# Factorization for Jet Production at the LHC: from PDFs to Initial State Jets 

## Iain Stewart, MIT

Ringberg Workshop<br>April 2009<br>based on work with<br>Frank Tackmann \& Wouter Waalewijn

## Goals

- Show certain LHC observables should be thought of as colliding partons in initial jets rather than in protons
- Universal Beam Functions describe this effect
- Allows factorization to be applied away from threshold and inclusive regions, eg. for $x \sim 10^{-1}$ with identified "exclusive jets"
- Sums large logs for initial state radiation
- Improve the accuracy of our description of LHC physics by deriving suitable factorization theorems

$$
B(x, s, \mu)=\int d x^{\prime} I\left(s, x^{\prime}-x, \mu\right) f\left(x^{\prime}, \mu\right)
$$

## Outline

- Final State Factorization:
- Precision QCD with Hard, Jet, and Soft Functions
- RGE, Sum large double logs
- Simult. describe nonperturbative \& perturbative effects
- Smooth transitions between regions
- Initial State \& Factorization:
- Parton Distributions - Drell-Yan, Kinematics, \& Scales
- Jet Production with Beam Functions
- Relation to Experimental Uncertainties at CDF (LHC) (underlying event)
- Beam Function
- IR divergences and matching
- UV divergences and RGE
- quark, gluon, antiquark mixing

Final State Jets

$$
\begin{array}{r}
Q^{2} \gg m_{X}^{2} \gg \frac{m_{X}^{4}}{Q^{2}} \gtrsim \Lambda_{\mathrm{QCD}}^{2} \text { is } \\
\mu_{\text {hard }} \gg \mu_{\mathrm{Jet}} \gg \mu_{\mathrm{soft}} \gtrsim \Lambda_{\mathrm{QCD}}
\end{array}
$$

## SCAT

$$
B \rightarrow X_{s} \gamma \quad Q=m_{b}
$$

Jet Invariant Mass
$m_{X}^{2} \ll Q^{2}$


$$
q_{u s}, A_{u s}^{\mu}, h_{v}
$$



Bauer, Fleming, Pirjol, Stewart

| modes | $p^{\mu}=(+,-, \perp)$ |
| :---: | ---: |
| $n$-collinear | $Q\left(\lambda^{2}, 1, \lambda\right)$ |
| $\bar{n}$-collinear | $Q\left(1, \lambda^{2}, \lambda\right)$ |
| usoft | $Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$ |

(talk by Tackmann here)

$$
e^{+} e^{-} \rightarrow 2 \text { jets }
$$


$Q=14$ to 207 GeV


$$
\xi_{n}, A_{n}^{\mu}
$$

usoft particles
$q_{u s}, A_{u s}^{\mu}$

## $e^{+} e^{-} \rightarrow 2$ jets

## Korchemsky,Sterman;

Bauer,Lee,Manohar,Wise; Lee,Sterman; Mantry,Fleming,Hoang,I.S.; Schwartz; Becher, Schwartz; Gehrmann et al.; Weinzierl;
Abbate, Fickinger, Hoang, Mateu, I.S. (talk by V. Mateu here)
IR safe observable: $\mathrm{T}=$ Thrust,$\tau=1-T \quad \tau=0$ (dijet)

$$
\begin{array}{rcc}
\tau>0 & \text { singular } & \text { non-singular }
\end{array} \quad \tau=\frac{1}{2} \text { (multijet) }
$$

Energetic dijets

$$
m_{X}^{2}+m_{X}^{2}=Q^{2} \tau
$$

$Q^{2} \gg m_{X}^{2} \gg \frac{m_{X}^{4}}{Q^{2}} \gtrsim \Lambda_{\mathrm{QCD}}^{2}$
$Q^{2} \gg Q^{2} \tau \gg Q^{2} \tau^{2} \gtrsim \Lambda_{\mathrm{QCD}}^{2}$
$\mu_{\text {hard }} \gg \mu_{\mathrm{Jet}} \gg \mu_{\mathrm{soft}} \gtrsim \Lambda_{\mathrm{QCD}}$

| logs are ratio of kinematic |
| :--- |
| scales (from RGE in SCET) |
| $\mathrm{LL}, \mathrm{NLL}, \mathrm{NNLL}, \mathrm{N}^{3} \mathrm{LL}$ |


| Power Corrections: |  |
| :--- | :--- |
| $\frac{\Lambda_{\mathrm{QCD}}}{\mu_{S}}, \frac{\Lambda_{\mathrm{QCD}}}{\mu_{h}}$, | $\frac{\mu_{S}^{2}}{\mu_{J}^{2}} \sim \tau$ |
| Multiple Regions: |  |
| $i)$ | peak: |
| $i i)$ tail: | $\mu_{h} \gg \mu_{J} \gg \mu_{S} \sim \Lambda_{\mathrm{QCD}}$ |
| iii) multi jet: | $\mu_{h} \gg \mu_{J} \gg \mu_{S} \gg \Lambda_{\mathrm{QCD}}$ |
| $\mu_{J} \sim \mu_{S} \gg \Lambda_{\mathrm{QCD}}$ |  |

