εA)

〉
=

−2
Nc − 1

∑

A

ε∗A ·εA TF eix−p+/2 δ(ω − p−)

= eix−p+/2 δ(ω − p−) , (9)

so integrating 1/(4π)
∫

dx−eix−b+/2 the partonic gluon beam function is

B̂tree
g (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (10)

For the gluon PDF we have f̂ tree
g (z) = δ(1− z) so

Itree
gg (b+ω, x− z) = δ(b+ω) δ(x− z) . (11)

III. RELATION TO TIME-ORDERED PRODUCTS

We would like to relate the beam function to a T-product to simplify the computation of Feynman diagrams.
Lets consider a Fourier transform of the time-ordered product of fields that is similar to our quark beam function,
T (b+ω, ω/p−a ). Suppressing the contraction of spin and color indices for simplicity we examine

T (b+ω, ω/p−a ) ≡ 1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣T χ̄n(x)
n̄/

2
χn(0)

∣∣pn

〉
(12)

=
1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣θ(x++ x−)χ̄n(x)
n̄/

2
χn(0)− θ(−x+− x−)

n̄/

2
χn(0)χ̄n(x)

∣∣pn

〉
.

partonic matching:

hadronic results:
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FIG. 2: Cuts for the T-product with a+ = −p+
a ≥ 0.

To work out the value of Iqq in the factorization theorem at tree level we consider Fig. 1. We can use any states for
the computation of the Wilson coefficient as long as they have nonzero overlap with our operator, and so we pick a
free quark state with momentum (p+, p−) where p− > 0 is the large momentum. When necessary (in later sections)
we will use a small p+ < 0 as an IR regulator (which may be otherwise set to zero). From Eq. (1) with this state we
have

〈
q(p)

∣∣ξ̄n(x−n/2)
n̄/

2

[
δ(ω − P)ξn(0)

]∣∣q(p)
〉

= ū(p)
n̄/

2
u(p) eix−p+/2 δ(ω − p−) = eix−p+/2 δ(1− ω/p−) . (6)

Including the extra Fourier transform present in Eq. (1) and setting p+ = 0 we have 1/(4πω)
∫

dx−eix−b+/2δ(1−ω/p−).
Using a hat to denote the partonic beam function this gives

B̂tree
q (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (7)

For the PDF we have f̂ tree
q (z) = δ(1− z), so the matching requires the tree level remnant coefficient function

Itree
qq (b+ω, x− z) = δ(b+ω) δ(x− z) . (8)

This result for Iqq is valid for use with both the hadronic beam function and the partonic beam function.
We also consider the tree level matching for the Igg with a single gluon state, averaging over gluon colors A to

maintain the same normalization as for the proton state. From Eq. (1)

−2
Nc − 1

∑

A

〈
g(p, εA)

∣∣tr
[
Bµ

n⊥(x−n/2)δ(ω − P)B⊥nµ(0)
]∣∣g(p, εA)

〉
=

−2
Nc − 1

∑

A

ε∗A ·εA TF eix−p+/2 δ(ω − p−)

= eix−p+/2 δ(ω − p−) , (9)

so integrating 1/(4π)
∫

dx−eix−b+/2 the partonic gluon beam function is

B̂tree
g (b+ω, ω/p−) = δ(b+ω) δ(1− ω/p−) . (10)

For the gluon PDF we have f̂ tree
g (z) = δ(1− z) so

Itree
gg (b+ω, x− z) = δ(b+ω) δ(x− z) . (11)

III. RELATION TO TIME-ORDERED PRODUCTS

We would like to relate the beam function to a T-product to simplify the computation of Feynman diagrams.
Lets consider a Fourier transform of the time-ordered product of fields that is similar to our quark beam function,
T (b+ω, ω/p−a ). Suppressing the contraction of spin and color indices for simplicity we examine

T (b+ω, ω/p−a ) ≡ 1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣T χ̄n(x)
n̄/

2
χn(0)

∣∣pn

〉
(12)

=
1
ω

∫
dx−dx+

(4π)2
eib+x−/2e−iωx+/2

〈
pn

∣∣θ(x++ x−)χ̄n(x)
n̄/

2
χn(0)− θ(−x+− x−)

n̄/

2
χn(0)χ̄n(x)

∣∣pn

〉
.

Tree level results
not effected by

beam vs. pdf
Bq(b+ω, x) = δ(b+ω)fq(x, µ)
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FIG. 4: One loop quark beam function graphs. The minus-momentum ω is incoming at the vertex and the b+ momentum is
outgoing. Graphs b),c), and d) have symmetric counterparts which are equal to the ones shown and included in the computation.
With its symmetric counterpart, graph d) is of course (Zψ − 1) times the tree level result.

These latter two results will be used for the matching computation.

