Performance of an MDT-based First-Level Muon Trigger for the ATLAS Detector at the HL-LHC

Philipp Gadow

Max-Planck-Institut für Physik, Technische Universität München

<ロ> (四) (四) (三) (三) (三) (三)

35th IMPRS EPP Workshop - June 28, 2016

High Luminosity upgrade of the LHC

- Plan to increase the LHC luminosity by an order of magnitude.
 - Ultimate instantaneous luminosity: $7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$.
 - 10× increased background of n and γ rays in Muon Spectrometer.
- Reach of searches for new physics, and accuracy of measurements significantly increased.

High Luminosity upgrade of the LHC

The intended physics programme for the HL-LHC requires

- $\Rightarrow\,$ to maintain present trigger thresholds for physics at the electroweak scale (\lesssim 20 GeV).
- ⇒ new highly selective triggers, in particular also a new first-level muon trigger.

The ATLAS Muon Spectrometer at the HL-LHC

Fast trigger chambers, $\mathcal{O}(1 \text{ ns})$ time precision:

Precision tracking detectors, $\mathcal{O}(35\,\mu\text{m})$ spatial resolution:

- Resistive Plate Chambers (RPC),
- Thin Gap Chambers (TGC)

 Monitored Drift Tube Chambers (MDT). consist of 6-8 layers of 30 mm diameter drift tubes. <<p>(日)

Philipp Gadow (MPP)

글 🖌 🔺 글 🕨

Contributions to the first-level muon trigger rate

- Trigger rate is dominated by fake tracks in end-caps, and by high rate of low energy muons.
- Improved momentum resolution of the first-level trigger required for sufficient reduction of the trigger rate due to low energy muons.

Philipp Gadow (MPP)

Present single muon trigger threshold

The ATLAS first-level muon trigger at the HL-LHC

Schematic diagram of present Level-1 muon trigger

- MDT chambers provide required momentum resolution for Level-1 trigger, comparable to present High Level Trigger, to reduce single muon trigger rate to < 20 kHz (with high efficiency and low fake rate).
- Due to the increased latency of 6 µs after the Phase-II upgrade, it becomes possible to include MDT chambers in the first-level trigger decision.

The ATLAS first-level muon trigger at the HL-LHC

Schematic diagram of new MDT trigger

developed at MPP

- MDT chambers provide required momentum resolution for Level-1 trigger, comparable to present High Level Trigger, to reduce single muon trigger rate to < 20 kHz (with high efficiency and low fake rate).
- Due to the increased latency of 6 µs after the Phase-II upgrade, it becomes possible to include MDT chambers in the first-level trigger decision.

The ATLAS first-level muon trigger at the HL-LHC

Two topics are addressed in this talk:

- Development and test of fast track segment reconstruction algorithms with custom Monte Carlo study, including background rates as expected for HL-LHC.
- 2. Investigation of trigger rate reduction with inclusion of MDT chambers using Run 1 data at $\sqrt{s} = 8$ TeV, 25 ns.

Track segment reconstruction:

- Pattern Reconstruction
- Track segments from straight line χ² fit (y = mz + b) to selected hits
- Choose candidate with:
 - 1. largest number of hits n_{hits},
 - 2. smallest χ^2

Three pattern recognition algorithms were studied:

- 1-D Hough transform
- 2-D Hough transform
- (new) Combinatorial Track Finder

1-D Hough transform

- 1. Use RPC/TGC track segment angle α as seed.
- 2. Fill projection

 $d = z \cos \alpha + y \sin \alpha \pm r_{drift}$

of MDT hits onto seed track direction in histogram.