## Leading Order Factorization

## Production Current:



## Soft Function

$$
\begin{aligned}
& \mathrm{S}_{T}() \text { symmetric projection } \\
& S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)=\frac{1}{N_{c}} \sum_{X_{s}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right)\langle 0| \underbrace{\bar{Y}_{\bar{n}} Y_{n}(0)\left|X_{s}\right\rangle\left\langle X_{s}\right| \underbrace{Y_{n}^{\dagger} \bar{Y}_{\bar{n}}^{\dagger}}_{n}(0)|0\rangle}_{\text {usoft Wilson lines }}
\end{aligned}
$$

Jet Function

$$
\begin{aligned}
& J_{n}\left(Q r_{n}^{+}, \mu\right)=\frac{-1}{8 \pi N_{c} Q} \operatorname{Disc} \int d^{4} x e^{i r_{n} \cdot x}\langle 0| \mathrm{T} \bar{\chi}_{n, Q}(0) \neq \not \chi_{n}(x)|0\rangle \\
& J_{\bar{n}}\left(Q r_{\bar{n}}^{-}, \mu\right)=\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \sigma}{d \tau}=\sigma_{0} H(Q, \mu) Q \int d \ell J_{T}\left(Q^{2} \tau-Q \ell, \mu\right) S_{T}(\ell, \mu) \\
& p^{2} \sim Q^{2} \quad p^{2} \sim Q^{2} \tau \quad p^{2} \sim Q^{2} \tau^{2} \\
& \sim \mu_{Q}^{2} \\
& \sim \mu_{J}^{2} \\
& \sim \mu_{S}^{2}
\end{aligned}
$$

Sum Large Logarithms

To minimize large logs we want to evaluate these functions at different scales

Match \& Run:


## Factorization Thms

## Peak: Tail:

$\frac{\alpha_{s}^{k} \ln ^{j} \tau}{\tau}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}\right)^{i}$
$\frac{\alpha_{s}^{k} \ln ^{j} \tau}{\tau}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}\right)^{0,1} \quad \frac{\alpha_{s}^{k} \ln ^{j} \tau}{\tau}$
$+H_{i}\left(Q, x_{i^{\prime}}, \mu\right) \otimes J_{i}\left(x_{i^{\prime}}, Q^{2} \tau-Q \ell\right) \otimes S_{T}(\ell, \mu) \quad f_{j^{\prime}}(\tau) \alpha_{s}^{k} \ln ^{j} \tau\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}\right)^{i} \quad f_{j^{\prime}}(\tau) \alpha_{s}^{k} \ln ^{j} \tau\left(\frac{\Lambda_{\mathrm{QCD}}}{Q \tau}\right)^{0,1} \quad f_{j^{\prime}}(\tau) \alpha_{s}^{k} \ln ^{j} \tau$
$+\tilde{H}_{i}\left(Q, x_{i^{\prime}}, \mu\right) \otimes \tilde{J}_{i}\left(x_{i^{\prime}}, Q^{2} \tau, Q \ell_{j^{\prime}}\right) \otimes \tilde{S}_{j}\left(\ell_{j^{\prime}}, \mu\right)$
residual error

$$
\frac{\delta \alpha_{s}}{\alpha_{s}} \sim \frac{\Lambda_{\mathrm{QCD}}}{Q}=0.5 \%
$$



## Perturbative \& NonPert. Soft Fn.

Hoang \& I.S.
Ligeti, I.S., Tackmann
Factorization for Soft Function: simultaneously describe both the peak region (nonpert.), and tail regions (pert. \& nonpert.)

$$
S(\ell, \mu)=\int d \ell^{\prime} S_{\mathrm{part}} \underbrace{\ell-\ell^{\prime}}, \mu) \underbrace{F\left(\ell^{\prime}\right)}
$$

partonic soft function calculated at fixed order
normalized model function (exponential fall off)
remove $u=1 / 2$ renormalon with gap $\Delta(R, \mu)$ R-RGE (talk by Jain)

## Multiple Regions



Profile functions, must satisfy multi region constraints


## Sample Fit results:

$\frac{1}{\sigma} \frac{d \sigma}{d \tau}$


$$
Q=91.2 \mathrm{GeV}
$$



RGE Constraints on Factorization

$U_{H}^{1 / 2}\left(Q, \mu, \mu_{0}\right) \delta\left(M_{X}^{2}\right)=\int d \ell U_{J}\left(M_{X}^{2}-Q \ell, \mu, \mu_{0}\right) U_{S}\left(\ell, \mu, \mu_{0}\right)$
Non-trivial application: massive top jet production


Fleming,Hoang,Mantry,I.S.