VI. ONE-LOOP COMPUTATION OF THE QUARK BEAM FUNCTION

In this section we compute the graphs in Fig. 4 for the beam function. We will let a+ = −p+ be the plus-momentum
of the external quark. For the computation of the beam function anomalous dimension we should treat the calculation
as in SCETI and so a+ ∼ b+ ∼ λ2. The renormalized result of this computation will be used for an additional purpose,
to match the beam function onto the PDF (matching from SCETI to SCETII). For this computation we use a+ > 0
as an IR regulator with a+ # b+, and match up the ln(a+) = ln(−p+) dependence with that present in the PDF
computation in Eq. (38). To keep the notation simple we define invariant mass variables s, s′, and continue to use z,

s = b+ω , s′ = a+ω , z = ω/p− . (50)

For real emission graphs the Discb+ θ(b+ − a+) in Eq. (16) is equivalent to using Discs>s′ ≡ Discs θ(s − s′) since
ω > 0. In each Feynman graph we are using ε for UV divergences, and s′ both regulates IR divergences, and in the
UV divergent piece, corresponds to the convolution variable. For each graph we first take the Disc, then expand about
ε = 0 with non-zero s, s′ to determine the UV counterterm. Since s′ is nonzero, all IR divergences are regulated and
we only get 1/εUV divergences. Next we consider the O(ε0) terms in the graph and extract the finite piece for the
matching computation by considering the limit s′ → 0. We do this last step with two different methods:

Method 1: Lets denote the finite result for some diagram as gfin(s, s′, z).

a) Take s > 0 strictly and set s′ = 0 and ε = 0, letting g1(s, z) = g(s, 0, z, 0). Here we study g1 as a function of
s and take all singular factors to be plus-functions, 1/s → (µ2/s)+/µ2 etc. After this replacement we call the
function g+

1 . Then we write

gfin(s, s′, z) = g+
1 (s, z) + δ(s) gδ(s′, z) , (51)

where the δ-function term compensates for the choice made when writing this form of the plus functions.

b) To determine gδ, compute gδ(s′, z) =
∫ µ2

0 ds gfin(s, s′, z) −
∫ µ2

0 ds g+
1 (s, z). Here the upper limit choice is

arbitrary, but the choice of µ2 is the most convenient for the computation since it kills all plus-function terms.

Method 2: In this method we take the limit s′ → 0 of the O(ε0) pieces more carefully, keeping track of distributions
in s, and thereby avoiding the integration step in method 1:
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FIG. 4: One loop quark beam function graphs. The minus-momentum ω is incoming at the vertex and the b+ momentum is
outgoing. Graphs b),c), and d) have symmetric counterparts which are equal to the ones shown and included in the computation.
With its symmetric counterpart, graph d) is of course (Zψ − 1) times the tree level result.

These latter two results will be used for the matching computation.

VI. ONE-LOOP COMPUTATION OF THE QUARK BEAM FUNCTION

In this section we compute the graphs in Fig. 4 for the beam function. We will let a+ = −p+ be the plus-momentum
of the external quark. For the computation of the beam function anomalous dimension we should treat the calculation
as in SCETI and so a+ ∼ b+ ∼ λ2. The renormalized result of this computation will be used for an additional purpose,
to match the beam function onto the PDF (matching from SCETI to SCETII). For this computation we use a+ > 0
as an IR regulator with a+ # b+, and match up the ln(a+) = ln(−p+) dependence with that present in the PDF
computation in Eq. (38). To keep the notation simple we define invariant mass variables s, s′, and continue to use z,

s = b+ω , s′ = a+ω , z = ω/p− . (50)

For real emission graphs the Discb+ θ(b+ − a+) in Eq. (16) is equivalent to using Discs>s′ ≡ Discs θ(s − s′) since
ω > 0. In each Feynman graph we are using ε for UV divergences, and s′ both regulates IR divergences, and in the
UV divergent piece, corresponds to the convolution variable. For each graph we first take the Disc, then expand about
ε = 0 with non-zero s, s′ to determine the UV counterterm. Since s′ is nonzero, all IR divergences are regulated and
we only get 1/εUV divergences. Next we consider the O(ε0) terms in the graph and extract the finite piece for the
matching computation by considering the limit s′ → 0. We do this last step with two different methods:

Method 1: Lets denote the finite result for some diagram as gfin(s, s′, z).

a) Take s > 0 strictly and set s′ = 0 and ε = 0, letting g1(s, z) = g(s, 0, z, 0). Here we study g1 as a function of
s and take all singular factors to be plus-functions, 1/s → (µ2/s)+/µ2 etc. After this replacement we call the
function g+

1 . Then we write

gfin(s, s′, z) = g+
1 (s, z) + δ(s) gδ(s′, z) , (51)

where the δ-function term compensates for the choice made when writing this form of the plus functions.

b) To determine gδ, compute gδ(s′, z) =
∫ µ2

0 ds gfin(s, s′, z) −
∫ µ2

0 ds g+
1 (s, z). Here the upper limit choice is

arbitrary, but the choice of µ2 is the most convenient for the computation since it kills all plus-function terms.

Method 2: In this method we take the limit s′ → 0 of the O(ε0) pieces more carefully, keeping track of distributions
in s, and thereby avoiding the integration step in method 1:
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FIG. 3: Nonzero one loop graphs for the quark parton distribution function of the proton. The minus-momentum ω is incoming
at the vertex. Graphs b) and c) have symmetric counterparts which are included in their computation.

V. ONE-LOOP COMPUTATION OF THE PDF

In this section we compute the graphs in Fig. 3 for the PDF using a regulator p+ != 0 for IR divergences, and
dim.reg. for UV divergences. The form of the localized operator in SCET tells us that we can use time-ordered
Feynman rules. Because we have a single collinear direction the computation can be done with the SCET Feynman
rules or with pure QCD Feynman rules, and we use the latter here (we have checked that the results for each graph
are the same either way).

