Gated Mode

Timing Observations

The Gated Mode

SwitcherB allows to operate Gating in two different Modes:

- Gated Mode without Readout: Clocking is disabled, Clear moves to high for all gates except current one
- Needs fast clocking to synchronize with correct readout position
- Problem with DHPT1.0: when gating starts at end of frame, Serln signal is omitted because of missing clock and hence full frame will be lost. Hopefully solved with new DHPT1.2 version.
- Gated Mode with Readout: Clock continues to run, so frame readout will be synchronized with SerIn, Clear changes to high level immediately on nonactive channels
- Losing at least 600 ns for turning in \& out of Gated Mode
- Hope for lower pedestal oscillations

Gated Mode Simulation 11 gates @ $250 \mathrm{MHz}=1,408 \mu \mathrm{~s}$

At least 5 StrG for initiating GM

MPG
ロHL

Oscilloscope Sw1/1 vs Sw6/4 GM 11 gates

Only first and last Clear contact are accessible via oscilloscope

This compares to a substantial lower rise time in the SwitcherB manual but bear in mind that 6 SwitcherBs, separated into 4 groups@8Clear channels have to be switched on at once (4 times consecutively within 36 ns)

Laser Scans GM 11 gates sequence

Laser Activation Timing moved forward in 10ns steps

MPG
$\square H L L$

Pedestal Oscillations: 11 gates GM-sequence

Higher pedestals due to Sw6/4?
Total GM period of 18 gates including pedestal variations

* DHPT1.0 Bug: GM is programmed for gate 22 but normal mode repeated twice
me
Oscilloscope Sw1/1 vs Sw6/4 GM 11 gates zoomed

Time base: $1 \mu \mathrm{~s} / \mathrm{div}$

Gated Mode Simulation 3 gates @250MHz=384ns

At least 5 StrG for getting into GM

回圌

GM11gates vs GM3gates first Clear

MPG
HLL
t
GM11gates vs GM3gates last Clear

MPG
OHLL
GM short 384ns sequence

Reason for higher pedestals 4 gates after stopping GM unclear
Total GM period reduced to 10 gates $=1,28 \mu$ s including pedestal variations

MPG
(1)

It's not only a time constant... 250 MHz

MPG
OL
HLL

Pedestals back in range at gate 34 @ 285 MHz

Short Cables - 11 Gates GM w/o RO overview

MPG
(1)
Short Cables - 11 Gates GM w/o RO zoomed

MPG
HLL

Long Cables - 11gates GM w/o RO overview

MPG (1)
Long Cables - 11gates GM wo RO zoomed
\qquad

MPG
(1)
HLL

3gates GM w/o RO overview (DCD3 short cables)

MPG
(1)

3gates GM w/o RO zoomed (short cables)

6gates GM with Read-Out overview

6gates GM with RO zoomed

- although relatively short GM period pedestal oscillations persist longer than even 11gates w/o RO
- variation spread thereafter seems to be substantially lower!

10gates GM with RO overview

10gates GM with RO zoomed

Pedestal oscillations are within arbitrarily chosen threshold limit of ± 5 ADUs not before 23 gate periods $=2,94 \mu \mathrm{~s}$

GM11gates w/o RO analog CMC overview

GM11gates w/o RO analog CMC zoomed

In general ACMC looks better but risk that leveling out absorbs signal charge information

ACMC, Single Row Pedestal Oscillations

- Distinct DCD-Gradient disappeared after fixing cooling problem and attaching additional capacities on dock-box and break-out board
- Low IPaddIn seems to "swallow" low signal charge

BEWARE: ACMC seems to amplify higher signals

Analog CMC, IPAddIn = 30

MPG
(1)
Analog CMC, IPAddIn = 60

Summary (1)

Fast switching in \& out of Gated Mode is key for the performance of the pixel detector

Various parasitic capacitances extend rise and fall times of Clear voltage at gate level

- For various reasons (reducing deadtime, sync with CDC) the BELLE II collaboration wants to keep the total GM period (GM + pedestal oscillations) as short as $1 \mu \mathrm{~s}$
- Pedestal Oscillations after the Gated Mode can prevent the detector from recording reasonable data
- The presented analysis is based on meager Switcher Substrate connection at least for Switcher $5+6$ (PXD9 Pilot Module), hence it is very difficult to draw accurate conclusions.

Summary (2)

All we have are the following observations:

- Pedestal Oscillations constitute a complex process, not everything can be traced back to a time constant
- Pedestal Spikes after finishing GM look strange and have potentially something to do with the long fall time for the last switchers
- It was shown that the shortest GM sequence (3gates w/o RO) reduces total GM time to 10 gates which would be equivalent to $\sim 1 \mu \mathrm{~s} @ 305 \mathrm{MHz}$ - CAUTION because of last switcher
- GM with readout seems to elongate the total GM period although once falling under a certain threshold level pedestal variations appear much smoother
- Mounting additional capacities on the dock-box and the patch panel as well as the analog CMC seem to reduce the Pedestal Oscillations
- Looking forward to PXD9 series 7 incorporating heavily improved switcher voltage supply lines in order to find out more resilient results

Thank you for your attention!

Analog CMC, IPAddIn = 60, ECG