3. Use hits in maximum bin for straight line χ^2 fit.

Expected background rates at HL-LHC

Expected background rate in kHz/tube at $\mathcal{L} = 7 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

MDT-based Muon Trigger for the ATLAS Detector at the HL-HLC

Track segment reconstruction performance

1-D Hough transform performance depends on seed track angular resolution:

- good in end-caps $(\sigma_{\theta} \approx 5 \text{ mrad})$
- Iower in barrel
 - ($\sigma_{ heta}\gtrsim$ 15 mrad)

	$n_{ m hits} \ge n_{ m min}$	$n_{ m hits} < n_{ m min}$
$ m_{ m rec} - m_{ m gen} < 3\sigma_{ m MDT, heta}$	well reconstructed track	track segments rejected
, - , , , , , , , , , , , , , , , , , ,	segments (ε)	
$ m_{ m rec} - m_{ m gen} > 3\sigma_{ m MDT, heta}$	wrongly reconstructed	track segments rejected
	track segments (n _{fake})	

1-D Hough transform

MDT-based Muon Trigger for the ATLAS Detector at the HL-HLC

2-D Hough transform

- Multiple 1-D Hough transforms for different bins α_i around seed track segment angle α_0
 - \Leftrightarrow scan 2-D parameter space in α and d.
- For each bin α_i
 - fill a histogram with

$$d_i = z \cos \alpha_i + y \sin \alpha_i \pm r_{\rm drift},$$

• perform straight line χ^2 fits to hits in maximum bins (as before).

Track segment reconstruction performance

2-D Hough transform

MDT-based Muon Trigger for the ATLAS Detector at the HL-HLC

Combinatorial Track Finder (new)

- For every combination of two drift circles in the same multi-layer: calculate the four possible common tangents.
- 2. Select tangents compatible with RPC/TGC seed track.
- 3. Calculate the average of the compatible tangents.
- 4. Find hits closest to the straight line.
- 5. Perform straight line χ^2 fit to these hits (as before).

Track segment reconstruction performance

Combinatorial Track Finder

Rate reduction of the first-level single muon trigger

Studied with ATLAS Run 1 data

MDT-based Muon Trigger for the ATLAS Detector at the HL-HLC

Rate reduction of the first-level single muon trigger

Rate reduction by 70%, therefore first-level muon trigger rate reduced to < 20 kHz for $p_T = 20 \text{ GeV}$ trigger threshold.

Philipp Gadow (MPP)

Hardware implementation

- Assembler code implemented at MPP on a 'System on a Chip' (XC7Z045 FFG900 -2 AP), FPGA + 833 MHz CPU.
- All events can be processed in < 5 µs, close to intended processing time of 3 µs.
- Further optimisation possible with faster processors (1 GHz) and enhanced implementation.

Summary

- Highly selective triggers are required to maintain trigger thresholds for physics at the electroweak scale at the HL-LHC.
- To reduce the single muon trigger rate to < 20 kHz it is required to include the MDT chambers in the first-level trigger decision.
- Fast muon track reconstruction algorithms have been developed, which can be performed within 6 µs latency.
- ► The new method developed, the Combinatorial Track Finder, based on all possible tangents to drift circles, gives high track segment efficiency $\varepsilon \approx 95\%$ in all regions of the ATLAS Muon Spectrometer and is insensitive to the seed precision.

Additional Slides

Philipp Gadow (MPP)

3 🕨 🖌 3

- Significant improvements in the
 - precision measurement of Higgs couplings and detection of possible deviations from SM values,
 - searches for supersymmetric particles,
 - searches for Dark Matter particles, e.g. in invisible Higgs boson decays.

 $\Rightarrow\,$ Maintain present trigger thresholds for physics at the electroweak scale (\lesssim 20 GeV).

Philipp Gadow (MPP)

MDT-based Muon Trigger for the ATLAS Detector at the HL-HLC

Significant improvements in the

- precision measurement of Higgs couplings and detection of possible deviations from SM values,
- searches for supersymmetric particles,
- searches for Dark Matter particles, e.g. in invisible Higgs boson decays.

 $\Rightarrow\,$ Maintain present trigger thresholds for physics at the electroweak scale (\lesssim 20 GeV).

- Significant improvements in the
 - precision measurement of Higgs couplings and detection of possible deviations from SM values,
 - searches for supersymmetric particles,
 - searches for Dark Matter particles, e.g. in invisible Higgs boson decays.

 \Rightarrow Maintain present trigger thresholds for physics at the electroweak scale (\lesssim 20 GeV).

- Significant improvements in the
 - precision measurement of Higgs couplings and detection of possible deviations from SM values,
 - searches for supersymmetric particles,
 - searches for Dark Matter particles, e.g. in invisible Higgs boson decays.

