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@0 The Neurotrigger B

estimate z-vertex of single tracks to reject machine background in Belle Il

Why neural networks?

m fast (< 1ps), parallel,
deterministic runtime

m nonlinear, noise robust

Neural Networks in the Belle Il Track Trigger



z;v The Neurotrigger

estimate z-vertex of single tracks to reject machine background in Belle Il

Why neural networks?

m fast (< 1ps), parallel,
deterministic runtime

m nonlinear, noise robust

How does it work?

multi layer perceptron
function approximation
classification

training methods

application in the neurotrigger
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@ Biological neuron vs. perceptron
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https://commons.wikimedia.org/w/index.php?curid=4293768
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@' Multi Layer Perceptron (MLP)

input layer > 1 hidden layers output layer

@
@
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E*' Multi Layer Perceptron (MLP)

nonlinear

@ activation function
Wijj ~
~@ " ., @
2%
Do WaiiXi f Q
Do WaiiXi /

activation function
constant optional
. —_—
bias nodes

weighted sum

Neural Networks in the Belle Il Track Trigger 4



@ General function approximation

Fourier series: f(X) =} c;- exp(2mik - X)
K (%)

Hidden node: tanh (3, wyjix;) = tanh (3;(u(X) — a;))

Output node: }; wyji - tanh(8;(u(X) — o)) = sin(u(x))
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@0 Classification: XOR

need at least 2 separating lines = hidden nodes
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@' Training with backpropagation

training samples (xX°, t°)

— minimize cost function £ = > (z(X°) — t5)? = Y (Af)?
k,s k,s

weight updates: Aw = —g—v’i -9, (0: learning rate)
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@0 Training with backpropagation

training samples (xX°, t°)

— minimize cost function £ = > (z(X°) — t5)? = Y (Af)?
k,s k,s
weight updates: Aw = —g—v’i -9, (9: learning rate)
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z;v RPROP: flexible learning rate B

weight updates: Aw = —sign (g—ﬁ) + Sepoch (W)
m depends only on sign of cost function derivative
m individual learning rate for each weight

m learning rate adjusted during training

HE \ epoch HE \ epoch—1 ) HE \ epoch 9E \ epoch—1 )
(BW) (8w) >0: (8w) (8w) <0:
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|
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— increase d(w) — decrease d(w)
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@ Overtraining
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@0 MLPs in the neurotrigger

Task: 2D track (circle) — 3D track (helix)

m input: wire hits from the central drift chamber
m 9 super layers, alternating axial and stereo

m 1 hit per super layer, scaled position and drift time
m output: continuous scaled z-vertex

axial layer

ereo lay
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@0 What does the

MLP learn?
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[ trained with noise

_ 100

-20 0 20
ZNN - zMC [cm]

SL1 turned of SL3

—40

40

turned of SL5

turne

-20 0 20

40
ZNN - zMC [cm]
d off

SL7 turned off

—406-20 0 20 40

—406-20 0 20 40

—406-20 0 20 40

—40-20 0 20 40

Neural Networks in the Belle Il Track Trigger

11



D
z>° Summary <&

Multi Layer Perceptron

m > 3 layers of perceptrons

m connection weights, nonlinear activation

m function approximation / classification
Training: backpropagation

® input/output samples

®m minimize cost function

Belle Il neurotrigger

m fast 3D track reconstruction
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