We start by computing using simple quark states |q(p)〉 and call the partonic result f̂ [q]
q (z) where z is the momentum

fraction of the operator relative to p. Here the subscript q is for the operator and the superscript [q] for the state. We
also compute f̂ [g]

q (z) with a gluon state |g(p)〉. At the end we will rescale momentum fractions to the more general
states |q(p);P 〉 and |g(p);P 〉 where the parton momentum p− is only a fraction of the total momentum of the state
P−. We call the results f̂ [qx′]

q (x) and f̂ [gx′]
q (x) where x is the momentum fraction of the operator relative to P and

x′ = p−/P−. These more general states allows us to reconstruct the full one-loop renormalization for the PDF.
Lets start with f̂ [q]

q (z) using Feynman gauge to compute the gauge invariant sum of all the graphs. The first graph
in Fig. 3 is

Fig. 3a = −ig2CF

∫
d−d!

ūn(p)γµ !/ n̄/
2 !/ γµu(p)

[!2 + i0]2[(! − p)2 + i0]
δ(!−− ω) (28)

=
−ig2CF p−(d− 2)

2(2π)2

∫
d!+d!− d−n!

!2
⊥ δ(!−− ω)

[!2 + i0]2[(! − p)2 + i0]

=
(1− ε)g2CF (p−− ω)

(2π) p−
θ(ω)θ(p− − ω)

∫
d−n!

(!2
⊥

[(! 2
⊥ + A− i0]2

=
2g2CF (1− ε)2Γ(ε)eεγE

(4π)2
(1− z)θ(z)θ(1− z)

( A

µ2

)−ε

=
αsCF

π
(1− z)θ(z)θ(1− z)

[ 1
2ε

− 1− 1
2

ln
( A

µ2

)]
,

where

A = −p+p−z(1− z) , with z =
ω

p−
. (29)

Here z is the momentum fraction of the operator relative to the incoming quark. The derivation of Eq. (28) goes as
follows. In the first line of Eq. (28), d−d! = d!+d!−d−n!⊥/(2(2π)2) = d!+d!−dn!⊥[eεγEµ2ε/(2(2π)4)] with n = d− 2 =
2− 2ε. Here for notational convenience we grouped with the measure the (2π)’s and the required factors such that µ
is in MS (these factors are of course actually carried by the renormalized couplings, g(µ)µε, in the original Feynman
rules). To derive the second equality in Eq. (28) we used

ū(p) γµ !/
n̄/

2
!/ γµ u(p) = (2 − d)ū(p) !/

n̄/

2
!/u(p) = (d− 2)!2

⊥ū(p)
n̄/

2
u(p) = p−(d− 2)!2

⊥ , (30)

where we get !⊥’s because n/un(p) = 0. Our notation is that !2
⊥ = −(! 2

⊥, so !2
⊥ is Minkowski and (! 2

⊥ is Euclidean.
To obtain the third equality in Eq. (28) we did the !+ integral by contours. There are two poles above the axis for

IR
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!− < 0, two poles below the axis for !− > p−, and a pole above and below when θ(!−)θ(p− − !−) = 1. The first two
cases give zero so the !− integration range is restricted, and for the final case taking the pole in !+ above we set

!+ = p+ −
#!2
⊥

(p− − !−)
+ i0 . (31)

In the denominator this gives (!− − p−)[!−p+ + !−#! 2
⊥/(!− − p−)− #! 2

⊥ + i0]2 = [#! 2
⊥ + A− i0]2 (p−)2/(!− − p−) with A

defined as in Eq. (29).
The next graph in Fig. 3 involves the Wilson lines in the PDF definition, and has a real contraction with δ(!−−ω)

and a virtual contraction with a δ(p− − ω),

Fig. 3b = 2ig2CF

∫
d−d!

ūn(p) n̄/
2 !/ n̄/ u(p)

[!−− p−][!2 + i0][(!− p)2 + i0]

[
δ(!−− ω)− δ(p−− ω)

]
(32)

=
−4g2CF

(4π)

∫
d−n! d!−

!−p− θ(!−)θ(p− − !−)
[!−− p−]p−[#! 2

⊥ + A(!−)− i0]

[
δ(!−− ω)− δ(p−− ω)

]

=
4g2CF eεγEΓ(ε)

(4π)2

∫
d!−

!− θ(!−)θ(p− − !−)
[p− − !−]

[
−p+!−(p− − !−)/p− − i0

µ2

]−ε [
δ(!−− ω)− δ(p−− ω)

]

=
CF αs(µ)

π
eεγEΓ(ε)

[
zθ(z)θ(1− z)

(1− z)

(A− i0
µ2

)−ε
− δ(p−− ω)

(−p+ − i0
µ2

)−ε
∫ p−

0
d!−

(!−)1−ε (p−)ε

(p− − !−)1+ε

]

=
CF αs(µ)

π
eεγEΓ(ε)

[
zθ(z)θ(1− z)

(1− z)1+ε

(−p+p−z − i0
µ2

)−ε
− δ(1− z)

(−p+p− − i0
µ2

)−ε
∫ 1

0
dy

y1−ε

(1− y)1+ε

]

=
CF αs(µ)

π
eεγEΓ(ε)

[
zθ(z)θ(1− z)

(1− z)1+ε

(−p+p−z − i0
µ2

)−ε
− δ(1− z)

(−p+p− − i0
µ2

)−ε Γ(2− ε)Γ(−ε)
Γ(2− 2ε)

]
.

