How to connect String Theory with Reality

Florian Wolf

Young Scientists Workshop at Ringberg Castle on June 7, 2016

Outline

From String Theory to Particle Physics

- 1. What is String Phenomenology?
- 2. D-Branes and Gauge Fields
- 3. Intersecting Branes and Matter
- 4. Family Replication
- 5. Example

From String Theory to Cosmology

- 6. Axion Inflation and String Theory
- 7. Natural and Aligned Inflation
- 8. Our Recent Work

From String Theory to Particle Physics

String Phenomenology

String Theory offers different possibilities to engineer the Standard Model:

String Phenomenology

String Theory offers different possibilities to engineer the Standard Model:

D-Branes

Definition: D-Branes are higher dimensional planes on which open strings end

open string: gauge fields and matter on the brane

D-brane

D-Branes

Definition: D-Branes are higher dimensional planes on which open strings end

D-Branes

Definition: D-Branes are higher dimensional planes on which open strings end

 it is convenient to consider D6-branes in type IIA string theory or D7-branes in type IIB including orientifold planes

U(1) vector multiplet

U(1) vector multiplet

electromagnetism

U(1) vector multiplet

electromagnetism

2 coincident D-branes

 $U(2) = SU(2) \times U(1)$

2 coincident D-branes

U(1) vector multiplet

electromagnetism

 $U(2) = SU(2) \times U(1)$

electroweak theory

• D-branes can realise SM gauge group $SU(3) \times SU(2) \times U(1)$

Separating branes:

Separating branes:

Stringy Higgs effect

String states between 2 D-branes:

became massive, but no chiral matter

Separating branes:

Stringy Higgs effect

String states between 2 D-branes:

became massive, but no chiral matter

Unfolding branes:

Separating branes:

Stringy Higgs effect

String states between 2 D-branes:

became massive, but no chiral matter

Unfolding branes:

Chiral matter

intersection locus

String states at intersection:

chiral (massless) fermions

Separating branes:

Stringy Higgs effect

String states between 2 D-branes:

became massive, but no chiral matter

Unfolding branes:

Chiral matter

intersection locus

String states at intersection: chiral

chiral (massless) fermions

Intersecting D-branes give rise to SM quarks and leptons

Family Replication via Compactification

Simplest example:

 $T^6 = T^2 \times T^2 \times T^2$

2 intersecting D-branes on 6d torus

Intersection number = *number of families:*

$$\begin{bmatrix} (0,1) \\ (1,0) \end{bmatrix} \times \begin{bmatrix} 1,-1 \\ i \\ (1,1) \end{bmatrix} \times \begin{bmatrix} (1,-1) \\ i \\ (1,1) \end{bmatrix} \times \begin{bmatrix} (1,-1) \\ i \\ (2,1) \end{bmatrix}$$
 wrapping numb

$$I_{ab} = \prod_{i=1}^{i} (n_a^i m_b^i - m_a^i n_b^i)$$

wrapping numbers: (n^i, m^i)

Family Replication via Compactification

geometric origin of family replication

Family Replication via Compactification

geometric origin of family replication

Comments:

- Calabi-Yau: homological 3-cycle and topological intersection number
- orientifolds: cycle involution invariant: SO(N) or SP(N)

cycle not involution invariant: U(N)

Example

Introduce 4 stacks of D6-branes a,b,c,d and orientifold plane

 \longrightarrow Gauge group: $U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$

----> need to ensure correct intersection numbers to get 3 families

Example

Introduce 4 stacks of D6-branes a,b,c,d and orientifold plane

 \longrightarrow Gauge group: $U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$

- ----> need to ensure correct intersection numbers to get 3 families
- -----> realises Standard Model + additional matter

From String Theory to Cosmology

Axion Inflation

Inflation:

- exponential expansion during very early time period of the universe
- driven by scalar inflaton field ϕ with potential $V(\phi)$

Axion Inflation

Inflation:

- exponential expansion during very early time period of the universe
- driven by scalar inflaton field ϕ with potential $V(\phi)$

Experiments [BICEP2 '14, Planck '15] motivated to study large-field inflation ($\Delta \phi > M_{\rm Pl}$)

Axion Inflation

Inflation:

- exponential expansion during very early time period of the universe
- driven by scalar inflaton field ϕ with potential $V(\phi)$

Experiments [BICEP2 '14, Planck '15] motivated to study large-field inflation ($\Delta \phi > M_{\rm Pl}$)

- highly sensitive to UV corrections
- axions with shift symmetry $\phi \to \phi + 2\pi$ prevent corrections to the inflaton potential
 - axions arise naturally in string theory as moduli

Natural and Aligned Inflation

- important task in string pheno: make moduli very massive!!
- consider interplay between inflation and moduli stabilisation in string theory

Natural and Aligned Inflation

- important task in string pheno: make moduli very massive!!
- consider interplay between inflation and moduli stabilisation in string theory

Natural Inflation: axion shift symmetry implies periodic potential:

approx. energy scale of inflation

$$V(\phi) = V_0 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

[∖]axion decay constant

- large-field inflation only for $f > M_{\rm Pl}$
- Problem: $f < M_{\rm Pl}$ for controlled string compactification

Natural and Aligned Inflation

- important task in string pheno: make moduli very massive!!
- consider interplay between inflation and moduli stabilisation in string theory

Natural Inflation: axion shift symmetry implies periodic potential:

approx. energy scale of inflation

$$V(\phi) = V_0 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

`axion decay constant

 $f_1, f_2 < M_{\rm Pl}$

- large-field inflation only for $f > M_{\rm Pl}$
- Problem: $f < M_{P1}$ for controlled string compactification

Solution: Aligned Inflation

- employ two axions with decay constants
- "align" axions appropriately to achieve effective decay constant $f_{
 m eff} > M_{
 m Pl}$

Our recent work

arXiv: 1605.06299 by Blumenhagen, Herschmann, FW

Our recent work

arXiv: 1605.06299 by Blumenhagen, Herschmann, FW

- Moduli stabilisation a la LARGE volume scenario possible
- ▶ vanishing F-term condition stabilises Z ~ e^{-flux×S}
 → integrating out Z mimics instanton terms in the superpotential
- neglecting K\u00e4hler moduli can lead to aligned inflation
 sexponential suppression gives great control over ALL effective theories

Summary

Summary

String Theory and Particle Physics:

- realises particle spectrum of the Standard Model
- capable of beyond to SM effects
- But always appearance of extra matter

Summary

String Theory and Particle Physics:

- realises particle spectrum of the Standard Model
- capable of beyond to SM effects
- But always appearance of extra matter

String Theory and Cosmology:

- axion inflation possible
- But ... in general difficult to control effective theories
 moduli stabilisation at conifold might work!
- ST can also explain dark matter and dark energy