Status of SVD Production SVD Parallel Summary

Christoph Schwanda (HEPHY Vienna)
For the Belle II SVD group

$10^{\text {th }}$ VXD Belle II Workshop

 September 14-16, 2016, Santander, Spain
Components of the Belle II SVD

SVD ladders

SVD ladder production status (as of September 12, 2016)

- Pisa (FW/BW) 100\% (85\%*) of the backward (forward) subassemblies completed
- Melbourne (L3) 5 out of 7+2 ladders completed
- TIFR (L4) 3 out of now 10+2 ladders completed
- HEPHY (L5) 4 out of $12+3$ ladders completed
- Kavli IPMU (L6) 3 out of 16+4 ladders completed
* as of end of August

Ladder production schedule

To be updated

SVD parallel on Wednesday

Welcome	Dr. Christoph SCHWANDA
Santander	09:30-09:35
Origami status and shipment plans	Dr. Koji HARA
Santander	09:35-09:55
Report from VXD mechanics meeting @ Munich	Dr. Markus FRIEDL
Santander	09:55-10:15
Experience with the open CO2 system @ KEK	Mr. Katsuro NAKAMURA
Santander	$10: 15-10: 30$

SVD slow control and network configuration	Mr. Christian IRMLER
Santander	$11: 00-11: 20$

FADC slow/run control software Mr. Hao YIN \square
Santander 11:20-11:35
Monitors -- slow control integration, interlocks Prof. Livio LANCERI \square
Santander 11:35-11:50
SVD network layout, cable routing Mr. Katsuro NAKAMURA \square

Santander

11:50-12:05
Discussion about SVD slow control (definition of the system, layout, responsabilities, schedule)

Santander 12:05-12:45

FADC hardware/firmware status	Richard THALMEIER
Santander	$14: 30-14: 50$
CAEN PS interface, patch pannel requirements	Francesco FORTI
Santander	$14: 50-15: 05$
SVD DAQ status	Mr. Katsuro NAKAMURA

Santander
15:05-15:20
Discussion on SVD DAQ integration (system layout, responsabilites, schedule)

Santander
15:20-16:00

SVD/VXD alignment status	Jakub KANDRA
Santander	$16: 30-16: 50$
Two side clusters correlaton	Andrzej BOZEK
Santander	$16: 50-17: 10$

Reports

SVD SC discussion

SVD DAQ discussion

SVD software

Ladder Anatomy (L6 ladder)

DSSDs

- 2 small rectangular (L3)
- 2-4 large rectangular (L4-6)
- 1 trapezoidal (L4-6)

Origami hybrid

Flexible circuit to transmit detector signals to the ladder ends

APV25

Readout ASIC of the strips
FlexPA (PA/PF/PB)
Flexible circuit to transmit detector signals to the APV25

PAO

Flexible circuit glued on the Origami hybrid to transmit n-side detector signals to the APV25

AIREX

Thermal insulator between the DSSD and APV25

Origami Status

- 80 assembled, inspected so far
- 30 O-Z : 25 class A, 5 e-test fail
- 27 OCE : 22* class A, 4 e-test fail, 1 e-test fail but repaired
* include 12 OCEs with APV3 ch0 noise ~ 2
$-23 O+Z$: 18 class A, 3 e-test fail, 2 OK but minor issue**
** 1 wires bent, 1 soldering to be reworked
- 63 will be assembled with new DISCO thinned chips + chips thinned as a whole wafer
- 36 O-Z
- 22 OCE
- 5 O+Z

Electrical failures in assembled Origami

- Whole analog dead (all 128 chs are bad) : 6.3\% (5/80)
- O-Z130 APV6 (NO), no crack, LV normal
- O+Z118 APV9 (N3), crack observed, LV low cur.
- OCE122 APV3 (P3), crack observed, LV low cur.
- OCE123 APV6 (NO), power OK on chip, LV normal
- O-Z107 APV5 (P5), discon. at soldered pad, LV low cur.
- A part of chs dead : 10.0% (8/80) (1 repaired)
- O-Z 3/30 before|after our inspection: 2/17 | 1/13
- OCE 3/27before|after our inspection: 3/15 |0/12
- O+Z 2/23 before|after our inspection: $0 / 8 \mid 2 / 15$
- Total 8/80 before|after our inspection: 5/40|3/40
- Short on PAO (1 on each)
- O-Z $4(117,121,123,146) \rightarrow$ to be assembled

