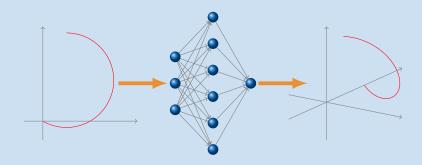
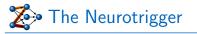
Neural Networks in the Belle II Track Trigger

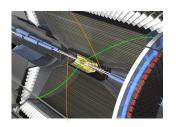
Ringberg Young Scientist Workshop 2016

June 8, 2016



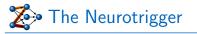


estimate z-vertex of single tracks to reject machine background in Belle II

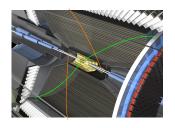


Why neural networks?

- fast (< 1 µs), parallel, deterministic runtime
- nonlinear, noise robust
- **.** . .



estimate z-vertex of single tracks to reject machine background in Belle II



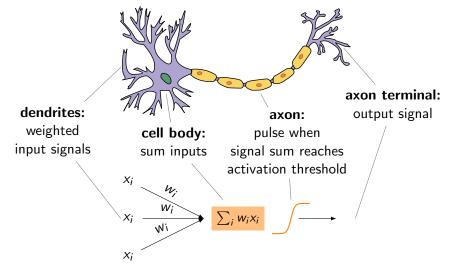
Why neural networks?

- fast (< 1 μs), parallel, deterministic runtime
- nonlinear, noise robust
- ..

How does it work?

- multi layer perceptron
- function approximation
- classification
- training methods
- application in the neurotrigger

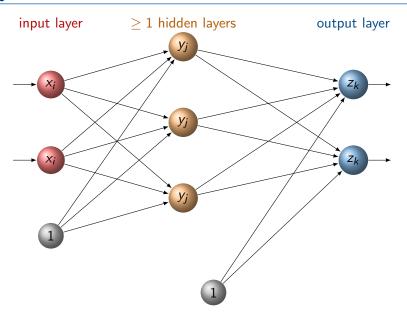
Biological neuron vs. perceptron



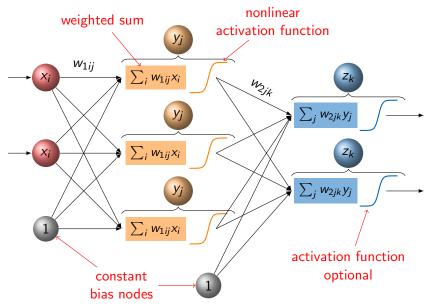
By Dhp1080, svg adaptation by Actam - Image:Neuron.svg, CC BY-SA 3.0, $\,$

https://commons.wikimedia.org/w/index.php?curid=4293768

Multi Layer Perceptron (MLP)



🤛 Multi Layer Perceptron (MLP)

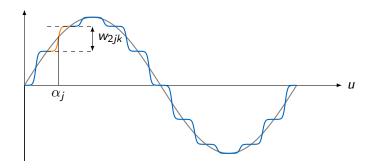


General function approximation

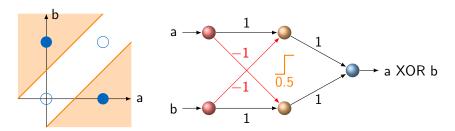
Fourier series:
$$f(\vec{x}) = \sum_{\vec{k}} c_{\vec{k}} \cdot \exp(\underbrace{2\pi i \vec{k} \cdot \vec{x}}_{u(\vec{x})})$$

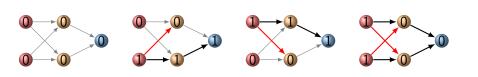
Hidden node: $tanh(\sum_i w_{1ii}x_i) = tanh(\beta_i(u(\vec{x}) - \alpha_i))$

Output node: $\sum_{i} w_{2jk} \cdot \tanh(\beta_j(u(\vec{x}) - \alpha_j)) \approx \sin(u(\vec{x}))$



need at least 2 separating lines = hidden nodes



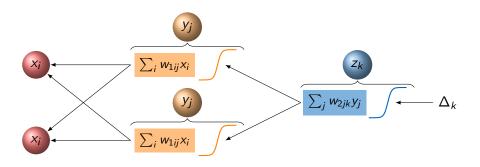


Training with backpropagation

training samples (\vec{x}^s, \vec{t}^s)

$$ightarrow$$
 minimize cost function $E = \sum\limits_{k,s} (z_k(ec{x}^s) - t_k^s)^2 = \sum\limits_{k,s} (\Delta_k^s)^2$

weight updates: $\Delta w = -\frac{\partial E}{\partial w} \cdot \delta$, (δ : learning rate)

