The CRESST experiment: Current status and future development

Marc Wüstrich

Max-Planck-Institute f. Physics

YSWS 06.06.2016

p. Dg>tt

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

• Numerous evidences for Dark Matter on all cosmic scales

• Numerous evidences for Dark Matter on all cosmic scales

• Numerous evidences for Dark Matter on all cosmic scales

- Numerous evidences for dark matter on all cosmic scales
- Nature:
 - Cold/non-relativistic
 - Non-baryonic
 - Long living/stable

06.06.2016 5 / 45

CRESST

- Numerous evidences for dark matter on all cosmic scales
- Nature:
 - Cold/non-relativistic
 - Non-baryonic
 - 5 times more abundant than baryonic matter
 - Long living/stable

No direct proof achieved until today!

Dark Matter Candidates

Detection

• Necessary assumption: Weak coupling to standard model particles

Detection

• Necessary assumption: Weak coupling to standard model particles

Production

CRESST: Direct detection via elastic, coherent scattering off nuclei

CRESST

Crygenic Rare Event Search with Superconducting Thermometers

Ap. Ag > 1t

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

ТШ
TECHNISCHE
MÜNCHEN

Laboratori Nazionali del Gran Sasso

Experimental Challenges

- Tiny signal rate (0.1-1 counts/(ton·year)
- Tiny energy depositions $\mathcal{O}(0.1\text{--}10\text{keV})$
- Numerous background sources (internal & external)
- \rightarrow Big detectors
- \rightarrow Low threshold
- \rightarrow Ultralow background environment
- \rightarrow Particle identification on event by event basis

CRESST: Location

3600 m.w.e.

CRESST: Experimental Setup

- Scintillating CaWO₄ main absorber
 - Multi element target (Ca, 0, W)
 - Inorganic scintillator (peak of emission at 420nm)
 - In-house production via Czochralski methode (control of internal backgrounds)

- Scintillating CaWO₄ main absorber
- Light detector/absorber
 - Silicon or Silicon on Sapphire (SOS) absorber
 - Absorber dimension easy to adjust to the detector geometry

- Scintillating CaWO₄ main absorber
- Separated light detector (pure silicon/ silicon on sapphire (SOS))
- Thermometers: Tungsten Transition Edge Sensors (TES)
 - Bolometric/calorimetric mode possible
 - μK sensitivity
 - SQUID readout

- Scintillating CaWO₄ main absorber
- Separated light detector (pure silicon/ silicon on sapphire (SOS))
- Thermometers: Tungsten Transition Edge Sensors (TES)
 - Bolometric/calorimetric mode possible
 - μK sensitivity
 - SQUID readout

Marc Wüstrich (MPP)

CRESST: Particle identification

Phonon Channel:

- Detects major part of the deposited energy
- Particle indepent detection channel
- Precise measurement of the recoil energy

Light Channel:

- Detects about $\approx 2\%$ of the deposited energy
- Particle dependent detection channel
- Provides information for particle identification

CRESST: Particle Identification

• Particle identification on event by event basis

• Dark matter events are expected to arise in the nuclear recoil bands below 40keV

```
Marc Wüstrich (MPP)
```


- Scintillating CaWO₄ main absorber
- Separated light detector (pure silicon/ silicon on sapphire (SOS))
- Thermometers: Tungsten Transition Edge Sensors (TES)
- Scintillating and vetoing detector housing
- Holding structure

CRESST-II Conventional Detector Module

CRESST-II Conventional Detector Module

CRESST-II (Phase 1) Results

- Positive background signal
- Origin: Non-Scintillating bronze clamps

 210 Pb \rightarrow 206 Pb (103keV)+ α (5.3MeV)

\rightarrow avoid non-scintillating surfaces!

CRESST: Surface Backgrounds

TUM 40 Module

Next Generation of CRESST-II Modules (CRESST-II (Phase 2))

 Avoiding any line of sight to non-scintillating surfaces (glued carrier, CaWO₄ sticks, light detector as veto)

Stick/TUM 40 Module

CRESST: Veto for surface events

Accepted Data

CRESST: Dark Matter Analysis

CRESST: Dark Matter Analysis

Crucial for setting good limits for small dark matter masses:

- Longtime stability of the detector working point
- Well defined and determined trigger threshold

CRESST: Modules used for Analysis

TUM 40

- Crystal held by CaWO₄ sticks
- Surface background rejection
- Clean, selfgrown crystal
- Detection threshold: $E_{thres} \approx 600 \text{eV}$

Lise

- Conventional detector module
- Surface background problem
- Crystal with high internal contamination
- But: Best detection threshold: $E_{thres} \approx 300 eV$

CRESST-II (Phase 2)

Limitation of Sensitivity

Conclusions from CRESST-II (Phase 2)

- The phonon-light technique is perfectly suited for exploring the low mass dark matter parameter space
- Lowering the detection threshold is key
- Exposure/statistic has a minor impact
- Performance of the light detector is sufficient/has a minor impact

Limitation of Sensitivity

CRESST-III R&D goals for probing light dark matter

- Self-grown crystals for best radiopurity
- \bullet Lowering the detection threshold $E_{\it thres}$ ${<}100 eV$
 - Reduction of the absorber mass by a factor of 15 (300g \rightarrow 24g)
 - Improved TES structure
- Performance of the light detector sufficient (5eV) (minor impact on the limit)
- Fully scintillating detector housing using CaWO₄ sticks (with TES)

CRESST-III Module

CRESST-III: Improved phonon detector performance

Reduction of main absorber mass

- Smaller heat capacity
- Higher energy density in the crystal per deposited energy
- Changed phonon life times in the crystal
 - \rightarrow Adjustment of the TES structure

CRESST-III: TES changes

CRESST-II phonon detector TES for big crystals

- $\bullet \ \ \mathsf{Bolometric} \ \ \mathsf{mode} \rightarrow \mathsf{heat} \ \mathsf{flux} \\ \mathsf{measurement} \\$
- Slow natural phonon decay due to the big crystal
- Large TES area for fast phonon thermalization in TES
- Strong thermal link

 \rightarrow Reduction of pulse length and amplitude

 \rightarrow Less dead time for the cost of sensitivity

CRESST-III phonon detector TES for small crystals

- Calorimetric mode \rightarrow total temperature measurement
- Small TES area \rightarrow phonon thermalization is dominated by the crystal
- Faster phonon decay due to smaller crystal dimensions
- Weak thermal link

 → Measurement of the complete energy depositions

CRESST-III: Prototype Measurement

Overground measurement in Munich

- ${\scriptstyle \bullet}\,$ Phonon detector threshold \approx 80eV
- Good light detector performance (light yield 2.5%)
- iStick system successfully tested
- complete understanding of all event classes

Marc Wüstrich (MPP)

CRESST-III: iStick system

iStick system

- tagging of stick events to lowest energies
- prevention of degraded signals (phonon and light channel)
- 3 TES readout with a single SQUID readout

Marc Wüstrich (MPP)

CRESST-III: 10 Modules

CRESST-III: Perspectives

CRESST-III: Perspectives

CRESST-III (Phase 2): background improved by a factor 100, 1000 kg*days

Thank you!