For the first line ūn(p)n̄/!/n̄/un(p) = 4!−p−. The contour integral in !+ has the same pole structure as for graph a), and
the denominator was simplified with (!−− p−)2[!−p+ + !−#! 2

⊥/(!−− p−))− #! 2
⊥+ i0] = (!−− p−) (p−)[#! 2

⊥+A(!−)− i0]
where A(!−) = −p+!−(p− − !−)/p−. Just as before we have defined A = −p+p−z(1− z). To obtain the final line of
Eq. (32) we expand in ε and use the distribution identity

θ(1− z)
(1− z)1+ε

= −δ(1− z)
ε

+ L0(1− z)− εL1(1− z) +O(ε2) . (33)

Here we defined

Ln(x) =
[θ(x) lnn(x)

x

]

+
, (34)

with the boundary condition on the plus function such that
∫ 1
0 dxLn(x) = 0, corresponding to

Ln(x) = lim
β→0

[
θ(x− β) lnn x

x
+ δ(x− β)

lnn+1β

n + 1

]
. (35)

Expanding Eq. (32) in ε we find

Fig. 3b =
CF αs(µ)

π

[
zθ(z)

{1
ε

+
π2ε

12

}{
− 1

ε
δ(1− z) + L0(1− z)− εL1(1− z)

}(−p+p−z − i0
µ2

)−ε
(36)

+ δ(1− z)
(−p+p− − i0

µ2

)−ε{ 1
ε2

+
1
ε

+ 2− π2

12

}]

=
CF αs(µ)

π

[
δ(1− z)

{
− 1

ε2
− π2

12

}(−p+p− − i0
µ2

)−ε
+ θ(z)

{1
ε
zL0(1− z)− zL1(1− z)

}(−p+p−z − i0
µ2

)−ε

+ δ(1− z)
(−p+p− − i0

µ2

)−ε{ 1
ε2

+
1
ε

+ 2− π2

12

}]

=
CF αs(µ)

π

[{
δ(1− z) + zθ(z)L0(1− z)

}[1
ε

+ ln
( µ2

−p+p−z−i0

)]
− zθ(z)L1(1− z) + δ(1− z)

(
2− π2

6

)]
.

f̂ [q,1]
q (z, µ) =

CF αs(µ)
π

[
1
2

ln
( µ2

p2
IR

)(
1 + z2

1− z

)

+

− (1− z)θ(z)θ(1− z) + . . .

]

f̂ [g,1]
q (z, µ) =

−αs(µ)
4π

θ(z)θ(1−z)
[
[(1−z)2+z2] ln

( (1−z)p2
IR

µ2

)
+ . . .

]

B̂[q]
q (s, z, µ) = δ(s)δ(1− z) +

CF αs(µ)
π

{
δ(s)

[1
2

ln
( µ2

p2
IRz

)(1 + z2

1− z

)

+
+ . . .

]

+
1
µ2
L0

( s

µ2

)[ z

(1− z)+
+ . . .

]
+ . . .

}
,

B̂[g]
q (s, z, µ) =

−αs(µ)
4π

θ(z)θ(1−z)(1−2z+2z2)
{

δ(s) ln
zp2

IR

µ2
+ . . .

}
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Di!erence gives matching results:

Iqq(s, 1− z, µ) = δ(s)δ(1− z)

+
CF αs(µ)

π
θ(z)

{
δ(s)

[
zL1(1− z) + . . .

]
+

1
2

1
µ2
L0

( s

µ2

)
(1 + z2)L0(1− z) + . . .

}
,

Iqg(s, 1− z, µ) =
αs(µ)

4π
θ(z)θ(1−z)

[
[(1−z)2+z2]

1
µ2
L0

( s

µ2

)
+ . . .

]

quark pdf into quark beam function,
nontrivial corrections

gluon pdf into quark beam function (!)
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These latter two results will be used for the matching computation.

VI. ONE-LOOP COMPUTATION OF THE QUARK BEAM FUNCTION

In this section we compute the graphs in Fig. 4 for the beam function. We will let a+ = −p+ be the plus-momentum
of the external quark. For the computation of the beam function anomalous dimension we should treat the calculation
as in SCETI and so a+ ∼ b+ ∼ λ2. The renormalized result of this computation will be used for an additional purpose,
to match the beam function onto the PDF (matching from SCETI to SCETII). For this computation we use a+ > 0
as an IR regulator with a+ # b+, and match up the ln(a+) = ln(−p+) dependence with that present in the PDF
computation in Eq. (38). To keep the notation simple we define invariant mass variables s, s′, and continue to use z,

s = b+ω , s′ = a+ω , z = ω/p− . (50)

For real emission graphs the Discb+ θ(b+ − a+) in Eq. (16) is equivalent to using Discs>s′ ≡ Discs θ(s − s′) since
ω > 0. In each Feynman graph we are using ε for UV divergences, and s′ both regulates IR divergences, and in the
UV divergent piece, corresponds to the convolution variable. For each graph we first take the Disc, then expand about
ε = 0 with non-zero s, s′ to determine the UV counterterm. Since s′ is nonzero, all IR divergences are regulated and
we only get 1/εUV divergences. Next we consider the O(ε0) terms in the graph and extract the finite piece for the
matching computation by considering the limit s′ → 0. We do this last step with two different methods:

Method 1: Lets denote the finite result for some diagram as gfin(s, s′, z).

a) Take s > 0 strictly and set s′ = 0 and ε = 0, letting g1(s, z) = g(s, 0, z, 0). Here we study g1 as a function of
s and take all singular factors to be plus-functions, 1/s → (µ2/s)+/µ2 etc. After this replacement we call the
function g+

1 . Then we write

gfin(s, s′, z) = g+
1 (s, z) + δ(s) gδ(s′, z) , (51)

where the δ-function term compensates for the choice made when writing this form of the plus functions.

b) To determine gδ, compute gδ(s′, z) =
∫ µ2

0 ds gfin(s, s′, z) −
∫ µ2

0 ds g+
1 (s, z). Here the upper limit choice is

arbitrary, but the choice of µ2 is the most convenient for the computation since it kills all plus-function terms.