## Initial State Hadrons \& Factorization

For many processes of interest at the LHC there is no proof of factorization.

$$
d \sigma=\sum_{i, j} d \sigma_{i j}^{\mathrm{part}}\left(x_{a}, x_{b}, \mu, \ldots\right) \otimes f_{i}\left(x_{a}, \mu\right) f_{j}\left(x_{b}, \mu\right)
$$

parton distribution functions
Strict interpretation: - $d \sigma_{i j}^{\text {part }}$ should be computed in fixed order pert. theory, behaves like a hard Wilson coefficient

- parton distributions are only nonperturbative input

Looser interpretation: - $d \sigma_{i j}^{\text {part }}$ computed as best we can (log resummation, further factorization,...)

- parton distributions are only nonperturbative input

Factorization Paradigm:

$d \sigma=$| initial state |
| :---: |
| parton |
| shower |

(with parton distributions)
hard scattering
fixed order
perturbative
computation
hadronization model,
underlying event, pileup

## Drell-Yan $\quad p p \rightarrow X \ell^{+} \ell^{-}$

- Factorization has been proven rigorously for inclusive Drell-Yan
$\mathrm{X}=$ anything $=$ hard (sum over all final states)
$\mathrm{Q}^{2}=M^{2}=$ (dilepton invariant mass)

$$
\frac{d \sigma}{d M^{2}}=\int d x_{a} d x_{b} \sum_{i j}\left[\frac{d \hat{\sigma}_{i j}}{d M^{2}}\left(x_{a}, x_{b}, \mu\right)\right] f_{i}\left(x_{a}, \mu\right) f_{j}\left(x_{b}, \mu\right)
$$

Kinematics:

$$
S=\left(P_{A}+P_{B}\right)^{2}=E_{\mathrm{cm}}^{2} \quad \frac{M^{2}}{E_{\mathrm{cm}}^{2}} \leq x_{a} x_{b} \leq 1
$$


$p_{a}^{-}=x_{a} P_{a}^{-}$
$p_{b}^{+} \quad x_{b} P_{b}^{+}$

- A different Factorization Thm holds near threshold $\quad M \rightarrow E_{\mathrm{cm}}$

$$
\begin{array}{ll}
E_{X}=E_{\mathrm{cm}}-q^{0} \leq E_{\mathrm{cm}}-M=E_{0}^{\text {soft }} & \mathrm{X}=\text { soft } \\
x_{a}, x_{b} \rightarrow 1 & \begin{array}{l}
\text { Catani, Tr } \\
\text { Idilbi, }, \mathrm{Y} \\
\text { Becher, } \mathrm{N}
\end{array} \\
\left.\quad \frac{1}{\sigma_{0}} \frac{d \sigma}{d M^{2}}\right|_{\text {thresh }}=H(M, \mu) \int d x_{a} d x_{b} S\left[M\left(1-\frac{M^{2}}{x_{a} x_{b} E_{\mathrm{cm}}^{2}}\right), \mu\right] f\left(x_{a}, \mu\right) f\left(x_{b}, \mu\right)
\end{array}
$$

## $\left(\ell^{+} \ell^{-}\right)$rapidity $y$

tree level:

$$
\begin{aligned}
x_{a} & =\frac{M}{E_{\mathrm{cm}}} e^{y} \\
x_{b} & =\frac{M}{E_{\mathrm{cm}}} e^{-y}
\end{aligned}
$$

LHC parton kinematics
Threshold Drell-Yan

$$
d \sigma=H S \otimes f \otimes f
$$

$$
M^{2}\left(\mathrm{GeV}^{2}\right)
$$




$$
d \sigma=d \hat{\sigma} \otimes f \otimes f
$$



$$
d \sigma=H S \otimes f \otimes f
$$

Threshold Drell-Yan

Add a rapidity cutoff, $\eta_{\text {cut }}$, and demand that no jets are observed with small rapidities

$$
\mathrm{E}\left(\eta<\eta_{\text {cut }}\right) \leq E_{0} \quad\left(\text { soft scale } \mu_{s}\right)
$$



Can now have $x<10^{-1}$
Large energy $E_{\mathrm{cm}}(1-x)$
goes into a cone around the beam
New scale is introduced, $\mu_{b}=e^{-\eta_{\text {cut }}} \hat{Q}$

$$
\eta_{\text {cut }} \rightarrow 0: \quad \text { inclusive } \mathrm{DY}
$$

$$
(\hat{Q}=M \text { here })
$$

Beam functions, B, describe proton and initial state jets


$$
d \sigma=d \hat{\sigma} \otimes f \otimes f
$$

$$
d \sigma=H S \otimes f \otimes f
$$

$$
U_{H} \delta=U_{S} \otimes U_{f f}
$$



$$
\begin{aligned}
& d \sigma=H \times S \otimes B \otimes B \\
& \quad U_{H}^{1 / 2} \delta=U_{S} \otimes U_{B}
\end{aligned}
$$

can't have just pdfs !



