

Contents

- Direct neutrino mass determination
- ¹⁶³Ho and electron neutrino mass
- The ECHo neutrino mass experiment
- ECHo and sterile neutrinos
- Conclusions and outlook

Direct neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2.2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.*, Eur. Phys. J. C **40** (2005) 447
Ch. Weinheimer, Prog. Part. Nucl. Phys. **57** (2006) 22
N. Aseev *et al.*, Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Direct neutrino mass determination

(2)

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2.2 \ eV$$
 ³H (1)

 $m(v_{e}) < 225 \ eV$ ¹⁶³Ho

Next future 200 meV

Lightest neutrino mass (eV)

- (1) Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447 Ch. Weinheimer, Prog. Part. Nucl. Phys. 57 (2006) 22
 - N. Aseev et al., Phys. Rev D 84 (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay and electron capture

• $\tau^{}_{1/2}\,\cong$ 12.3 years $\,$ (4*10^8 atoms for 1 Bq) $\,$

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay of ³H

Beta decay of ³H

Only a small fraction of events in the last eV below the endpoint: 2 *10⁻¹³

Very low background is required

The KATRIN experiment

Main ideas:

- high activity source 10¹¹ e⁻/s
 - high resolution MAC-E* filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - → integral spectrum

*MAC-E: Magnetic Adiabatic Collimation with Electrostatic Filter

The KATRIN experiment

J. Angrik et al (KATRIN Collaboration) 2004 Wissenschaftliche Berichte FZ Karlsruhe 7090

The KATRIN experiment: present status

The KATRIN experiment: present status

Photo K. Valerius

³H based experiments

KATRIN - Karlsruhe Tritium Neutrino Experiment

Main ideas:

- high activity source: 10¹¹ e⁻/s
 - high resolution MAC-E filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

Project8

Main ideas:

- Source = detector: $10^{11} 10^{13} {}^{3}\text{H}_{2}$ molecules /cm³
- Use cyclotron frequency to extract electron energy
- Differential spectrum

PTOLEMY - Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

Main ideas:

- large area tritium source: 100 g atomic ³H
 - MAC-E lter to select electrons close to the end point
 - RF tracking and time-of-flight systems
 - cryogenic calorimetry \rightarrow differential spectrum

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_{FC} = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

• $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni-Mainz) (*) @SHIPTRAP (GSI – Darmstadt) (**)

$$v_c = \frac{qB}{m}$$

•
$$\tau_{1/2} \cong 4570$$
 years (2*10¹¹ atoms for 1 Bq)

- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 - S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501 (**) F. Schneider et al., Eur. Phys. J. A **51** (2015) 89 (*)

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Detector

Atomic de-excitation:

- X-ray emission
- Auger electrons

 V_e

 V_e

Source

• Coster-Kronig transitions

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland

(a) F. Gatti et al., Physics Letters B 398 (1997) 415-419

(b) E. Laesgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), (1984).

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

- Background reduction
- Description of the ¹⁶³Ho EC spectrum

(1) L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)

- (2) B. Alpert et al, Eur. Phys. J. C (2015) 75:112
- (3) M. Croce et al., arXiv:1510.03874

 \geq

Fraction of events at endpoint regions

In the interval 2.832 -2.833 keV

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- $f_{\rm pu} < 10^{-5}$
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 10⁻⁶ events/eV/det/day

Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Metallic magnetic calorimeters (MMCs)

A. Fleischmann et al., AIP Conf. Proc. **1185**, 571, (2009)

MMCs: Readout

Two-stage SQUID setup with flux locked loop allows for:

- Iow noise
- Iarge bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

MMCs: Planar geometries

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

Sandwich geometry

Double meander geometry

MMCs: 1d-array for soft x-rays (T=20 mK)

MMCs: Microwave SQUID multiplexing

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

MMCs: Microwave SQUID multiplexing

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

measurement of the spectrum of ⁵⁵Fe to determine the energy resolution

First detector prototype for ¹⁶³Ho

- Absorber for calorimetric measurement
 → ion implantation @ ISOLDE-CERN in 2009 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

~

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1 Meander

Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV

	1000	– NI	¹⁶³ Ho –
Counts per 2.0 eV	800	-	_
	600	_	
	400	_	First calorimetric measurement of the OI-line
		ОI	MI
	200	NII	- ¹⁴⁴ Pm N/II
	0	I N	
	().0	0.5 1.0 1.5 2.0 Energy <i>E</i> [keV]
	Q _{EC}	= (2.8	$58 \pm 0.010^{\text{stat}} \pm 0.05^{\text{syst}}$) keV

