Introduction to F-theory and Dualities

Pierre Corvilain

Young Scientists Workshop at Ringberg Castle June 7, 2016

Take-Home Messages

- Theories can have dualities ≠ symmetries
 Different descriptions of the same theory
- F-theory **geometrizes** a lot of stuffs. including e.g. S-duality \rightarrow strong coupling description

Electric-Magnetic Duality

Maxwell's equations

Invariant under

 $\nabla \cdot \mathbf{E} = 0$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t}$

 $\mathbf{E}
ightarrow \mathbf{B}$ $\mathbf{B}
ightarrow -\mathbf{E}$

i.e.

 $\begin{pmatrix} \textbf{E} \\ \textbf{B} \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \textbf{E} \\ \textbf{B} \end{pmatrix}$

Explicit Dualization

$$\mathcal{L} = -\frac{1}{4g^2}F_{\mu
u}F^{\mu
u}, \qquad \text{Bianchi id:} \ \partial_{\mu}\tilde{F}^{\mu
u} = 0, \quad \tilde{F}^{\mu
u} = \epsilon^{\mu
u
ho\sigma}F_{
ho\sigma}$$

Write a parent Lagrangian

$$\mathcal{L}_P = -rac{1}{4g^2} F_{\mu
u} F^{\mu
u} + rac{1}{2\pi} A^D_
u \partial_\mu ilde{F}^{\mu
u}$$

Integrating over A_D gives back \mathcal{L} .

Integrating over $F^{\mu\nu}$ gives

$$\mathcal{L}^D = -rac{g^2}{16\pi^2}F^D_{\mu
u}F^{D\mu
u}$$

Same form, different variable \rightarrow **self-duality!** $g \rightarrow \frac{2\pi}{g}$.

Add a term
$$\frac{\theta}{2\pi}F_{\mu\nu}\tilde{F}^{\mu\nu}$$
 and define $\tau = \frac{\theta}{2\pi} + i\frac{2\pi}{g^2}$. Then $\tau \to -\frac{1}{\tau}$

Non-abelian gauge theories

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g[A_{\mu}, A_{\nu}]$$

Evidence for the duality to hold, but no Lagrangian prove.

Now g is really a coupling. $\tau = \frac{\theta}{2\pi} + i \frac{2\pi}{g^2}$ $\tau \to -1/\tau \qquad (g \to \sim 1/g)$ strong-weak duality. $\frac{\theta}{2\pi}F_{\mu\nu}\tilde{F}^{\mu\nu} \qquad \theta \to \theta + 1 \qquad (\tau \to \tau + 1)$ is a symmetry. \Rightarrow All together

$$au o rac{a au + b}{c au + d}, \qquad \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} o \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$

where $ad - bc = 1$, i.e. $SL(2, \mathbb{Z})$. $au o -1/ au o \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Type IIB String Theory

Low energy effective Lagrangian:

$$\begin{split} \mathcal{L} &\sim \frac{1}{(\operatorname{Im} \tau)^2} \, \mathrm{d} \, \tau \wedge \star \, \mathrm{d} \, \bar{\tau} + \frac{1}{\operatorname{Im} \tau} \, G_3 \wedge \star \bar{G}_3 + C_4 \wedge H_3 \wedge F_3 \\ \tau &= C_0 + \frac{i}{g_s}, \qquad g_s = \text{string coupling} \\ G_3 &= F_3 - \tau H_3 \end{split}$$

Enjoys $SL(2,\mathbb{Z})$ **S**-duality.

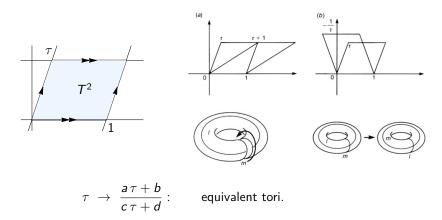
$$\tau \rightarrow \frac{a \tau + b}{c \tau + d}, \qquad \begin{pmatrix} F_3 \\ H_3 \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} F_3 \\ H_3 \end{pmatrix}$$

 \Rightarrow Strong/weak duality.

String Theory defined **perturbatively** in *g*_{*S*}:

$$\underbrace{\begin{array}{c} & & \\ & &$$

Torus: $SL(2,\mathbb{Z})$ -invariant object

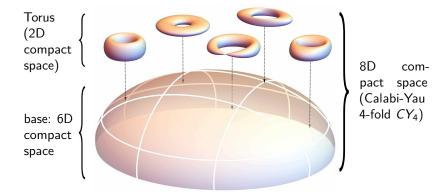


Idea: identify τ (torus) with τ (string theory).

 \Rightarrow Realize S-duality **geometrically**!

F-theory: T^2 -fibration

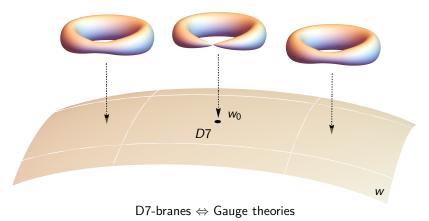
Attach a torus at every point of the space



Mathematical description

$$y^2 = x^3 + f(u)x + g(u), \qquad \Delta = 4f^3 + 27g^2 = 0$$

Torus becomes singular \Leftrightarrow D7-brane



Different singularities \Leftrightarrow Different gauge groups

$\mathsf{Physics} \leftrightarrow \mathsf{Geometry}$

Can read off more than gauge group from singularities.

Object	$\mathbb{C} ext{-codimension}$	Type IIB
Gauge Theory	1	stack of branes
Matter	2	2 branes intersecting
Couplings	3	3 branes intersecting

Advantages

- Describes strong coupling regimes, i.e. non-perturbative physics (\rightarrow top yukawa possible)
- Give consistent **global models** (global constraints, such as tadpole cancellation, are automatically satisfied)

4D effective actions

- Need to compactify on a CY_4 instead of a CY_3 .
- But 12D theory not defined
- Use duality with M-theory