## Let's add Final State Jets



Threshold Jet Production
Kidonakis,

$$
\begin{gathered}
d \sigma=H S \otimes J \otimes J \otimes f \otimes f \\
M_{J J} \rightarrow E_{\mathrm{cm}}, \quad x_{a, b} \rightarrow 1
\end{gathered}
$$

"Exclusive" Jet Production


$$
d \sigma=H \times S \otimes J \otimes J \otimes B \otimes B
$$

I.S., Tackmann, Waalewijn
Require:
final state jets (defined by jet algorithm) are well separated from each other, from the beam direction, and from soft radiation $\left(\mathrm{p}_{\mathrm{T}}{ }^{\min }, \mathrm{E}_{\text {soft }}<\mathrm{E}_{\mathrm{o}}\right)$


Comparison to concepts used at CDF/Pythia

"Underlying event is everything but the outgoing hard jets (and accompanying radiation). It consists of particles arising from the beam-beam remnants and multiple parton interactions."

$$
\begin{aligned}
& \text { measured at mid-rapidity, } \\
& \text { transverse to central jets }
\end{aligned}
$$

[This radiation should be described by soft functions in Factorization Theorems.]
[Consistent with soft radiation convoluted with the beam function.]

# Derivation of Factorization Theorem for Exclusive Jet Production 

## Energy Flow Operator

- Lets derive the factorization theorem to see where $B$ comes from

- Most observables only depend on the energy distribution $\rho_{X}(\Omega)$
- For example: $\boldsymbol{X}$ has $n$ particles with $\boldsymbol{p}_{\boldsymbol{i}}=\left(\boldsymbol{E}_{i}, \overrightarrow{\boldsymbol{p}}_{\boldsymbol{i}}\right)$

$$
\rho_{X}(\Omega)=\sum_{i} E_{i} \delta\left(\Omega-\Omega_{i}\right)
$$

muon - Energy flow operator:

$$
\mathcal{E}(\Omega)|X\rangle=\rho_{X}(\Omega)|X\rangle
$$

[Korchemsky, Oderda, Sterman; Lee, Sterman, Bauer, Fleming;
We follow: Bauer, Hornig, Tackmann]

## Energy Flow \& Factorization

- QCD cross section:

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} O}=\frac{1}{2 E_{\mathrm{CM}}^{2}} \sum_{X}|\mathcal{M}(p p \rightarrow X)|^{2} \delta\left[O-f_{O}(X)\right] \\
\times(2 \pi)^{4} \delta^{4}\left(P_{a}+P_{b}-P_{X}\right)
\end{gathered}
$$

- Match onto SCET

$$
\mathcal{M}(p p \rightarrow X)=\langle X| \mathcal{Q}|p p\rangle
$$

- Use energy flow to do sum over the final states

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} O}= & \frac{1}{2 E_{\mathrm{CM}}^{2}} \sum_{X}\langle p p| \mathcal{Q}^{\dagger}|X\rangle\langle X| \mathcal{Q}|p p\rangle \delta\left(O-f_{O}\left[\rho_{X}\right]\right) \\
& \times(2 \pi)^{4} \delta^{4}\left(P_{a}+P_{b}-P_{X}\right) \\
= & \frac{1}{2 E_{\mathrm{CM}}^{2}} \int \mathcal{D} \rho \int d^{4} x\langle p p| \mathcal{Q}^{\dagger}(x) \delta[\rho-\mathcal{E}] \mathcal{Q}(0)|p p\rangle \delta\left(O-f_{O}[\rho]\right)
\end{aligned}
$$

## Soft-Collinear Factorization

- SCET Lagrangian:

$$
\mathcal{L}=\mathcal{L}_{n_{a}}+\mathcal{L}_{n_{b}}+\sum_{i} \mathcal{L}_{n_{i}}+\mathcal{L}_{s}
$$

- Decouple collinear and soft

$$
\begin{aligned}
\boldsymbol{\xi}_{n, p}(x) & \rightarrow Y_{n}(x) \boldsymbol{\xi}_{n, p}^{(0)}(x) \\
A_{n, p}^{\mu}(x) & \rightarrow Y_{n}(x) A_{n, p}^{(0) \mu}(x) Y_{n}^{\dagger}(x)
\end{aligned}
$$