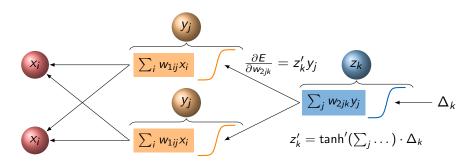


Training with backpropagation

training samples (\vec{x}^s, \vec{t}^s)

$$\rightarrow$$
 minimize **cost function** $E = \sum_{k,s} (z_k(\vec{x}^s) - t_k^s)^2 = \sum_{k,s} (\Delta_k^s)^2$

weight updates: $\Delta w = -\frac{\partial E}{\partial w} \cdot \delta$, (δ : learning rate)

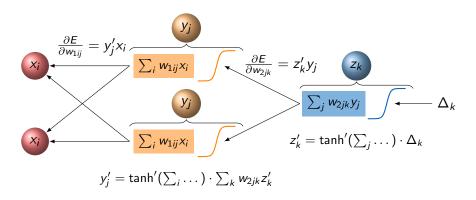


Training with backpropagation

training samples (\vec{x}^s, \vec{t}^s)

$$ightarrow$$
 minimize **cost function** $E = \sum_{k,s} (z_k(\vec{x}^s) - t_k^s)^2 = \sum_{k,s} (\Delta_k^s)^2$

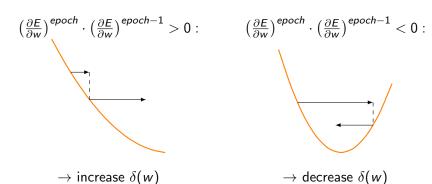
weight updates: $\Delta w = -\frac{\partial E}{\partial w} \cdot \delta$, (δ : learning rate)

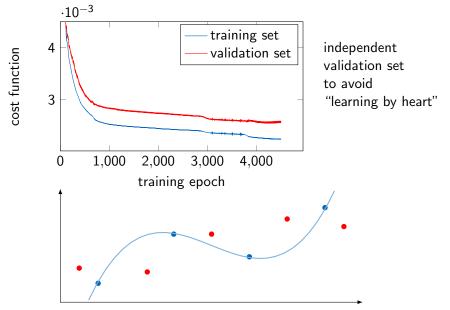


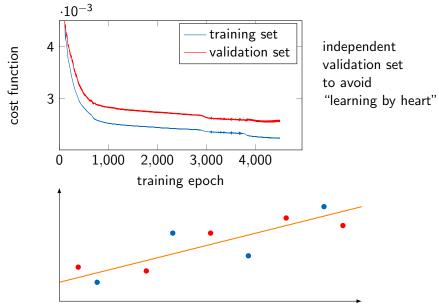
RPROP: flexible learning rate

weight updates:
$$\Delta w = -\text{sign}\left(\frac{\partial E}{\partial w}\right) \cdot \delta_{\text{epoch}}(w)$$

- depends only on sign of cost function derivative
- individual learning rate for each weight
- learning rate adjusted during training

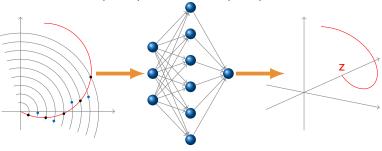




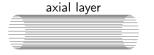


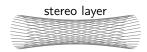
MLPs in the neurotrigger

Task: 2D track (circle) \rightarrow 3D track (helix)

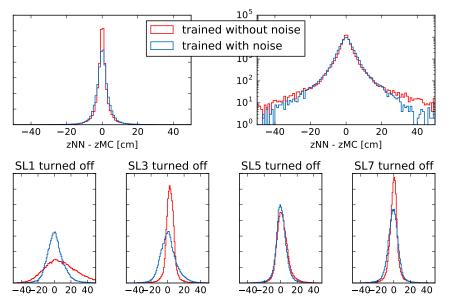


- input: wire hits from the central drift chamber
 - 9 super layers, alternating axial and stereo
 - 1 hit per super layer, scaled position and drift time
- output: continuous scaled z-vertex





What does the MLP learn?



Multi Layer Perceptron

- $ightharpoonup \geq 3$ layers of perceptrons
- connection weights, nonlinear activation
- function approximation / classification

Training: backpropagation

- input/output samples
- minimize cost function

Belle II neurotrigger

fast 3D track reconstruction