

PXD Slow-Control

Michael Ritzert michael.ritzert@ziti.uni-heidelberg.de 10th VXD Belle II Workshop Santander 14.09.2016

- I switched my development to target CSS 4.3.
 Only critical fixes are backported to 4.1.
- Beware the information on the download site https://sus.ziti.uni-heidelberg.de/~ritzert/Belle2/CSS/4.3.x/down load/
- Needs Oracle Java 8 to work correctly. OpenJFX might solve this.
 - OpenJDK works but for detached views.
 - CSS 4.4 might no longer work so well.
 We'll monitor this and decide whether to switch or not.
- Start only from the css-belle2 subdirectory!
 - The EPICS-Configuration is not found otherwise.
- Does not support epics://, use ca:// or better <u>no prefix</u> at all (compatible with the archiver appliance).
- Directory and executable name changed to css-belle2.
- The DQM/NSM module might be broken! I need to verify this.
- Tried automatic build via Bamboo @ DESY, but no luck so far (very strange error from one maven module).

EPICS 3.16?

- EPICS 3.16.1 should be out any minute.
 - Interesting changes:
 - new record types lsi/lso: long string
 - better support for SMP, improved locking granularity
 - histogram record
 - alarm filtering
 - But the core modules are not compatible, yet (e.g. seq).
 ⇒ In the meantime, test our code against 3.15 to find first problems.
 - I compiled all our code against 3.15.4.
 - Not tested beyond "code compiles".
 - Some tweaks needed to .dbd files (3.15 fails on duplicate record definitions)
 ⇒ provide minimal support .dbds with only definitions from the module.
 - No other changes required.
 - But 3.16 has a slightly different API in some places (EpicsTime).
 - A repository based on EPICS 3.15.4 is available. https://sus.ziti.uni-heidelberg.de/~ritzert/Belle2/EPICS/RPMs/sl7.x-3.15/ Give it a try if you are brave...
 - No decision yet, if we switch or not!
 This is really just a test to see where we stand and if we gain from 3.16.

@DESY

- The servers at DESY are stuck at SL6.
 - → IOC code will have to support SL6 until the end of the testbeam, i.e. until beginning of 2017.
 - Other code can move on to SL7 only as planned.
- All services are back online.
 - Same configuration as at the end of the last testbeam.
 - \Rightarrow please inform me about required updates, e.g. PV name changes relevant to the archiver.
 - With updated RPMs.
- "CSS 4.3 @ DESY" version in preparation.
- Important workpackages:
 - PSC for DHH and PS
 - RC for ONSEN and DATCON
 - Start of alarm system implementation

Code Quality

- The functionality of the IOCs is by now very good.
 - We can run the system and new functionality is added when required.
- Focus can move to stability.
 - No **known** problems¹, but that doesn't prove that there are none.
 - Memory leaks may not hurt for a day, a week, ...
- RPMs are compiled with stack guard enabled.
 - The worst of the worst buffer overruns would have been found by now.
- I checked all packages with the cppcheck static code analyzer.
 - So far only one critical error (array overrun) found (probably in an unused codepath)
 - + a few memory leaks in non-IOC code.
 - cppcheck cannot find all errors
 ⇒ needs to be supplemented with analysis during runtime.
- Proposal: Run the IOCs in valgrind for one day at DESY.
 - First finds: use-after-free, mismatching new[]/delete, memory leaks.
 - Needs a prepared exclude file for EPICS-related false positives.

¹ except one bug in the PS that is not yet narrowed down to IOC/ μ C/protocol.

Alarm System

- After trying Word, Excel, Wiki, ...:
 - I prepared an XML-based format and XML-to-LaTeX converter to collect and render alarm definitions.
 - The alarms are managed as in the alarm system in a tree-like fashion:
 - 1 Link down
 - 1 Sender down
 - 1 hardware broken
 - 2 no link detected
 - 2 Receiver down
 - 3 no communication possible
 - 1 handshake failed
 - 2 cable unplugged
 - Errors propagate up to the root of the tree.
- Using XML also has the advantages
 - that we can present the data on a web page, load it into CSS, whatever we consider useful...
 - that it is plain text \Rightarrow suitable for collective edits via git.