- Energy flow factorizes

$$
\begin{aligned}
\mathcal{E}(\Omega)= & \mathcal{E}_{a}(\Omega)+\mathcal{E}_{b}(\Omega)+\sum_{i} \mathcal{E}_{i}(\Omega)+\mathcal{E}_{s}(\Omega) \\
\int \mathcal{D} \rho \delta[\rho-\mathcal{E}]= & \int \mathcal{D} \rho_{a} \delta\left[\rho_{a}-\mathcal{E}_{a}\right] \mathcal{D} \rho_{b} \delta\left[\rho_{b}-\mathcal{E}_{b}\right] \prod_{i} \mathcal{D} \rho_{i} \delta\left[\rho_{i}-\mathcal{E}_{i}\right] \\
& \times \mathcal{D} \rho_{s} \delta\left[\rho_{s}-\mathcal{E}_{s}\right]
\end{aligned}
$$

## Step II

$$
\begin{aligned}
\frac{\mathbf{d} \sigma}{\mathbf{d} O}= & \frac{1}{2 E_{\mathbf{C M}}^{2}} \int \mathcal{D} \rho \mathbf{d}^{4} \boldsymbol{x}\langle\boldsymbol{p p}| \mathcal{Q}^{\dagger}(x) \delta[\rho-\mathcal{E}] \mathcal{Q}(0)|p p\rangle \delta\left[O-f_{O}[\rho]\right] \\
= & \int \mathrm{d}^{4} b_{a, b} \mathcal{D} \rho_{a, b} \mathrm{~d}^{4} p_{1,2} \mathcal{D} \rho_{1,2} \mathrm{~d}^{4} k_{s} \mathcal{D} \rho_{s} \delta\left[O-f_{O}[\rho]\right] \\
& \times H(\hat{s}, \ldots) B\left(b_{a}, \rho_{a}\right) B\left(b_{b}, \rho_{b}\right) J\left(p_{1}, \rho_{1}\right) J\left(p_{2}, \rho_{2}\right) S\left(k_{s}, \rho_{s}\right) \\
& \times(2 \pi)^{4} \delta^{4}\left(P_{a}+P_{b}-b_{a}-b_{b}-p_{1}-p_{2}-k_{s}\right)
\end{aligned}
$$

with


- These distributions are not inclusive, they depend on $\rho_{i}$


## Jet Kinematics

- $\quad P_{i \varangle}^{\mu}[\rho] \equiv P_{\varangle}^{\mu}\left(\vec{n}_{i}, R\right)[\rho]=$ momentum in cone of radius R around $\vec{n}_{i}$


$$
\begin{aligned}
& P_{1}^{\mu}=P_{1 \varangle}^{\mu}[\rho] \\
&=P_{1 \varangle}^{\mu}\left[\rho_{1}\right]+P_{1 \varangle}^{\mu}\left[\rho_{s}\right] \\
&=q_{1}^{\mu}+\ell_{1}^{\mu} \\
& \\
& B_{a}^{\mu}=P_{a \varangle}^{\mu}\left[\rho_{a}\right]+P_{a \varangle}^{\mu}\left[\rho_{s}\right] \\
&=q_{a}^{\mu}+\ell_{a}^{\mu}
\end{aligned}
$$

- Expanding:

$$
\begin{array}{ll}
P_{i}^{-}=\bar{n}_{i} \cdot P_{i}=q_{i}^{-} & P_{i}^{+}=n_{i} \cdot P_{i}=q_{i}^{+}+\ell_{i}^{+} \\
B_{a}^{-}=\bar{n}_{a} \cdot B_{a}=q_{a}^{-} & B_{a}^{+}=n_{a} \cdot B_{a}=q_{a}^{+}+\ell_{a}^{+}
\end{array}
$$