Method 2: In this method we take the limit s′ → 0 of the O(ε0) pieces more carefully, keeping track of distributions
in s, and thereby avoiding the integration step in method 1:

These mixing effects and 
radiative corrections are not 

accounted for by PDF evolution
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UV divergences and RGE 6

µΛ µb µhx Evolution s Evolution

FIG. 4: Evolution of the incoming beam. Starting from the low scale µΛ the proton is described by the x-evolution of the
PDFs, which redistributes the total momentum of the proton between its constituents. At the scale µb, the proton is probed
by soft radiation and breaks apart. This is the scale where the PDF is evaluated and the x evolution stops. Above µb, the
proton effectively ceases to exist, and the beam behaves like an incoming jet whose evolution is goverend by the invariant mass
of the hard parton which will eventually enter the hard interaction at the scale µh.

Therefore, at tree level, the beam function reduces to the
PDF,

Btree
q (s, x; µ) = δ(s) fq(x; µ) . (14)

The one-loop coefficients are determined from the dia-
grams in (TODO) ...TODO:

include
Fig.

B. Beam Evolution

C. Relation to Initial State Parton Showers

IV. DERIVATION OF FACTORIZATION
THEOREM

In this section we derive the factorization theorem in
Eq. (8). (Include brief overview of traditional andNOTE

SCET factorization theorems.) We start with a brief
overview of the necessary SCET ingredients in Sec. IVA,
describe the relevant kinematics in Sec. IVB, and finally
consider the factorization in Sec. IVC.

A. SCET

Soft-collinear effective theory is an effective field theory
of QCD which describes the interactions of collinear and
soft particles [? ? ? ? ]. Collinear particles and jets are
characterized by having large energy and small invariant
mass. To separate the large and small momentum com-
ponents, it is convenient to use light-cone coordinates.
For each distinct jet we define two light-cone vectors

nµ = (1,"n) , n̄µ = (1,−"n) , (15)

with n2 = n̄2 = 0, n·n̄ = 2, and "n is a unit three-vector
in the direction of the jet. Any four-momentum can be

decomposed as

pµ = n̄·p nµ

2
+ n·p n̄µ

2
+ pµ

n⊥ . (16)

For a jet with momentum PJ in the direction "nJ , n̄J ·PJ "
2EJ corresponds to the large energy of the jet, while
nJ ·PJ " m2

J/EJ # EJ , where m2
J = P 2

J is the invariant
mass of the jet, and the effective theory expansion is in
powers of the small parameter λ = mJ/EJ # 1.

The momentum p of an n-collinear particle scales as
(n·p, n̄·p, pn⊥) ∼ n̄·p (λ2, 1, λ). To construct the fields of
the effective theory, the momentum is written as

pµ = p̃µ + kµ = n̄·p̃ nµ

2
+ p̃µ

n⊥ + kµ (17)

where n̄·p̃ and p̃n⊥, are the large momentum components,
while k ∼ n̄·p̃λ2 is a small residual momentum.

The SCET fields for n-collinear quarks and gluons,
ξn,p̃(x) and An,p̃(x), are labeled by the collinear direc-
tion n and their large momentum p̃. They are written
in position space with respect to the residual momentum
and in momentum space with respect to the large mo-
mentum components. Often, only the direction label n
is kept, while the momentum labels are suppressed when
they are not essential. Derivatives i∂µ ∼ n̄ · p̃λ2 pick
out the residual momentum dependence, while the large
label momentum can be obtained from the momentum
operator Pµ

n , e.g. Pµ
n ξn,p̃ = p̃µ ξn,p̃. If there are several

fields, Pn returns the sum of the label momenta of all
n-collinear fields. We also define Pn = n̄·Pn.

Collinear operators are constructed out of products of
fields and Wilson lines that are invariant under collinear
gauge transformations [? ? ]

χn,ω(x) =
[
δ(ω − Pn)W †

n(x) ξn(x)
]
,

Bµ
⊥n,ω(x) =

1
g

[
δ(ω + Pn)W †

n(x) iDµ
n⊥Wn(x)

]
, (18)

For the interested student:

• Soft-Collinear Effective Theory, hep-ph/0005275
• Soft-collinear factorization, hep-ph/0109045
•Energy flow & factorization, arXiv:0808.2191

Beam function discussed here, to appear soon on the arXiv

•We derived a factorization theorem for N energetic jets
•The PDF gets replaced by a new beam function, which

describes the incoming proton and the initial state jet
•The beam function factorizes at a scale µb, into the PDF

and a calculable Wilson coefficient
• So the PDF gets “measured” at a scale smaller than that

of the hard interaction
•At tree level the beam function is just the PDF,

tree level calculations are unaffected

5. Summary

(hard interaction)
µΛ µb µhx Evolution s Evolution

Interpretation:
• For µ < µb the evolution of the proton is just the usual PDF

evolution
•At µb the proton breaks apart, producing an initial state jet.
• For µ > µb the evolution only affects s and no longer x

(beam function runs with Sudakov double logs, PDF only
has single logs)

•The PDFs are probed at a scale µb smaller than usual!

