

PXD SC Overview A **Brief** Introduction Into Our Plans

Michael Ritzert michael.ritzert@ziti.uni-heidelberg.de 10th VXD Belle II Workshop Santander 14.10.2016

EPICS

- Our OS for servers running IOCs is SL7 x86_64.
- EPICS base version 3.14 at the moment, 3.16 (out soon) is under consideration.
- RPM repository with EPICS base, extension modules
 + own IOCs with automatic build from git repository.
 - Important rule for production servers: No software installations bypassing the RPM database, i.e. no pip install, etc.
 - "rpm -q -a" should give a complete overview of the system.
 This is important when performing backups, or setting up replication servers.

- Custom build based on (currently) the upstream branch 4.3.
- Our own build includes:
 - Selection of common CSS modules.
 - Configuration database editor
 - NSM2 data source
 - DQM modules
 - Support for CERN UNICOS for IBBelle.
 - Default settings for archiver, alarm system, font and color definitions, etc.
 - Different installations (test system, DESY, KEK), use different configurations ⇒ the feature with the configuration changes.

- Any information needed to start the run mostly configuration parameters for the system — is taken from the configuration database ⇒ ensures reproducability.
- Data format: XML-like.
- Editor in CSS
- An IOC loads the active configuration and propagates it as PVs.
- The power-up sequence then applies the data to the hardware.
- When in physics mode, access to PVs in the hardware will by default be disallowed when the system is not idle.

4

- Goal: Define a scheme to encode as much information as possible in the PV name, considering EPICS limitations.
- The PV name should be short (EPICS length limit!), but easily legible
 - Needs some common definitions for structure, abbreviations, ...
- Managed in the git repository.
- Main concepts:
 - Fixed structure of the PV name: device:datapoint:property[:function].
 - device: ONSEN, PS, DHH, ... encoded as one letter, followed by device ID.
 - datapoint: defined individually for each device.
 - property: voltage, current, id, ... with fixed encoding

GUI Guidelines

- Document in git repository as the outcome of a dedicated meeting in April 2015.
- Covers many topics.
- But not really used in a realistic environment.
- At the meeting, we decided to pilot one implementation for a module, then re-convene to discuss changes to the guidelines based on actual experiences.
 - This has not happened so far.

Contents

- I. Introduction
- II. Content Guidelines
 - A. Tree
 - 1. Structure of the Tree
 - 2. Navigation in the Tree
 - B. Data Representation
 - C. Terminology

III. Layout Guidelines

- A. OPI Size
- B. Overall Layout
 - 1. Header
 - 2. Main Section
 - 3. Action Buttons
- C. Widgets
- D. Colors
- E. Fonts
- IV. Alarm Display
- V. Shifter Overview Screen
- VI. Other
 - A. OPI Distribution and Access Rights B. Modal Dialogs

References

- Adding a sensible navigation (next module, previous module, ...) to the OPIs proved difficult in CSS using only macros.
 ⇒ invented "precompiled OPIs".
- A template OPI contains the actual contents, and a LUT (in a Python file) defines the "neighbors" in the navigation.
- For each instance, a separate OPI is generated.
 ⇒ Also has advantages when jumping in from outside the hierarchy, e.g. from the alarm screen.

M. Ritzert — PXD SC Overview

LS Schaltungstechnik & Simulation

Archiver

- We switched from the PosgreSQL-based archiver to the **Archiver Appliance**.
 - File-based instead of RDB-based \Rightarrow easier to backup.
 - Convenient HTTP interface returning data in CSV/JSON/... formats.
 - Multiple-tier storage allows us to reduce the data as they age: All data for a day, 1-sigma deadband for a week, max. rate of one sample every *x* seconds thereafter. Still O(20 TB) of data to expect during Belle II.

Alarm System I

- The Best Ever Alarm System Toolkit, a.k.a. BEAST (← how could we use anything else? ☺).
- Manages alarm conditions in a tree-like structure, propagating alarms up to the root.
- Two states per alarm:
 - current condition, live from the PV
 - "latched" condition: worst condition since last alarm acknowledge.
- Example alarm lifecycle:

- The alarm server is a standalone executable
 ⇒ operates independently, backed by a PostgreSQL database.
- In CSS, the alarm module is used to display the alarm.

– Displays as a tree, or as a table.

• Notifications by mail, sound in the control room are possible.