## Factorization

$$
\begin{aligned}
\mathbf{d} \sigma= & \int \mathrm{d}^{4} b_{a, b} \mathcal{D} \rho_{a, b} \mathbf{d}^{4} p_{1,2} \mathcal{D} \rho_{1,2} \mathrm{~d}^{4} k_{s} \mathcal{D} \rho_{s} \\
& \times \boldsymbol{H}(\hat{s}, \ldots) B\left(b_{a}, \rho_{a}\right) B\left(b_{b}, \rho_{b}\right) J\left(p_{1}, \rho_{1}\right) J\left(p_{2}, \rho_{2}\right) S\left(k_{s}, \rho_{s}\right) \\
& \times(2 \pi)^{4} \delta^{4}\left(P_{a}+P_{b}-b_{a}-b_{b}-p_{1}-p_{2}-k_{s}\right) \\
& \times \mathrm{d} \ell_{a, b, 1,2}^{+} \delta\left(\ell_{a, b}^{+}-P_{\varangle a, b}^{+}\left[\rho_{s}\right]\right) \delta\left(\ell_{1,2}^{+}-P_{\varangle 1,2}^{+}\left[\rho_{s}\right]\right) \\
& \times \mathrm{d} q_{a, b}^{+} \delta\left(q_{a, b}^{+}-P_{\varangle}^{+}\left[\rho_{a, b}\right]\right) \mathrm{d} B_{a, b}^{+} \delta\left(B_{a, b}^{+}-q_{a, b}^{+}-\ell_{a, b}^{+}\right) \\
& \times \mathrm{d} q_{1,2}^{+} \delta\left(q_{1,2}^{+}-P_{\varangle}^{+}\left[\rho_{1,2}\right]\right) \mathbf{d} P_{1,2}^{+} \delta\left(P_{1,2}^{+}-q_{1,2}^{+}-\ell_{1,2}^{+}\right) \\
& \times \mathbf{d} P_{1,2}^{-} \delta\left(P_{1,2}^{-}-\boldsymbol{P}_{\varangle}^{-}\left[\rho_{1,2}\right]\right) \\
= & \int \mathrm{d} \ell_{a, b, 1,2}^{+} \quad S_{\varangle}\left(\ell_{a}^{+}, \ell_{b}^{+}, \ell_{1}^{+}, \ell_{2}^{+}, E_{0}\right) \\
& \times \mathrm{d} x_{a, b} \mathbf{d} B_{a, b}^{+} B\left(p_{a}^{-}\left(B_{a}^{+}-\ell_{a}^{+}\right), x_{a}\right) B\left(p_{b}^{-}\left(B_{b}^{+}-\ell_{b}^{+}\right), x_{b}\right) \\
& \times \mathrm{d}^{4} p_{1,2} J_{\varangle}\left(p_{1}^{-}, P_{1}^{+}-\ell_{1}^{+}\right) J_{\varangle}\left(p_{2}^{-}, P_{2}^{+}-\ell_{2}^{+}\right) \\
& \times \boldsymbol{H}\left(x_{a}, x_{b}, p_{1}^{-}, p_{2}^{-}\right) \mathbf{d} O \delta\left[O-f_{O}\left(x_{a}, x_{b}, B_{a}^{+}, B_{b}^{+}, p_{1}^{-}, p_{2}^{-}\right)\right] \\
& \times(2 \pi)^{4} \delta^{4}\left(\frac{1}{2} x_{a} E_{\mathrm{CM}} n_{a}+\frac{1}{2} x_{b} E_{\mathrm{CM}} n_{b}-p_{1}-p_{2}\right)
\end{aligned}
$$

## Final Formula

Same H as for threshold Factorization Theorem

$$
\begin{aligned}
\frac{\mathbf{d} \sigma}{\mathbf{d} O}= & \int \mathrm{d} \ell_{a, b, 1,2}^{+} S_{\varangle}\left(\ell_{a}^{+}, \ell_{b}^{+}, \ell_{1}^{+}, \ell_{2}^{+}, E_{0}\right) \\
& \times \mathrm{d} x_{a, b} \mathrm{~d} B_{a, b}^{+} B\left(p_{a}^{-}\left(B_{a}^{+}-\ell_{a}^{+}\right), x_{a}\right) B\left(p_{b}^{-}\left(B_{b}^{+}-\ell_{b}^{+}\right), x_{b}\right) \\
& \times \mathbf{d}^{4} p_{1,2} J_{\varangle}\left(p_{1}^{-}, P_{1}^{+}-\ell_{1}^{+}\right) J_{\varangle}\left(p_{2}^{-}, P_{2}^{+}-\ell_{2}^{+}\right) \\
& \times \boldsymbol{H}\left(x_{a}, x_{b}, p_{1}^{-}, \boldsymbol{p}_{2}^{-}\right) \delta\left[O-\boldsymbol{f}_{O}\left(x_{a}, x_{b}, B_{a}^{+}, B_{b}^{+}, p_{1}^{-}, p_{2}^{-}\right)\right] \\
& \times(2 \pi)^{4} \delta^{4}\left(\frac{1}{2} x_{a} \boldsymbol{E}_{\mathrm{CM}} n_{a}+\frac{1}{2} x_{b} \boldsymbol{E}_{\mathrm{CM}} \boldsymbol{n}_{b}-p_{1}-\boldsymbol{p}_{2}\right)
\end{aligned}
$$

- Pick an observable, egg.

$$
M_{J J}^{2}=2 P_{1} \cdot P_{2}=\frac{P_{1}^{-} P_{2}^{-}}{p_{1}^{-} p_{2}^{-}} x_{a} x_{b} E_{\mathrm{CM}}^{2}
$$



Does not depend on $B_{a, b}^{+} \quad$ but
$P_{2}^{\mu}$
$\hat{\sim}$ Can only integrate up to upper cutoff given by $\eta_{\text {cut }}$ restriction

$$
\int_{0}^{\left(\hat{Q} e^{-\eta_{\mathrm{cut}}}\right)} d B_{a}^{+} B_{a}\left(p_{a}^{-}\left(B_{a}^{+}-\ell_{a}^{+}\right), x_{a}\right)
$$