	E _H bind.	E _H exp.	$arGamma_{H}$ lit.	$\Gamma_{ extsf{H}}$ ехр
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

P. C.-O. Ranitzsch et al ., to be submitted L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)

Where to improve

Background reduction ٠

Detector design and fabrication:

- Increase activity per pixel
- Stems between absorber and sensor ٠

Understanding of the ¹⁶³Ho spectrum:

¹⁴⁴Pm

¹⁶³Ho

MI

2.0

MII

¹⁴⁴Pm

15

10

Energy E [keV]

High purity ¹⁶³Ho source

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2-	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 h 7/2-	15.0 m l+	45/0 y 7/2-	29 m 1+	7/2-
EC *	EC *	EC *	EC *	ЕС,β- *	100

Summer 2013: Two irradiations at ILL

- Treatment of Er prior to irradiation:
- Treatment of Er after irradiation:
- 30 mg for 55 days
- 7 mg for 7 days
- $\Rightarrow ~10^{18} \text{ atoms } {}^{163}\text{Ho}$ $\Rightarrow ~10^{16} \text{ atoms } {}^{163}\text{Ho}$

→ need of chemical separation

Thermal neutron flux (Φ) : 1.3x10¹⁵ cm⁻²s⁻¹

High purity ¹⁶³Ho source: Mass separation

RISIKO off-line mass separator

- Optimized resonant laser ionization for Ho
 - \rightarrow efficiency larger than 32%
- Focalization of the beam for implantation onto sub-mm detector absorber
- 1×8 array with 1 Bq / pixels has been successfully implanted

Magnetic sector-field Mass Spect.

30 kV two stage acceleration

60° double focussing separator magnet

Mass resolution:

 $\frac{m}{\Delta m} = 500 - 1000$

Suppression of neighboring masses > 10³

F. Schneider et al., NIM B 376 (2016) 388

Second ¹⁶³Ho implantation

- Chemically purified ¹⁶³Ho source
- Offline implantation @ISOLDE-CERN using GPS and RILIS (December 2014)

- Activity per pixel
- Baseline resolution

A ~ 0.2 Bq ΔE_{FWHM} ~ 5 eV

- Activity per pixel
- A ~ 0.2 Bq
- Baseline resolution
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source

- Activity per pixel •
- A ~ 0.1 Bq
- Baseline resolution ٠
- $\Delta E_{\rm FWHM} \simeq 5 \, {\rm eV}$ No strong evidence of radioactive contamination in the source •
- Symmetric detector response

C. Hassel et al., JLTP (2015)

Estimate the effect of

• Higher order excitation in ¹⁶³Ho

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016

Two-holes excited states: sh

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C **91**, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)

A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al., https://arxiv.org/abs/1611.00325

MMCs move to the mountains

Modane, France - 15th of September 2015

....or better under the mountains

• Low background ¹⁶³Ho spectrum

Background

Background sources:

- Radioactivity in the detector
- Environmental radioactivity
- Cosmic rays Induced secondary radiation

Felsenkeller

Study of background sources through:

- Monte Carlo simulations
- **Dedicated experiments**

ECHo-1k (2015 - 2018)

¹⁶³Ho activity: $A_t = 1 \text{ kBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{\text{FWHM}} \leq 5 \text{ eV}$
- \rightarrow Time resolution $\tau \leq 1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu} \leq 10^{-5}$
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 100

Read-out : Microwave SQUID Multiplexing

 \rightarrow 2 arrays with ~50 single pixels

Background **b** < 10⁻⁵ /eV/det/day

Measuring time **t** = 1 year

 $m(v_{\rm e}) < 10 \; {\rm eV} \; 90\% \; {\rm C.L.}$

ECHo-1M (2019 - 2022)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{FWHM} \leq 3 \text{ eV}$ → Time resolution $\tau \leq 0.1 \, \mu s$
- Unresolved pile-up fraction $f_{pu} \le 10^{-6}$
- →activity per pixel:
 A = 10 Bq
 →number of detectors
 N = 10⁵

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

 $m(v_{\rm e}) < 1 \ {\rm eV} \ 90\% \ {\rm C.L.}$

ECHo-1M (2019 - 2022)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

\rightarrow	Energy resolution	$\Delta E_{\text{FWHM}} \leq 3 \text{ eV}$
\rightarrow	Time resolution	$ au$ \leq 0.1 μ s

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁶
\rightarrow activity per pixel:	<i>A</i> = 10 Bq
\rightarrow number of detectors	<i>N</i> = 10 ⁵

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

How does the existence of sterile neutrino affect the EC spectrum?