Alarm Table 🛛						📴 Alarm Tree 🛛) 🔍	
Current Alarms						🔻 🛑 Area: BeamPermit (MAJOR/LINK_ALARM)		
PV	Description	Time	Current Severity	Severity	Statu	🔻 🔵 System:	MPS FPAR fault (MAJOR/LINK_ALARM)	
RFQ_Vac:GV_1B:Sts	R F Q vacuum valve 1 B cl	2008/11/30 09:06:21	OK	MAJOR	STAT	PV:	ICS_MPS:FPAR_CCL_BS:FPAR_MEBT_BS_chan_status	
RFQ_LLRF:ResCtrl1:ResEr	R F Q low level R F resona	2008/11/27 20:39:52	ОК	MAJOR	HIHI <u></u>	PV:	ICS_MPS:FPAR_EDMp:FPAR_MEB1_BS_chan_status	
MEBT_RF:Bnch03:V_Plt	MEBT three power amplifi	2008/11/28 02:22:11	ОК	MAJOR	LOLC	PV:	ICS_MPS.FPAR_IDINP.FPAR_MEBT_BS_chan_status	
MEBT_RF:Bnch03:I_Plt_PA	MEBT three power amplifi	2008/11/28 02:22:12	ОК	MAJOR	LOLC	PV:	ICS_MPS:FPAR_MEBT_RS:FPAR_MEBT_BS_chan_status	
FE_MPS:MIOC1A:status	MPS Beam permit	2008/11/26 12:16:28	ОК	MAJOR	LOLC	PV:	ICS_MPS:FPAR_Ring:FPAR_MEBT_BS_chan_status	
DTL_HPRF:Xmtr4:PLC_C	Check DTL Xmtr4 PLC par	2008/11/27 20:46:32	ОК	MAJOR	HIHI <u></u>	PV:	ICS MPS:FPAR Tot:FPAR MEBT BS chan status	
DTL_HPRF:Xmtr3:PLC_C	Check DTL Xmtr3 PLC par	2008/11/27 20:46:50	ОК	MAJOR	HIHI <u></u>	System:	MPS FPL fault	
DTL_HPRF:IGBT3:PPS_W	DTL3 HP Mod Smoke Alarm	2008/11/27 20:20:01	ОК	MAJOR	STAT	System:	MPS BLM fault	
CHL_ODH:AIT1_Sys:Flt	CHL ODH System Fault	2008/11/30 08:34:30	ОК	MAJOR	STAT	System:	MPS PS fault	
TGT_LWS2:Tnk_TE1710	Proton beam window halo	2008/11/26 22:22:09	ОК	MINOR	HIGH	System:	MPS Vacuum fault	
TGT_LWS2:Tnk_TE1710J:T	Proton beam window halo	2008/11/26 22:22:50	ОК	MINOR	HIGH	System:	MPS RE fault (MAIOR /LOLO, ALARM)	
TGT_LWS2:Tnk_TE1710I:T	Proton beam window halo	2008/11/26 22:22:29	ОК	MINOR	HIGH	Area: CE		
TGT_LWS2:Tnk_TE1710F:T	Proton beam window halo	2008/11/26 22:20:58	ОК	MINOR	HIGH	Area: Diagno	ostics	
TGT_LWS2:Tnk_TE1710E:T	Proton beam window halo	2008/11/26 22:20:47	ОК	MINOR	HIGH	Area: HP Mo	d Smoke	
TGT_LWS2:Tnk_TE1710B:T	Proton beam window halo	2008/11/26 22:23:33	ОК	MINOR	HIGH	Area: HP_Mo	d V Mon	
TGT_LWS2:Tnk_TE1710A:T	Proton beam window halo	2008/11/26 22:23:12	ОК	MINOR	HIGH	Area: HPRF	PLC Check	
TGT_IDMP:TP_TE9508O:T	Ring Guard Temp O	2008/11/28 04:58:11	OK	MINOR	HIGH	Area: HPRF	Rack Sts	

Alarm System III

• We collect alarms in an XML file converted to PDF.

2 IPMI

2.1 ONSEN

2.1.1 Errors reported by Shelf Manager

2.1.1.1 PSU failure	Power Unit failure	on device level: FRU, Voltage, Fuse	 A shelf will switch off componentent M check remaining redundancy M if redundancy exists, mask error condition. M schedule replacement of the PSU 	major
2.1.1.2 Fan failure	Fan Unit failure	on device level: FRU, Speed, Fuse	 A shelf will increase other fan speeds M check remaining redundancy M if redundancy exists, mask error condition. M schedule replacement of the fan unit 	major

- Columns so far:
 - Unique id, description, conditions,
 - actions: automatic and manual (shown to shifter on alarm condition)
- Clear definition of severities:
 - Major: system is broken
 - Minor: act **now**, or system **will** break.