µΛ µb µhx Evolution s Evolution

The beam function:
• describes both the PDF and the beam jet
• is universal, like the PDF
• has two arguments B(s, x) compared to f (x),

x = momentum fraction of the parton going into the
hard interaction

s = invariant mass of the jet of radiation around
this parton

The quark beam function factorizes as

Bq(s, x) =
∑

i=q,g,q̄

∫
dx′ Iqi(s, x− x′) fi(x

′)

•We can calculate Iqi perturbatively, so there is no new
non perturbative function

•At tree level Itree
qq (s, x) = δ(s) δ(x) and Itree

qg = Itree
qq̄ = 0

so
Btree

q (s, x) = δ(s) fq(x)

Therefore tree level calculations are unaffected
•At one-loop Iqg #= 0, so Bq gets a contribution from fg

As shown in the figure:
An incoming gluon pair produces, the quark
participates in the hard interaction and the antiquark
goes into the beam remnant

4. The beam function

H

f

B

µ

µb

µ

µ h

!

The relevant scales are:
µh ∼ scale of hard interaction
µb ∼ inv. mass of partonic

initial state jet
µΛ ∼ low scale (ΛQCD)

The various pieces of the factorization:

B beam function evolution of an incoming beam and beam jet
H hard function hard interaction
J jet function evolution of a jet
S soft function soft radiation between beams and jets

Together the beam function and soft function give a field
theoretic description of the underlying event

(Section 3 continued)

Jet 2

Jet 1
Soft

Jet 3 Soft

Beam jet b Beam jet a

Proton a Proton b

dσ = B ⊗B ⊗
( ∑

N jets
HN ⊗ J ⊗ . . .⊗ J︸ ︷︷ ︸

N times
⊗SN

)

Separation is key:
•well separated collinear directions
• away from x → 1, radiation along the beam axis leads to

beam jet, an important part of the underlying event
• incoming proton and beam jet have same collinear direction
−→ both captured by one beam function B

• requiring separation of beam jets from other jets, is an indirect
measurement of beam jet. Not fully inclusive.

3. A new factorization theorem

Answer: For measurements that look at a certain number of jets, none of the above.
The measurements are not inclusive, and threshold kinematics is too restrictive (it only occurs for x → 1).

SoftJet 2

Jet 1Soft

Pa

Pb

dσ = f ⊗ f ⊗H ⊗ J ⊗ J ⊗ S

J = describes jet evolution

Dijet at threshold

Almost all the energy goes into two back-
to-back jets: MJJ/ECM → 1,
MJJ = invariant mass of the two jets

Soft

Soft

Pa

Pb

!−

!+

dσ = f ⊗ f ⊗H ⊗ S

H = describes hard int.
S = describes soft radiation

Drell Yan at threshold

Almost all the energy goes into the
leptons: M/ECM → 1,
M = invariant mass leptons

X

!+X

Pa

Pb

!−

dσ

dM 2
= f ⊗ f ⊗ dσpart

dM 2

f (x) = parton distr. function

Inclusive Drell Yan

pp → #+ #−X

Fully inclusive in hadronic X

2. What will we see at the LHC?
We have a factorization theorem in the following cases. Question: Which is most applicable to the LHC?

•Problem: factorization theorems have only been
derived for special cases (Sec. 2)

•We derive a new factorization theorem (Sec 3.) for the
production of N energetic jets, valid away from x → 1

PDF gets replaced by “beam function” B(s, x) (Sec. 4)
• it’s universal, describes the PDF and the initial state jet
• equals PDF times a calculable Wilson coefficient
• tells us that the proton breaks up before the hard

interaction, after which x doesn’t change
• the resulting beam jet is a characteristic part of the

underlying event

•Factorization = hadronic cross sections can be calcu-
lated as convolutions of a contribution from the hard
interaction and initial and final state QCD interactions

•Best known factorization theorem:

dσ =
∑

i,j dσ
part
ij ⊗ fi(xa)⊗ fj(xb),

fi(x) are the parton distribution functions (PDF),
for partons i = g, u, d, ū . . . with momentum fraction x

• Factorization theorems are key to understanding data at
the Tevatron or LHC, and discovering new physics

1. Introduction

Iain Stewart, Frank Tackmann, Wouter Waalewijn

Factorization at the LHC: Taking the beam into account

single
logs

double
logs

diagonal, no mixing 
at one-loop

5

The solution of this RGE equation can be written as an evolution function U f which acts on the initial PDF fj(x′, µ0)
and takes it to fi(x, µ),

fi(x, µ) =
∫

dx′ Uf
ij(x, x′, µ, µ0) fj(x′, µ0) . (19)

At one-loop the standard quark pdf results are

Zf
qq(x, x′) = δ(x − x′) +

αs(µ)
2πε

θ(x′ − x)θ(1 − x′)
x′

Pqq

( x

x′

)
, (20)

γ1loop
f (x, x′) = −µ

d

dµ
Zf (x, x′) =

αs(µ)
π

θ(x′ − x)θ(1 − x′)
x′

Pqq

( x

x′

)
. (21)

where the quark splitting function is Pqq(z) = CF [(1 + z2)/(1− z)]+. This yields the usual 1-loop RGE equation for
the PDF,