Expected Origami readiness at KEK

		O+Z ready@KEK	OCE ready@KEK
week			O-Z ready@KEK
$2016 / 9 / 5$	18 (3 shipped)	22 (8 shipped)	25 (12 shipped)
$2016 / 9 / 12$ VXD workshop			
$2016 / 9 / 19$	"Silver week"		
$2016 / 9 / 26$			
$2016 / 10 / 3$			+13
$2016 / 10 / 10$			
$2016 / 10 / 17$	B2GM		
$2016 / 10 / 24$			
$2016 / 10 / 31$			+12
$2016 / 11 / 7$			
$2016 / 11 / 14$			
$2016 / 11 / 21$			
$2016 / 11 / 28$			
$2016 / 12 / 5$			
$2016 / 12 / 12$			
$2016 / 12 / 19$			
$2016 / 12 / 26$			
$2017 / 1 / 2$			
$2017 / 1 / 9$			

Numbers in future are before acceptance inspection at KEK Assumed to resume APV gluing on Sep. 26

Space Around DOCK

- Latest Drawing by Tscharlie

L4 Origami Pipe 3D Bending

Result

- Left: after 3D bending
- Right: after inlet/outlet bending (manual) and cutting
- Needs more practicing...

Preparation Test for Brazing

- We can achieve homogeneous heat for (dummy) Streuli using a copper block and acetylene/oxygen burner

CO2 cooling system setup at KEK K KIturo Nakemura

- From 1 CO2 bottle, about 20kg CO2 is available for the CO2 system - (actual amount of CO2 inside the bottle is 30 kg).
- Currently, once one CO2 bottle gets empty, we have to switch off the CO2 cooling system, connect to another bottle, and then restart the CO2 system.
- In future, we will implement switching valves, which enable us continuous switching the bottles without stop of the system.

Comparison the results with before shipment

- Results in $2.2 \mathrm{~g} / \mathrm{s}$ shows good consistency with Lukas's measurement and a enough cooling power for 100W load.
- But, Results in $3 \mathrm{~g} / \mathrm{s}$ and $4 \mathrm{~g} / \mathrm{s}$ are higher temperature than Lukas's measurement and our $2.2 \mathrm{~g} / \mathrm{s}$ result.
- They looks inconsistent with our $2.2 \mathrm{~g} / \mathrm{s}$ result.

SVD SC

Christian Irmler

SVD Slow Control System Overview

Network Configuration (Draft)

- First draft, assuming that IOCs are distributed among 2 servers
- One for FADC related IOCs and a second for the rest (PS, environment, etc.)
- To be discussed
- Remote connection to our machines via bdaq and access gateway

Poorly Covered Tasks

- The following tasks and subsystems are not or just poorly covered
- FOS
- Same system as PXD, but can we also share IOC?
- Suppose we can use same IOC, but should run on SVD server
- Need to implement SVD specific CSS
- Coordination of SC activities \rightarrow SC group management
- So far, partly done by myself
- Will be busy with L5 assembly until summer 2017
- Databases, archiver, gateways, system and network architecture

Overview

SVD slow control

- OPI/CSS: Presents data from the epics network to the user.
- Epics Net.: Contains data from all connected IOCs.
- Epics IOC:

Provides/broadcasts data for the epics network (PVs).

- C++ Interfaces: Provides IOCs with updates and processes the given request.

OPI - Preliminary buld! SVDQM

BELLE 2 SVD QM

Todos and time line

Last B2GM:

- Debugging the DESY build (on going...)
- Refactoring the DESY build (end of August)
- Core implementation of SVD QM (80\% finished, 1-2 week)
- Core implementation of FADC CTRL
- Adapting SNL codes.
- Updating / rewriting OPIs (end of September, mid October)
- Forwarding warning and error msg to Belle II RC. Internal interface is already implemented. (If there is an interface on Belle II RC side, few days...)
- Configuration databases (unknown need discussion)

Current state

- Finished debugging DESY build.
- Finished refectoring C++ implementations, few minor tweak left (configuration)...
- Finished msg logging to CSS, using the $\mathrm{C}++$ implementation provided by M . Ritzert.
- Implementing BOY widget for specific tasks needed by SVDQM and FADC CTRL OPI (ongoing, end of october).
- Move local file bases configurations to database (not started yet).
- Implement alarm system, need responsibility definition between Slow Control and Belle II DAQ. (not yet started)
A discussion important point: What kinds of plots do you expect to see on SVMQN
and/or expert interface)?