Beam Function Factorizes: $B(x, s, \mu)=\int d x^{\prime} \mathcal{I}\left(s, x^{\prime}-x, \mu\right) f\left(x^{\prime}, \mu\right) \quad$ (next)

## Beam Functions

## Quark Beam Function $\quad B_{q}(s, x, \mu)$ <br> $$
\chi_{n}=W^{\dagger} \xi_{n}
$$

$B_{q}\left(b^{+} \omega, \frac{\omega}{P_{a}^{-}}, \mu\right)=\frac{1}{\omega} \int \frac{d x^{-}}{4 \pi} e^{i b^{+} x^{-} / 2}\left\langle p_{n}\left(P_{a}^{-}\right)\right| \bar{\chi}_{n}\left(x^{-} \frac{n}{2}\right) \frac{\underline{t}}{2}\left[\delta(\omega-\overline{\mathcal{P}}) \chi_{n}(0)\right]\left|p_{n}\left(P_{a}^{-}\right)\right\rangle$

like jet function in initial state, BUT also transitions to pdf
Quark Parton Distribution $\quad f_{q}(x, \mu)$

$$
f_{q}\left(\frac{\omega}{P_{a}^{-}}, \mu\right)=\theta(\omega)\left\langle p_{n}\left(P_{a}^{-}\right)\right| \bar{\chi}_{n}(0) \frac{\not \hbar}{2}\left[\delta(\omega-\overline{\mathcal{P}}) \chi_{n}(0)\right]\left|p_{n}\left(P_{a}^{-}\right)\right\rangle
$$

(Fourier transform of standard definition)


- $B$ factorizes (matching SCET $_{I} \rightarrow$ SCET $_{I I}$ )


$$
B_{q}\left(b^{+} \omega, z ; \mu\right)=\sum_{i=q, g, \bar{q}} \int \mathbf{d} z^{\prime} \mathcal{I}_{q i}\left(b^{+} \omega, z-z^{\prime} ; \mu\right) f_{i}\left(z^{\prime} ; \mu\right)
$$

## Beam Function at Tree Level

partonic matching:

$$
\begin{aligned}
& \langle q(p)| \bar{\xi}_{n}\left(x^{-} n / 2\right) \frac{\not \underline{h}}{2}\left[\delta(\omega-\overline{\mathcal{P}}) \xi_{n}(0)\right]|q(p)\rangle=\bar{u}(p) \frac{\not \partial \pi}{2} u(p) e^{i x^{-} p^{+} / 2} \delta\left(\omega-p^{-}\right)=e^{i x^{-} p^{+} / 2} \delta\left(1-\omega / p^{-}\right) \\
& \hat{B}_{q}^{\text {tree }}\left(b^{+} \omega, \omega / p^{-}\right)=\delta\left(b^{+} \omega\right) \delta\left(1-\omega / p^{-}\right)
\end{aligned}
$$

hadronic results:

$$
\mathcal{I}_{q q}^{\text {tree }}\left(b^{+} \omega, x-z\right)=\delta\left(b^{+} \omega\right) \delta(x-z)
$$

Tree level results

$$
B_{q}\left(b^{+} \omega, x\right)=\delta\left(b^{+} \omega\right) f_{q}(x, \mu)
$$

not effected by beam vs. pdf

## IR divergences and One-Loop Matching

Renormalized

Beam Function
Graphs

b)

d)

e)

$$
\begin{aligned}
\hat{B}_{q}^{[q]}(s, z, \mu) & =\delta(s) \delta(1-z)+\frac{C_{F} \alpha_{s}(\mu)}{\pi}\left\{\delta(s)\left[\frac{1}{2} \ln \left(\frac{\mu^{2}}{p_{\mathrm{IR}}^{2} z}\right)\left(\frac{1+z^{2}}{1-z}\right)_{+}+\ldots\right]\right. \\
& \left.+\frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{s}{\mu^{2}}\right)\left[\frac{z}{(1-z)_{+}}+\ldots\right]+\ldots\right\}, \quad \mathcal{L}_{n}(x)=\left[\frac{\theta(x) \ln ^{n}(x)}{x}\right]_{+} \\
\hat{B}_{q}^{[q]}(s, z, \mu) & =\frac{-\alpha_{s}(\mu)}{4 \pi} \theta(z) \theta(1-z)\left(1-2 z+2 z^{2}\right)\left\{\delta(s) \ln \frac{z p_{\mathrm{IR}}^{2}}{\mu^{2}}+\ldots\right\}
\end{aligned}
$$