µ
d

dµ
fq(x, µ) =

αs(µ)
π

∫ 1

x

dx′

x′
Pqj

( x

x′

)
fj(x′, µ) =

αs(µ)
π

∫ 1

x

dz

z
Pqj(z) fj

(x

z
, µ

)
, (22)

where we include terms from both the gluon and quark PDF’s on the RHS.
For the beam function the evolution no longer takes place in the momentum fraction x, but rather takes place in

the invariant mass variable s much like a jet-function. Furthermore, there is no mixing in the RGE evolution between
beam functions initiated by different partons, the quark beam function evolves into the quark beam function, etc. We
will see these features explicitly from our one-loop computations. The general MS counterterm that renormalizes the
beam function will be denoted by ZB

i (s, s′, µ), and the corresponding anomalous dimension by γB
i (s, s′, µ). In the

relation between the bare and renormalized beam function they enter as

Bbare
i (s, z) =

∫
ds′ ZB

i (s, s′, µ) Bi(s′, z, µ) , γB
i (s, s′, µ) = −

∫
ds′′ZB −1

i (s, s′′, µ)µ
d

dµ
ZB

i (s′′, s′, µ) , (23)

where at tree level ZB
i (s, s′, µ) = δ(s − s′). Note that ZB

i and γB
i are not matrices, and that they do not depend on

z. Hence the evolution only changes their s values,

µ
d

dµ
Bi(s, z, µ) =

∫
ds′ γB

i (s, s′, µ) Bi(s′, z, µ) , Bi(s, z, µ) =
∫

ds′ UB
i (s, s′, µ, µ0) Bi(s′, z, µ0) . (24)

The anomalous dimension and evolution kernel UB
i will have explicit µ dependence through ln(µ) terms, indicating

that this RGE sums Sudakov double logarithms, again much like a jet-function.
The evolution equations for Bi(s, z, µ) and for fi(z, µ) can be used to find an evolution equation for the Wilson

coefficients Iij(s, x, µ) that appears in the beam-factorization theorem in Eq. (4). To do so we write

Bi(s, z, µ) =
∫

ds′ UB
i (s, s′, µ, µ0) Bi(s′, z, µ0) =

∫
dz′

[ ∫
ds′ UB

i (s, s′, µ, µ0) Iij(s′, z′ − z, µ0)
]
fj(z′, µ0)

=
∫

dz′′ Iik(s, z′′ − z, µ)fk(z′′, µ) =
∫

dz′
[ ∫

dz′′ Iik(s, z′′ − z, µ)Uf
kj(z

′′, z′, µ, µ0)
]
fj(z′, µ0) , (25)

where in the second line we start over from Bi(s, z, µ) by first tranlating to I⊗f at the high scale µ. Since in principal
the initial condition fj(z′, µ0) is an arbitrary function we can equate the terms in square brackets on the first and
second lines. Multiplying this equality by (U f )−1

ji′ (z
′, z0) and integrating over z′ we can use

∫
dz′ Uf

kj(z
′′, z′, µ, µ0)(Uf )−1

ji′ (z
′, z0, µ, µ0) = δki′ δ(z′′ − z0) , (26)

and Eq. (25) then becomes the solution of the evolution equation for I, (Write the RGE for Iii′?) NOTE

Iii′ (s, z − z0, µ) =
∫

ds′dz′ UB
i (s, s′, µ, µ0) Iij(s′, z′ − z, µ0)(Uf )−1

ji′ (z
′, z0, µ, µ0) . (27)

Thus the RGE for I cancels that of the PDF, (U f )−1
ji′ , and adds in the beam running result in UB

i .

compare to pdf: mixing at one-loop

LL solution: BLL
q (s, z, µ) = 1

µ2 RLL(s/µ2)fq(z, µ)

at µb the proton breaks apart
producing an initial state jet

16

Note that if we look at the limit s′ → 0 of the counterterm then the lnµ2/s and 1/s terms combine together into
a plus function, −1/µ2[θ(s)µ2/s]+. For the jet evolution we have nonzero s′’s and the counterterm and anomalous
dimension depend on this resolved version of the plus-function. Taking −µd/dµZBq(s, s′, µ) at one-loop gives

γBq(s, s′, µ) =
CF αs(µ)

π

[
δ(s− s′)

(3
2

+ 2 ln
µ2

s

)
− 2

θ(s′)θ(s − s′)
s

]
. (84)

The remaining pieces in Eq. (81) give the one-loop contributions to the renormalized partonic beam function. Up to
one-loop order we have

B̂[q]
q (s, z, µ) = δ(s)δ(1− z) +

CF αs(µ)
π

{
δ(s)

[1
2

ln
( µ2

s′z

)(1 + z2

1− z

)

+
+ δ(1− z)

(7
4
− π2

4

)
− 1

2
(1− z)θ(1− z)

]

+
1
µ2
L0

( s

µ2

)[1
2
(1− z)θ(1− z) +

z

(1− z)+

]
+ δ(1− z)

1
µ2
L1

( s

µ2

)}
,

B̂[g]
q (s, z, µ) =

αs(µ)
2π

θ(z)θ(1−z)(1−2z+2z2)
{

δ(s) ln
zs′

µ2
− 1

µ2
L0

( s

µ2

)
+ δ(s)

}
. (85)

At one-loop order, the factorization formula tells us that

B̂[q,1]
q (s, z, µ) =

∫
dz′ [

Iqq(s, z′ − z, µ)f̂ [q]
q (z′, µ)

][1] =
∫

dz′ [
I [1]

qq (s, z′ − z, µ)δ(1− z′) + δ(s)δ(z − z′)f̂ [q,1]
q (z′, µ)

]