Mon./Intlk. Integration in Slow CUVivi laneef

Hardware

Yes
S.B. + ...
"now"
prototypes

HUM	$\begin{aligned} & ? \\ & \uparrow \end{aligned}$		CANbus to local PC/server	not yet	S.B. + ...	$\begin{aligned} & 1^{\text {st }} \text { sem. } \\ & 2017 \end{aligned}$
INTLK	PLC \downarrow	\downarrow	Ethernet to local PC/server (or directly "SVD epics"netwo	Yes test	S.B. + ...	"now"

Commissioning at DESY/KEK - summary	2016							2017												2018											
Item	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
SuperKEKB Phase 2																															
SuperKEKB Phase 3																															
DESY beam test, BEAST Phase 2 assembly																															
BEAST Phase 2 installation at KEK						-																									
SVD Ladder Mount									?																						
PXD ready/delivery to KEK																															
VXD integration, commissioning \& installation																															
Commissioning at DESY/KEK - summary																															
Phase 2 Rad.Mon.installation \& commissioning - KEK																															
Phase 2+3 Rad.Mon.signals from/to SuperKEKB, cabling																															
Phase 2+3 Rad.Mon.signals from/to SuperKEKB, tests																															
Phase 2 - (few NTC sensors substitution) DESY																															
Phase 2 NTC cables installation at KEK																															
phase 2 FOS sensors in layers 4,5,6, etc, tests									2																						
phase 2 fibres from DOCKS to E-hut																															
phase 3 FOS sensors insertion in layers 4, 5, 6, etc, tests																															
phase 3 fibres from DOCKS to E-hut																									?						
phase 3 final FOS commissioning																															
Sniffers delivery at KEK																															
Sniffers piping to E-hut (DESY/Munich)						?						?																			
Sniffers final commissioning at KEK																															
Sniffer on SVD ladder mount: recycle the prototype?																	2														
Interlock cabling and tests at KEK																															
Interlock final commissioning at KEK																															

Lab activities at INFN Trieste

Installation and commissioning at DESY or KEK

Driving deadlines:
2016, November, DESY Beam Test \& Phase 2 VXD Assembly
2017, February, beginning of SVD Ladder Mount 2017, October, beginning of Phase 2 2018, October, beginning of Phase 3

Ideal presence at KEK in 201, Livo anceren

Nome				1				2				3				4				5				6				7				8				9				10				11					2
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	
Vitale		4	4			21	5	5					8	8	8	8					8	8	1	1							8	8	8	8	22	18	17	17	17	17									
La Licata						21																23	21		8	8													21		17	17	17	17					
Lanceri			22			21											8	8	11	13			1	1			2	3	15	16					22				21										
Bosisio									8	8	8	8																																					
Komarov						21													11	13		23	21						15	16						13	13	23	21						18	18	18	18	
Cristaudo (tecn.)		4																					1	1												18	18												
Venier (tecn.)							5	5					8	8	8	8					8	8									8	8																	
Bari (tecn.)									8	8	8	8					8	8	8	8					8	8							8	8	8														
Cautero (Elettra)																											2	3								3	3												
Giuressi (Elettra)																											2	3								3	3												

First rough exercise on the ideally required presence from Trieste at KEK in 2017 (see list of activities and their ID numbers in the next slide)

Our INFN travel budget (under discussion) will probably cover about 50\% of this We will have to identify the most critical periods and contributions (Sensor testing periods during installation, for instance)

Comment

- I think we need a broader discussion to finalize the interlocks
- Maybe we can foresee time for this at the October B2GM

SVD DAQ

FADC System

Radiation: ~ 10 Mrad, Magnet.: 1.6T on 172 sensors. cable converters

48x FADC
in 4 crates.

Realization

- Use only one LV cable for p and n, and connect it to one Dock Box PCB, which has 24 p and 24 n on-board. So, one sensor is connected to only one Dock-Box-PCB, not to two of them. Each Dock-Box-PCB is connected to only one FADC, not to two or more. Each FADC then also has 24 n and 24 p inputs.
[Implies redesign of the Dock Box PCBs, changes to the FADCs (HV islands, V/l-measurement, DC/DC-Control), and HV/SepV-Cabling
] No more loops due to individual cables to power supplies, FADCs, etc...
- No more distinguishing between p and n PCBs (Dock Box, FADCs)

Instilute of High Energy Physics

Schedule

- July to August 2015: Schematics V3 by Hephy

Done

- End of December 2015: Schematics P-Cad \rightarrow Mentor by a company, Verification by Hephy, and Layout V3 by a company

