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Applications of Cryogenic Calorimeters
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Soft X-ray Spectrometer
(Hitomi Satellite Mission)
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Predicting Energy Thresholds
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Importance of a Low Energy Threshold

←−−−−−−−−−−−−−−
lower dark matter particle mass
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Pulse Height in Cryogenic Calorimeters
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Pulse Height in Cryogenic Calorimeters

1 Energy deposition creates “high frequency” phonons (out of thermal
equilibrium)

2 Detection in thermometer film (τfilm, non-thermal signal)

3 Thermalization on absorber crystal surfaces terminates signal (τcrystal,
slight warmup of the detector)
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Pulse Height in Cryogenic Calorimeters

∆T =
1/τfilm

1/τcrystal + 1/τfilm︸ ︷︷ ︸
collection efficiency

· ∆E

Cfilm

≈
τcrystal

τfilm
· ∆E

Cfilm

τcrystal � τfilm
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Pulse Height in Cryogenic Calorimeters

∆T = µ · lsc
Va
· At

Vt
·∆E

lsc : mean length between surface scatterings

µ: material constant

sound speed

phonon transmission into thermometer

thermalization probability at crystal surface
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Surface Scattering Lengths for Different Geometries
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Threshold Predictions
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Threshold Predictions

CRESST-II light detectors: predictions scaled to measured thresholds
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Threshold Predictions

CRESST-II phonon detectors: independent measurement confirms model
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Threshold Predictions

CRESST-III light detector: threshold lowered by a factor of 3 from scaling
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Threshold Predictions

CRESST-III phonon detector: threshold < 100 eV (design goal exceeded)
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Threshold Predictions

All modeling assumes isotropic phonon propagation!
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Phonon Focusing in Anisotropic Crystals
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Phonon Focusing: Anisotropic Elasticity

ω(k)→ ω(~k)
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Phonon Focusing: Anisotropic Elasticity

~vg = ~∇k ω

13



Phonon Focusing: Anisotropic Elasticity

~vg = ~∇k ω
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Phonon Focusing: Patterns in CRESST Materials

Sapphire
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Phonon Focusing: Patterns in CRESST Materials

CaWO4
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Phonon Focusing: Patterns in CRESST Materials

Silicon
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Effects in Cryogenic Detectors
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Increasing Pulse Height (∝ τcrystal/τfilm)

In Planar Geometries:

Maximize in-plane propagation!
(choosing the lattice orientation)

⇒ τcrystal grows, but τfilm also grows
(longer, but not higher pulses)

⇒ lowering τfilm while keeping τcrystal high
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Quantitative Estimates

Sapphire: maximizing in-plane propagation
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Quantitative Estimates

18



Quantitative Estimates
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Experimental Testing

Simultaneous comparison:
“face”-thermometer vs. “edge”-thermometer
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Experimental Testing

21



Experimental Testing
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A Future Light Detector Concept

Phonon-focusing assisted light detector:
phonon collector on the side
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Summary

Energy thresholds of cryogenic calorimeters can be predicted from a
model of the non-thermal phonon signal.

Phonon focusing from anisotropic crystal elasticity can influence this
signal.

Light detector performance may be improved significantly taking
advantage of this effect.
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Thank you!

Questions?
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Non-Thermal and Thermal Component
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