= I [1]
qq (s, 1− z, µ) + δ(s)f [q,1]

q (z, µ) ,

B̂[g,1]
q (s, z, µ) =

∫
dz′ [

Iqg(s, z′ − z, µ)f̂ [g]
g (z′, µ) + Iqq(s, z′ − z, µ)f̂ [g]

q (z′, µ)
][1]

=
∫

dz′ [
I [1]

qg (s, z′ − z, µ)δ(1− z′) + δ(s)δ(z − z′)f̂ [g,1]
q (z′, µ)

]

= I [1]
qg (s, 1− z, µ) + δ(s)f [g,1]

q (z, µ) , (86)

Extracting the result for the renormalized partonic PDFs from Eq. (38) and (42) using the same notation we have

f̂ [q,1]
q (z, µ) =

CF αs(µ)
π

[
1
2

ln
(µ2

s′

)(
1 + z2

1− z

)

+

+ δ(1−z)
(7

4
− π2

6

)
− (1− z)θ(z)θ(1− z)

− zθ(z)L1(1−z)− 1
2
(1− z) ln(1− z)θ(z)θ(1− z)

]
,

f̂ [g,1]
q (z, µ) =

TF αs(µ)
π

θ(z)θ(1−z)
[
[(1−z)2+z2]

{
ln

( (1−z)s′

µ2

)
+ 2

}
+ 2z(1−z)

]
. (87)

and we see that the coefficient of the IR divergence factor ln(s′) matches exactly in the beam and PDF computations.
Eq. (86) tells us that the difference yields the one-loop matching for the quark remnant Wilson coefficient. Thus

Iqq(s, 1− z, µ) = δ(s)δ(1− z) (88)

+
CF αs(µ)

π
θ(z)

{
δ(s)

[
− ln z

2

(1 + z2

1− z

)

+
+ zL1(1− z) +

1
2

(1− z)[1 + ln(1− z)] θ(1− z)

− δ(1− z)
π2

12

]
+

1
2

1
µ2
L0

( s

µ2

)
(1 + z2)L0(1− z) +

1
µ2
L1

( s

µ2

)
δ(1− z)

}
,

Iqg(s, 1− z, µ) =
TF αs(µ)

π
θ(z)θ(1−z)

[
[(1−z)2+z2]

{
δ(s) ln

( z

1− z

)
− 1

µ2
L0

( s

µ2

)}
− δ(s)

]
. (89)

These results are independent of the IR regulator and only involve large logs that are minimized at the scale µ2 # s.
Going back to the anomalous dimension equation, the one-loop RGE which evolves the renormalized hadronic beam

function above µb is

µ
d

dµ
Bq(s, z, µ) =

∫ s

0
ds′ γBq(s, s′, µ)Bq(s′, z, µ)

=
CF αs(µ)

π

[(3
2

+ 2 ln
µ2

s

)
Bq(s, z, µ)− 2

s

∫ s

0
ds′ Bq(s′, z, µ)

]
. (90)Constraints on invariant mass of the real radiation yield 

γB(s, s′;µ) ∝ ln(µ/s) + . . . , which sum double Sudakov logs
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Beam Function Running

! Scales and running:

H

J

Sf

B

µ

f

σ̂

µΛ

µs

µb

µ

µh

µj

µh ∼ scale of hard interaction
µj ∼ inv. mass of final state jet
µb ∼ inv. mass of initial state jet
µs ∼ energy of soft radiation
µΛ ∼ low scale (ΛQCD)

! Unlike f , the RGE for B includes Sudakov double logs

B(s, z; µ) =
∫

ds′ UB(s, s′; µ, µb) B(s′, z; µb)

Invariant mass restrictions on the real radiation yield terms
! B(s, s′; µ) ∝ ln(µ/s), which sum the Sudakov double logs

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 18 / 19

Full RGE for “Exclusive” dijet production in pp
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• Phenomenology,  work in progress

• Compare RGE to Initial State Shower

b+
1 b+

2
. . .

p !
−s1 = −p−b +

1

−s2
. . .

agree on strong ordering,
space"like shower, 
single branch

•

RGE’s aim to sum 
di!erent large logs.  
Needs more study.

•

35Thursday, April 30, 2009



Conclusions and Outlook

•

Future Applications:

Factorization Theorem for “Exclusive” N"jet production at the LHC

• Depends on initial state radiation, described by universal
 Beam Functions for quarks, gluons, antiquarks

•

Summary & Outlook

H

J

Sf

B

µ

f

σ̂

µΛ

µs

µb

µ

µh

µj

µΛ µb µhz Evolution s Evolution

! One needs to take the beam into account

! The beam function enters factorization
theorems in a universal way

σ = B⊗B⊗
“ X

N jets

HN ⊗J ⊗ . . . ⊗ J| {z }
N times

⊗ SN

”

! PDF f replaced by B
! HN as in threshold resummation

! B factorizes at a scale µb

Bq(b+ω; µ)=
Z

dz′ Iqi(b
+ω, z−z′ ; µ)fi(z

′ ; µ)

! Below µb: usual running of f involving z

! Above µb: the evolution affects the
inv. mass b+ω, but keeps z fixed!

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 19 / 19

Beam function factorizes at scale µb ! Q̂e−ηcut

Bq(x, s, µ) =
∫

dx′ Iqi(s, x′ − x, µ) fi(x′, µ)

• Evolution in x below µb; Evolution in s above µb

•

Allows
x < 10−1

in fact.thm.

* new classes of factorization theorems
* improve initial state shower Monte Carlo?

Mixing below µb (pdf rge), at µb (matching), but not above µb (beam rge)
Parton distributions enter at µb ! Q̂
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