Done

- Mid of February 2016: Manufacturing and Equipment of 2 PCBs V_{3} by the company: FADC Firmware migration to V_{3} by Hephy
- February/March 2016:Testing and Debugging of V_{3} by Hephy Done
- April 2016: Beam test at DESY using V_{3}; Done
- May to October 2016: Development of V_{4} hardware schematics (FADC,
- November: FADCV4 Layout, probably by company, maybe by Hephy? ToDo
- December: DESY testbeam using FADCV3 (Long-Term-test)
- January 2017: Production of V4 FADC \& Junction_board prototypes
- March 2017: Tests of V_{4} at Hephy, DESY testbeam using FADCV4 (Long-Term-test)
- April 2017: Decision which way to go: V3 or V4 way.
- May to July 2017: "Mass production" (58 pcs) of $\mathrm{V}_{4 \cdot 1}$ including Optical and Electrical testing by the company; In-System-Test at Hephy
- All the other components (FADC Controllers, Buffer Boards, Dock Boxes, VMEBackplanes, cables, etc...) are being built in parallel at Hephy.

CAEN Boards: all delivered

Note: all channels are fully floating, but the polarity is defined by wiring A2519A LV Board 5-15V/10A; 8 ch/board; 12 boards +3 spares

A1519B HV Board 250V/1mA; 12 ch/board; 4 boards + 1 spare

A1510 VSEP Board 100V/10mA; 12 ch/board; 4 boards + 1 spare One problematic board replaced by CAEN under warranty

0	\leftarrow	3
0	0	0
0	\ddots	0
1	c	0
	0	0

YES YES YES

NO NO YES

NO NO YES

Power distribution panel interface

- The only programmable part of the power distribution panel is the VSEP polarity select
- The rest is only signal distribution, although the LVEnable/ HVEnable requires will require active components.
- Requirements
- EPICS interface
- Functionality choices:
- Maintain polarity select across power cycles, or require reprogramming?
- Proposal to use latching relays
- Include relay status monitoring ? cut.

- Of course you will be able to read back the digital signal status controlling the relay. The question is whether to use 3-pole relay where one pole is used to monitor the actual switching of the relay.

Final system ?

- Proposal: use the USOP system (from ECL) to provide local intelligence and control

- Advantage: developed in Naples, easy to use and powerful, with epics drivers (see slides attached to agenda)
- Disadvantage: relatively expensive and not funded at this time (working on this)
- Each USOP crate requires 2 ethernet lines: one for remote control over IP, the other for normal data operation (epics PV)
- Other solutions:
- other systems with I/O capability, possibly already used in Belle2 ?
- Use just one uSOP for all PDP crates ?
- Need to decide soon

Firmware Preparation Status

- Basically, minimum set of firmwares for data taking are already prepared.
- They work good in the previous DESY beam test.
- However, still some necessary functions for the physics run are missing and further development are required.

Remaining Tasks in Firmware Development

High priority: (necessary for physics run)

- APV pipe-line address emulator (in FADCCtrl)
- the event order mismatch on FADC can be detected.
- APV FIFO emulator (in master FTSW)
- prevents APV FIFO full which causes data corruption.
- Improvement on common-mode correction (CMC) function. (in FADC)
- Currently 128 -strips wise, but will be changed to 32 -strips wise for more accurate common-mode noise reduction.
- GbE data link for SVD local data taking (in FADC)
- For faster local data taking.
- Remote FPGA configuration through VME access (in FADC)
- Improvement on data format of FTBDATCON link (in FTB)
- in order to increase the data size of the clock counter (currently 24-bits).

Global Schedule

- Dec. 2016: $3^{\text {rd }}$ DESY beam test campaign
- We will use FADC ver. 3 boards for this beam test.
- End of Feb. 2017: Start SVD ladder mount
- We will use FADC ver. 2 boards for electrical test during the ladder mount.
- Jan. 2017: FADC ver.4/Junction boards test production
- Mar. 2017: Test of FADC ver. 4 in HEPHY and DESY
- Noise performance will be tested with permanent setup at DESY
- Apr. 2017: Decision whether ver. 3 or ver. 4
- May.-Jul. 2017: FADC ver.4/Junction board mass production
- From the end of 2017:
- Phase-2: A partial VXD system will be installed for phase-2 commissioning.
- Cosmic-ray commissioning: In parallel to phase-2, full VXD will be assembled and tested with
- Full sets of FADC system and power supply are necessary by this point.
- From the end of 2018: Phase-3 experiment
- Full VXD installation and operation
- PS schedule must be included here.

SUMMARY

Schedule

(Recently shown by Yutaka, but it will be decided in next B2GM)

Summary

- Ladders
- Ladder assembly is in full swing
- We expect to meet the global schedule
- Main topics @ this meeting: slow control and DAQ
- Especially the SC effort needs to ramped up
- The system is better defined after this meeting
- Manpower/schedule needs to be clarfied
- Broader discussion for interlocks

BACKUP

