

Gated Mode Timing Observations

The Gated Mode

SwitcherB allows to operate Gating in two different Modes:

- Gated Mode without Readout: Clocking is disabled, Clear moves to high for all gates except current one
 - Needs fast clocking to synchronize with correct readout position
 - Problem with DHPT1.0: when gating starts at end of frame, SerIn signal
 is omitted because of missing clock and hence full frame will be lost.

 Hopefully solved with new DHPT1.2 version.
- Gated Mode with Readout: Clock continues to run, so frame readout will be synchronized with Serln, Clear changes to high level immediately on nonactive channels
 - Losing at least 600ns for turning in & out of Gated Mode
 - Hope for lower pedestal oscillations

Gated Mode Simulation 11 gates @250MHz = 1,408μs

Oscilloscope Sw1/1 vs Sw6/4 GM 11 gates

Only first and last Clear contact are accessible via oscilloscope

Rise time Sw1/1 ~ 200ns Rise time Sw6/4 ~ 800ns This compares to a substantial lower rise time in the SwitcherB manual but bear in mind that 6 SwitcherBs, separated into 4 groups@8Clear channels have to be switched on at once (4 times consecutively within 36 ns)

Laser Scans GM 11 gates sequence

Laser Activation Timing moved forward in 10ns steps

Pedestal Oscillations: 11 gates GM-sequence

Total GM period of 18 gates including pedestal variations

* DHPT1.0 Bug: GM is programmed for gate 22 but normal mode repeated twice

Oscilloscope Sw1/1 vs Sw6/4 GM 11 gates zoomed

Gated Mode Simulation 3 gates @250MHz=384ns

36ns for Switching all Switcher Groups ON or OFF

GM11gates vs GM3gates first Clear

GM11gates vs GM3gates last Clear

GM short 384ns sequence

Total GM period reduced to 10 gates = 1,28µs including pedestal variations

It's not only a time constant... 250 MHz

Pedestals back in range at gate 34 @285 MHz

Short Cables – 11 Gates GM w/o RO overview

Short Cables – 11 Gates GM w/o RO zoomed

Long Cables – 11gates GM w/o RO overview

Long Cables – 11gates GM wo RO zoomed

3gates GM w/o RO overview (DCD3 short cables)

3gates GM w/o RO zoomed (short cables)

6gates GM with Read-Out overview

6gates GM with RO zoomed

- although relatively short GM period pedestal oscillations persist longer than even 11gates w/o RO variation spread thereafter seems to be substantially lower!

10gates GM with RO overview

10gates GM with RO zoomed

Pedestal oscillations are within arbitrarily chosen threshold limit of ± 5 ADUs not before 23 gate periods = 2,94 μ s

GM11gates w/o RO analog CMC overview

GM11gates w/o RO analog CMC zoomed

In general ACMC looks better but risk that leveling out absorbs signal charge information

ACMC, Single Row Pedestal Oscillations

- Distinct DCD-Gradient disappeared after fixing cooling problem and attaching additional capacities on dock-box and break-out board Low IPaddIn seems to "swallow" low signal charge

BEWARE: ACMC seems to amplify higher signals

Analog CMC, IPAddIn = 30

Analog CMC, IPAddIn = 60

Summary (1)

- Fast switching in & out of Gated Mode is key for the performance of the pixel detector
- Various parasitic capacitances extend rise and fall times of Clear voltage at gate level

- For various reasons (reducing deadtime, sync with CDC) the BELLE II collaboration wants to keep the total GM period (GM + pedestal oscillations) as short as 1µs
- Pedestal Oscillations after the Gated Mode can prevent the detector from recording reasonable data
- The presented analysis is based on meager Switcher Substrate connection at least for Switcher 5 + 6 (PXD9 Pilot Module), hence it is very difficult to draw accurate conclusions.

Summary (2)

- All we have are the following observations:
 - Pedestal Oscillations constitute a complex process, not everything can be traced back to a time constant
 - Pedestal Spikes after finishing GM look strange and have potentially something to do with the long fall time for the last switchers
 - It was shown that the shortest GM sequence (3gates w/o RO) reduces total GM time to 10 gates which would be equivalent to ~1µs @305MHz
 CAUTION because of last switcher
 - GM with readout seems to elongate the total GM period although once falling under a certain threshold level pedestal variations appear much smoother
 - Mounting additional capacities on the dock-box and the patch panel as well as the analog CMC seem to reduce the Pedestal Oscillations
- Looking forward to PXD9 series 7 incorporating heavily improved switcher voltage supply lines in order to find out more resilient results

Thank you for your attention!

Analog CMC, IPAddIn = 60, ECG