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{{m_{\nu}}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sum_{i} |U_{ei}|^2 \sqrt{1 - \frac{m_i^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} \qquad m_v^2 = \sum_{i} |U_{ei}|^2 m_i^2$$

 Electron neutrino mass as superposition of mass eigenstates

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - \left| U_{e4} \right|^2 \right) + \left| U_{e4} \right|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^{-2}(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

- Electron neutrino mass as superposition of mass eigenstates
- *m*_{i=1,2,3} << m₄
- $m_{i=1,2,3} \sim 0 \text{ eV}$

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

Electron neutrino mass as superposition of mass eigenstates

eV-scale sterile neutrino

C. Giunti NOW 2016

$$\frac{dW}{dE_{\rm C}} = \mathcal{A}(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - \left|U_{e4}\right|^2\right) + \left|U_{e4}\right|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma$$

keV-scale sterile neutrino

m₄=2 keV, U_{e4}²=0.5

no sterile neutrino

keV-scale sterile neutrino

Sensitivity to the mixing matrix element at 90% CL as a function of the sterile neutrino mass achievable with about 10¹⁰ events in the full EC spectrum.

P. Filianin et al. arXiv: 1402.4400

keV-scale sterile neutrino

 \succ postion of kink => m₄

$$\triangleright$$
 depth of kink => $|U_{e4}|^2$

keV-scale sterile neutrino

- Statistical Fluctuation
- No Pile Up
- Theoretical Spectrum supposed to be perfectly known

A White Paper on keV Sterile Neutrino Dark Matter arXiv:1602.04816v1

Conclusions...

- > Independent ¹⁶³Ho Q_{EC} measurement $Q_{EC} = (2.833 \pm 0.030^{\text{stat}} \pm 0.015^{\text{syst}}) \text{ keV}$
- ➢ High purity ¹⁶³Ho source has been produced

- ¹⁶³Ho ions have been successfully implanted in offline process @ISOLDE-CERN in 32 pixels @RISIKO in 8 pixels
- Possibility to investigate spectral shape with new implanted detectors

Conclusions and outlook

- Prove scalability with medium large experiment ECHo-1K
 - A ~ 1000 Bq High purity ¹⁶³Ho source (produced at reactor)
 - $\Delta E_{\text{FWHM}} < 5 \text{ eV}$
 - *τ*_r< 1 μs

Deutsche

- multiplexed arrays → microwave SQUID multiplexing
- 1 year measuring time \rightarrow 10¹⁰ counts = Neutrino mass sensitivity $m_v < 10 \text{ eV}$
- ECHo-1M towards sub-eV sensitivity

Forschungsgemeinschaft

High energy resolution and high statistics ¹⁶³Ho spectra allow to investigate the existence of sterile neutrinos in the eV-scale and keV-scale

Research Unit FOR 2202/1

"Neutrino Mass Determination by Electron Capture in Holmium-163 – ECHo"

Thank you!

Department of Nuclear Physics, Comenius University, Bratislava, Slovakia F. Simkovic Department of Physics, Indian Institute of Technology Roorkee, India M. Maiti **Goethe Universität Frankfurt am Main** U. Kebschull, P. Neroutsos Institute for Nuclear Chemistry, Johannes Gutenberg University Mainz Ch. E. Düllmann, K. Eberhardt, H. Dorrer, F. Schneider Institute of Nuclear Research of the Hungarian Academy of Sciences Z. Szúcs Institute of Nuclear and Particle Physics, TU Dresden, Germany K. Zuber, A. Domula Institute for Physics, Humboldt-Universität zu Berlin A. Saenz Institute for Physics, Johannes Gutenberg-Universität K. Wendt, T. Kieck Institute for Theoretical Physics, University of Tübingen, Germany A. Fäßler Institut Laue-Langevin, Grenoble, France U. Köster **ISOLDE – CERN** T. Day-Goodacre, K. Johnston, B. Marsh, S. Rothe, T. Stora, Kirchhoff-Institute for Physics, Heidelberg University, Germany C. Enss, A. Fleischmann, L. Gamer, L. Gastaldo, C. Hassel, S. Kempf, F. Mantegazzini, M. Wegner Max-Planck Institute for Nuclear Physics Heidelberg, Germany K. Blaum, S. Eliseev, P. Filianin, M. Goncharov, Yu. N. Novikov, A. Rischka, R. Schüssler **Petersburg Nuclear Physics Institute, Russia** Yu. N. Novikov, Physics Institute, University of Tübingen, Germany J. Jochum, S. Scholl Saha Institute of Nuclear Physics, Kolkata, India S. Lahiri