Renormalized PDF Graphs

a)

b)

c)

d)
$\hat{f}_{q}^{[q, 1]}(z, \mu)=\frac{C_{F} \alpha_{s}(\mu)}{\pi}\left[\frac{1}{2} \ln \left(\frac{\mu^{2}}{p_{\text {IR }}^{2}}\right)\left(\frac{1+z^{2}}{1-z}\right)_{+}-(1-z) \theta(z) \theta(1-z)+\ldots\right]$
$\hat{f}_{q}^{[g, 1]}(z, \mu)=\frac{-\alpha_{s}(\mu)}{4 \pi} \theta(z) \theta(1-z)\left[\left[(1-z)^{2}+z^{2}\right] \ln \left(\frac{(1-z) p_{R}^{2}}{\mu^{2}}\right)+\ldots\right]$

Difference gives matching results:
quark pdf into quark beam function, $\begin{aligned} \mathcal{I}_{q q}(s, 1-z, \mu) & =\delta(s) \delta(1-z) \\ & +\frac{C_{F} \alpha_{s}(\mu)}{\pi} \theta(z)\left\{\delta(s)\left[z \mathcal{L}_{1}(1-z)+\ldots\right]+\frac{1}{2} \frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{s}{\mu^{2}}\right)\left(1+z^{2}\right) \mathcal{L}_{0}(1-z)+\ldots\right. \\ \mathcal{I}_{q g}(s, 1-z, \mu) & =\frac{\alpha_{s}(\mu)}{4 \pi} \theta(z) \theta(1-z)\left[\left[(1-z)^{2}+z^{2}\right] \frac{1}{\mu^{2}} \mathcal{L}_{0}\left(\frac{s}{\mu^{2}}\right)+\ldots\right]\end{aligned}$

These mixing effects and radiative corrections are not accounted for by PDF evolution

e)

## UV divergences and RGE


at $\mu_{b}$ the proton breaks apart producing an initial state jet

$\mu \frac{d}{d \mu} B_{q}(s, z, \mu)=\int_{0}^{s} d s^{\prime} \gamma^{B_{q}}\left(s, s^{\prime}, \mu\right) B_{q}\left(s^{\prime}, z, \mu\right)$

## diagonal, no mixing at one-loop

Constraints on invariant mass of the real radiation yield $\gamma^{B}\left(s, s^{\prime} ; \mu\right) \propto \ln (\mu / s)+\ldots$, which sum double Sudakov logs

LL solution: $\quad \mathrm{B}_{q}^{\mathrm{LL}}(s, z, \mu)=\frac{1}{\mu^{2}} R^{\mathrm{LL}}\left(s / \mu^{2}\right) f_{q}(z, \mu)$
compare to pdf: $\quad \mu \frac{d}{d \mu} f_{q}(x, \mu)=\frac{\alpha_{s}(\mu)}{\pi} \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} P_{q j}\left(\frac{x}{x^{\prime}}\right) f_{j}\left(x^{\prime}, \mu\right) \quad$ mixing at one-loop

## Full RGE for "Exclusive" dijet production in pp


$\mu_{h} \sim$ scale of hard interaction
$\mu_{j} \sim$ inv. mass of final state jet $\mu_{b} \sim$ inv. mass of initial state jet
$\mu_{s} \sim$ energy of soft radiation $\mu_{\Lambda} \sim$ low scale ( $\Lambda_{\mathrm{QCD}}$ )

- Phenomenology, work in progress
- Compare RGE to Initial State Shower
- agree on strong ordering, space-like shower, single branch
- RGE's aim to sum different large logs. Needs more study.



## Conclusions and Outlook

- Factorization Theorem for "Exclusive" N-jet production at the LHC
- Depends on initial state radiation, described by universal Beam Functions for quarks, gluons, antiquarks

$$
\boldsymbol{\sigma}=B \otimes B \otimes(\sum_{N \text { jets }} \boldsymbol{H}_{N} \otimes \underbrace{J \otimes \ldots \otimes J}_{N \text { times }} \otimes S_{N})
$$

Allows
$x<10^{-1}$
in fact.thm.

- PDF $f$ replaced by $B$
- $\boldsymbol{H}_{N}$ as in threshold resummation
- Beam function factorizes at scale $\mu_{b} \simeq \hat{Q} e^{-\eta_{\text {cut }}}$

$$
B_{q}(x, s, \mu)=\int d x^{\prime} \mathcal{I}_{q i}\left(s, x^{\prime}-x, \mu\right) f_{i}\left(x^{\prime}, \mu\right)
$$

- Evolution in $x$ below $\mu_{b}$; Evolution in $s$ above $\mu_{b}$

Parton distributions enter at $\mu_{b} \ll \hat{Q}$
Mixing below $\mu_{b}$ (pdf rge), at $\mu_{b}$ (matching), but not above $\mu_{b}$ (beam rge)

- Future Applications: * new classes of factorization theorems * improve initial state shower Monte Carlo?