⇒ Maintain present trigger thresholds for physics at the electroweak scale (\leq 20 GeV).

Avoidable background in end-caps

- Hadronic punch-through from the calorimeters gives rise to fake high-p_T muon triggers
- New Small Wheel (Phase-I upgrade) and Big Wheel coincidence will sort out fakes

Sagitta measurement

ØĽ

Parametrisation of p_{T}^{on} in terms of s, ϕ, η

The inhomogeneous field integral in the spectrometer requires local corrections dependent on η and ϕ .

$$oldsymbol{
ho}_{\mathsf{T}} = rac{oldsymbol{e} L^2 \cdot oldsymbol{B}(\phi,\eta)}{8oldsymbol{s}} pprox oldsymbol{S}_{\mathsf{1}}(1/oldsymbol{s}) + oldsymbol{P}_{\mathsf{2}}(\phi) + oldsymbol{E}_{\mathsf{2}}(\eta),$$

with

 $S_1 = (1/s - a_0)/a_1$ $P_2(\phi) = \sum_{i=0}^2 p_i \cdot \phi^i$ $E_2(\eta) = \sum_{i=0}^2 e_i \cdot \eta^i$

The parameters a_i , p_j , e_j are determined in an iterative fitting procedure.

Iterative fitting procedure

Momentum resolution of sagitta measurement

- p^{on}_T resolution at trigger threshold of 20 GeV: σ_{p^{on}_T} = 4.9%, limited by energy loss fluctuations and multiple scattering
- ▶ MS Offline resolution at trigger threshold of 20 GeV: $\sigma_{p_{T}^{SA}} = 3.5\%$

Philipp Gadow (MPP)

Momentum resolution in ATLAS Muon Spectrometer

Expected Rate Reduction

- 70% of all trigger candidates have 3 or more track segments and are suitable for sagitta measurement with rate reduction by 70%.
- Remaining 20% of all trigger candidates is suitable deflection angle measurement with rate reduction of 50%.
- Remainder (10%) is accepted by MDT trigger.

 \Rightarrow Combined rate reduction by 60% from 50 kHz (after Phase-I upgrade) to 20 kHz.

- Sagitta measurement only possible for trigger candidates with
 3 track segments.
- \blacktriangleright Detector upgrades will provide higher track segment efficiency for $|\eta|>$ 2.0

Event selection for rate study

Data sample: Run 1 ATLAS data at $\sqrt{s} = 8$ TeV, 25 ns bunch spacing (Period M), consisting of runs 216399, 216416, and 216432

Step in event selection	Number of events
Expected Phase-I trigger events	122 701
Matched to off-line muon	109 950
$ ho_{ m T}^{ m CB} <$ 100 and $ ho_{ m T}^{ m SA} <$ 100	102 292
Sagitta method applicable	76 270

Assumptions for Monte-Carlo Performance Study

- Segment parameters for each chamber determined with Run-1 data
- ▶ No EO TGCs: slope extrapolation EM \rightarrow EO with $\sigma_{\text{EO}-\text{EM}} = 0.0018$

Ø Ł

Hough transform

Hough transform:

- Isomorphic map between points in coordinate space and sinusoidal curves in parameter space
- Maximum in parameter space defines straight line segment
- Implementation: fill histogram with

$$d_i = x \cos \alpha_i + y \sin \alpha_i \pm r_{\rm drift}$$

[1] ATLAS Phase-II Upgrade Scoping Document, CERN-LHCC-2015-020

[2] Prospects for New Physics in Higgs Couplings Studies with the ATLAS Detector at the HL-LHC, ATL-PHYS-PUB-2014-017

- [4] ATLAS muon spectrometer : Technical Design Report, CERN-LHCC-97-022
- [5] The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003
- [6] S. Sun, G. Conti, L. Jeanty, and M. Franklin, Predicting Hit Rates in the ATLAS Montior Drift Tube at 10^{34} cm⁻² sec⁻¹ at $\sqrt{s} = 7$ and 8 TeV, ATL-COM-MUON-2013-011

[7] Kouta Onogi,

修士論文 LHC アップグレードに向けた ATLAS 実験のミューオン トリガー開発