Phonon Focusing in Cryogenic Calorimeters

Johannes Rothe

Max-Planck-Institut für Physik, Ludwig-Maximilians-Universität München

35th IMPRS Workshop - June 28, 2016

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Applications of Cryogenic Calorimeters

Rare-Event Searches

Direct search for dark matter

SuperCDMS

Neutrinoless Double-Beta-Decay

Astronomy

Soft X-ray Spectrometer (Hitomi Satellite Mission)

Applications of Cryogenic Calorimeters

Rare-Event Searches

Direct search for dark matter

SuperCDMS

Neutrinoless Double-Beta-Decay

Astronomy

Soft X-ray Spectrometer (Hitomi Satellite Mission)

Predicting Energy Thresholds

3 Effects in Cryogenic Detectors

Predicting Energy Thresholds

Importance of a Low Energy Threshold

Energy deposition creates "high frequency" phonons (out of thermal equilibrium)

- Energy deposition creates "high frequency" phonons (out of thermal equilibrium)
- 2 Detection in thermometer film (au_{film} , non-thermal signal)

- Energy deposition creates "high frequency" phonons (out of thermal equilibrium)
- 2 Detection in thermometer film (au_{film} , non-thermal signal)
- 3 Thermalization on absorber crystal surfaces terminates signal ($\tau_{\rm crystal}$, slight warmup of the detector)

$$\Delta T = \underbrace{\frac{1/\tau_{\rm film}}{1/\tau_{\rm crystal} + 1/\tau_{\rm film}}}_{\rm collection\ efficiency} \cdot \frac{\Delta E}{C_{\rm film}}$$

$$\Delta T = \underbrace{\frac{1/\tau_{\rm film}}{1/\tau_{\rm crystal} + 1/\tau_{\rm film}}}_{\rm collection \ {\rm efficiency}} \cdot \frac{\Delta E}{C_{\rm film}} \approx \frac{\tau_{\rm crystal}}{\tau_{\rm film}} \cdot \frac{\Delta E}{C_{\rm film}}$$

 $\tau_{\rm crystal} \ll \tau_{\rm film}$

$$\Delta T = \mu \cdot \frac{I_{sc}}{V_a} \cdot \frac{A_t}{V_t} \cdot \Delta E$$

I_{sc}: mean length between surface scatterings

 μ : material constant

- sound speed
- phonon transmission into thermometer
- thermalization probability at crystal surface

Surface Scattering Lengths for Different Geometries

CRESST-II light detectors: predictions scaled to measured thresholds

CRESST-II phonon detectors: independent measurement confirms model

CRESST-III light detector: threshold lowered by a factor of 3 from scaling

CRESST-III phonon detector: threshold < 100 eV (design goal exceeded)

All modeling assumes isotropic phonon propagation!

Phonon Focusing in Anisotropic Crystals

Phonon Focusing: Anisotropic Elasticity

$$\omega(k)
ightarrow \omega(ec{k})$$

Phonon Focusing: Anisotropic Elasticity

$$\vec{v_g} = \vec{\nabla}_k \omega$$

Phonon Focusing: Anisotropic Elasticity

$$\vec{v_g} = \vec{\nabla}_k \omega$$

Phonon Focusing: Patterns in CRESST Materials

Sapphire

Phonon Focusing: Patterns in CRESST Materials

 $CaWO_4$

Phonon Focusing: Patterns in CRESST Materials

14

Effects in Cryogenic Detectors

Increasing Pulse Height

 $(\propto au_{
m crystal}/ au_{
m film})$

In Planar Geometries:

Maximize in-plane propagation! (choosing the lattice orientation) Increasing Pulse Height

 $(\propto au_{
m crystal}/ au_{
m film})$

In Planar Geometries:

Maximize in-plane propagation! (choosing the lattice orientation)

 $\Rightarrow \tau_{\rm crystal} \text{ grows, but } \tau_{\rm film} \text{ also grows} \\ \text{(longer, but not higher pulses)}$

Increasing Pulse Height

 $(\propto au_{
m crystal}/ au_{
m film})$

In Planar Geometries:

Maximize in-plane propagation! (choosing the lattice orientation)

 $\Rightarrow \tau_{\rm crystal} \text{ grows, but } \tau_{\rm film} \text{ also grows} \\ \text{(longer, but not higher pulses)}$

 \Rightarrow lowering $\tau_{\rm film}$ while keeping $\tau_{\rm crystal}$ high

Quantitative Estimates

Sapphire: maximizing in-plane propagation

Quantitative Estimates

Quantitative Estimates

Experimental Testing

Simultaneous comparison: "face"-thermometer vs. "edge"-thermometer

Experimental Testing

Experimental Testing

A Future Light Detector Concept

Phonon-focusing assisted light detector: phonon collector on the side

Summary

• Energy thresholds of cryogenic calorimeters can be predicted from a model of the non-thermal phonon signal.

• Phonon focusing from anisotropic crystal elasticity can influence this signal.

• Light detector performance may be improved significantly taking advantage of this effect.

Thank you!

Non-Thermal and Thermal Component

