Complementarity of Observables in the Search of New Vector Bosons

Fernando Cornet Gómez

Tutor: José Santiago Pérez *Física Teórica y del Cosmos*

IMPRS Workshop, Munich June 28, 2016

Introduction

Analysis

Results

Introduction

Analysis

Results

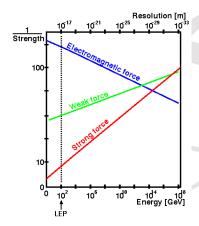
Introduction and Motivation

- Present and future
 - S.XX Neutron → Top quark
 - Higgs Boson (2012)
- Essential for the Standard Model (SM)
 - It gives mass to Gauge bosons and fermions
 - Confirms the SM
- Is the SM the ultimate theory?

Introduction and Motivation

Introduction and Motivation

- Present and future
 - S.XX Neutron → Top quark
 - Higgs Boson (2012)
- Essential for the Standard Model (SM)
 - It gives mass to Gauge bosons and fermions
 - Confirms the SM
- Is the SM the ultimate theory?


SM problems

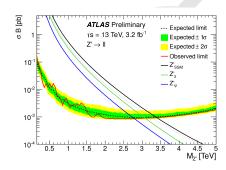
- Neutrino Masses
- Gravity
- Unification
- Dark Matter
- Matter-antimatter
- Strong CP problem
- Hierarchy problem

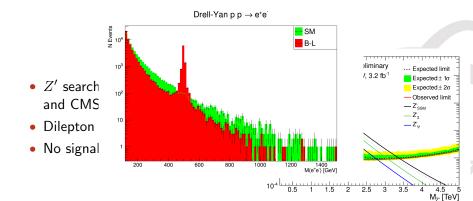
Beyond SM

- Supersymmetry
- Grand Unification Theories
- Extra Dimensions
- Minimal Extensions

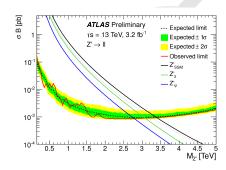
Introduction

Analysis


Results


Limits

- Z' searches by ATLAS [2] and CMS[1]
- Dilepton and dijet channels
- No signal → Limits


Limits

Limits

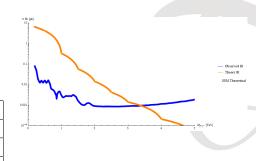
- Z' searches by ATLAS [2] and CMS[1]
- Dilepton and dijet channels
- No signal → Limits

Model

Cross section

×

Branching ratio


- Madgraph5 model
 - DY-SM[3] + Modifications:
 - Convenient parametrization
 - Framework
 - Add new couplings
 - Run FeynRules

Test

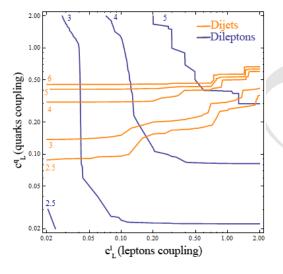
- Test our MG5 model
- Sequential Standard Model
- Compare with ATLAS results
- LO while ATLAS NNLO
 - No k-factor provided

Channel	ATLAS	Ours
e^+e^-	3.18 TeV	2.99 TeV
$\mu^+\mu^-$	2.98 TeV	2.86 TeV
l^+l^-	3.40 TeV	3.39 TeV

Introduction

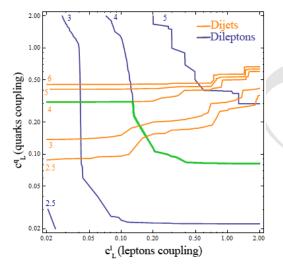
Analysis

Results



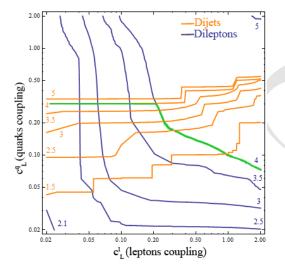
Models

- Goal: model independent parametrization
- Two assumptions analysed:
 - Couplings to first family
 - Couplings to all SM fermions
- Madgraph5 $\rightarrow \sigma \times Br$
- Intersection between experimental limit and theoretical prediction
- Contourplot dijet [1] + dilepton [2]
 - $g_L = g \cdot c_L$
 - $c_L = 0.02 \text{-} 0.08$ with 0.02 step
 - $c_L = 0.1-2$ with 0.1 step



First Family

First Family



All SM fermions

All SM fermions

Introduction

Analysis

Results

- Theory
 - Standard Model
 - Something beyond?
 - Beyond SM models
- Analysis
 - Model independent
 - Test
- Results
 - · Coupling to first family
 - Coupling to all fermions
 - Contourplot dilepton + dijet channels

Open questions

- Combine with Electroweak precision tests (EWPT)
 - I FP
- ullet Consider angular observables and c_L, c_R
- Generalize c_u and c_d formalism to combine with dijet searches

Bibliography I

[1] Khachatryan, Vardan and others

> Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt(s) = 13 \text{ TeV}$ ARXIV:1512.01224. 2016

[2] The ATLAS collaboration

> Search for new phenomena in the dilepton final state using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS-CONF-2015-070, 2015

[3] Chiang, Cheng-Wei and Christensen, Neil D. and Ding, Gui-Jun and Han. Tao

Discovery in Drell-Yan Processes at the LHC ARXIV:1107.5830