Software Interlock

Inhibits unsave settings. E.g. condition: |clear-on – clear-off| ≤ 20 V

Off: OK

clear-on	0 mA	0 mA	50 mA	0 mV	0 mV	27000 mV
clear-off	0 mA	0 mA	50 mA	0 mV	0 mV	10000 mV

Difference $22V \Rightarrow$ inhibited

clear-on	0 mA	10 mA	50 mA	0 mV	22000 mV	27000 mV
clear-off	0 mA	10 mA	50 mA	0 mV	0 mV	10000 mV

Difference $19V \Rightarrow OK$

clear-on	0 mA	10 mA	50 mA	0 mV	22000 mV	27000 mV
clear-off	0 mA	10 mA	50 mA	0 mV	3000 mV	10000 mV

- Implemented purely as EPICS DB with calc records. Cannot be circumvented.
- Still need to monitor the voltage. Hardware failures (shorts) are possible!

- Commands from global run control / power supply control arrive via NSM2-to-EPICS gateway.
- PXD-intern: Fanout first to all subsystems, then to all instances, e.g. global → all PS → PS #14.
 - Any transition only completes, when all lower controls signal that it's complete.
 - Individual subsystems/devices can be put into "local" mode to exclude then from global control.

 \Rightarrow They will not receive global commands and will not be considered during transitions.

• Implemented in IOCs using the EPICS sequencer.

RC / PSC II

- Sensors (PS + DHH): PSC
- DAQ (ONSEN + DATCON): RC

	OFF	STANDRY	PEAK
NOTREADY	DHH configured DAQ off	ASICs+DHH ready DEPFETs not powered DAQ off	Frontend sending data DAQ off
READY	DHH configured DAQ links established	ASICs+DHH ready DEPFETs not powered DAQ links established	Frontend sending data DAQ links established
RUNNING	DHH configured DAQ processing triggers, ROIs. DHH sends dummy data	ASICs+DHH ready DEPFETs not powered DAQ processing triggers, ROPHP sends dummy data	Frontend sending data. DAQ processing triggers, ROIs.

Logging

- Log messages are collected in a global database.
 - The applications send the messages to an ActiveMQ server.
 - JMS2RDB puts them into a (PostgreSQL) database.
 - CSS includes a viewer that reads from the database.
- We try to include as many applications as possible (presently, the archiver appliance is excluded)
 - Eclipse-based applications (CSS, alarm server) are compatible by default.
 - For our IOCs, we have a C++ library (see "Logfile" in the RPM repository) that implements JMS-compatible logging.
 - Also includes automatic backtrace on any crash.

TIME	TEXT	NAME	SEVERITY	CREATETIME	USER	APPLICATION-IE	CLASS
2015/01/05	Internal browser is not a	logging	WARNING	2015-01-05 20:06:39.04	ritzert	CSS	org.csstudio.logging.PluginLogListener
2015/01/05	WARNING: Prevented re	logging	SEVERE	2015-01-05 16:04:41.88	ritzert	CSS	org.csstudio.logging.PluginLogListener
2015/01/05	Operation details	logging	SEVERE	2015-01-05 15:53:53.50	ritzert	CSS	org.csstudio.logging.PluginLogListener
2015/01/05	Operation details	logging	SEVERE	2015-01-05 15:53:53.50	ritzert	CSS	org.csstudio.logging.PluginLogListener
2015/01/05	SIGNAL 11 received.	static void SuS::lo	FATAL	2015-01-05 15:50:59.37	fecmess	арр	logger
2015/01/05	final	int main()	WARNING	2015-01-05 15:50:59.37	fecmess	арр	example
2015/01/05	info: 9	int main()	INFO	2015-01-05 15:50:59.37	fecmess	арр	example
2015/01/05	9	int main()	DEBUG	2015-01-05 15:50:59.37	fecmess	арр	example

- When the SC server fails, Belle II stops.
 ⇒ redundancy is required.
 - We will use pacemaker on two identical servers for automatic switchover.
- We have many devices with small/embedded CPUs.
- When first testing DHH + PS, there was immediate interference between the systems, both using UDP.
 - This particular problem should be fixed by now, but it clearly indicates that we need to separate the systems for best reliability.
 - The data rates are low, so VLANs on top of a single 1GBit uplink will do.

Network Plan (I)

Network Plan (II)

Note: IP addresses are just placeholders

M. Ritzert — PXD SC Overview

LS Schaltungstechnik & Simulation

Thank you!