Alarm System II

- Each group has to think hard and prepare a tree of alarms.
 - We will certainly not think of every possible condition, but we will have some structure to start with.
- Example definitions: ONSEN IPMI by Björn Spruck:

2 IPMI

2.1 ONSEN

2.1.1 Errors reported by Shelf Manager

2.1.1.1 PSU failure	Power Unit failure	on device level: FRU, Voltage, Fuse	 A shelf will switch off componentent M check remaining redundancy M if redundancy exists, mask error condition. M schedule replacement of the PSU 	major
2.1.1.2 Fan failure	Fan Unit failure	on device level: FRU, Speed, Fuse	 A shelf will increase other fan speeds M check remaining redundancy M if redundancy exists, mask error condition. M schedule replacement of the fan unit 	major

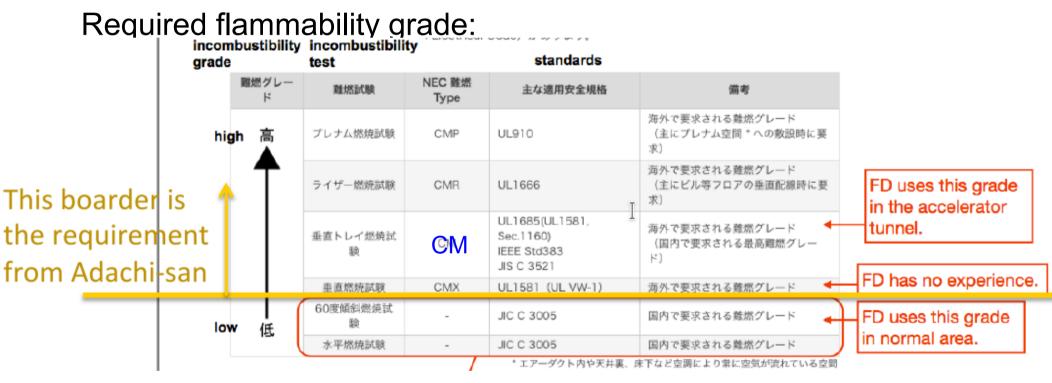
• We need to think about the structure of the tree.

Scaling

- DHH: 2 ⇒ 8
- PS: 4 ⇒ 40
- IPMI: 10 ⇒ 42
 - Some problems with SCAN times already observed.
 - No showstopper. Baseline plan is to start several IOCs.
- No problems expected with CPU load or RAM.
- But SCAN periods might be too short ⇒ start several IOCs (= several SCAN loops) in parallel instead of one big IOC.
- Increased UDP traffic might overwhelm small embedded CPUs/ FPGAs.
 - Separating PS and DHH traffic is baseline anyway.
 - Plan so that groups of PS and DHH devices can be separated if urgently required.

Other

- Installation at KEK
 - pxdtest is running at KEK since January. Used for ONSEN-related developments.
 - In October, IBBelle will arrive at KEK. A desktop PC will be set up in E-Hut to control it and connect it to the outside world.
 ⇒ needs power and network in the E-Hut 1F
 - Procurement of final servers to be coordinated with BonnDAQ?
- Access Security
 - For each IOC, decide which PVs are expert-level and shifter-level.
 - The configuration will be "safety first", i.e. what is not explicitly allowed for shifters is restricted to experts.
 - Access is granted based on the login name of the user.
- The code repositories have been migrated to git @ DESY.
 - SVN @ KEK will remain available (read-only).
 - Left some old code behind.
 - The autobuilder is back online.

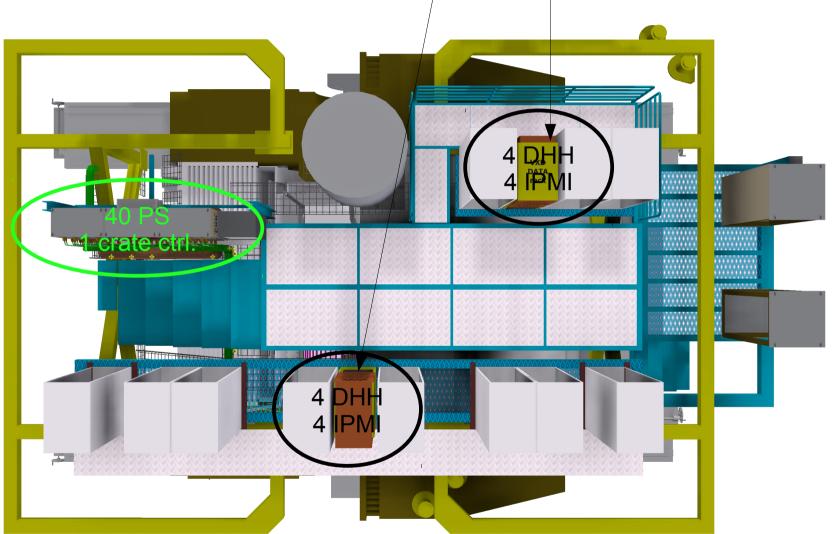

IBBelle / PS Interlock

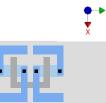
- Presented so far: IBBelle interlocks PS via a direct cable.
- New plan:
 - 3 signals from IBBelle: off, failure, temperature not reached, all inverted logic (cable disconnected = off = alarm active)
 - received by the VXD interlock PLC.
 - PS connected only to the interlock PLC.
- Why?
 - The interlock PLC is newer than the initial plans.
 - 3 signals \Rightarrow some kind of logic (AND) required anyway.
 - Using a PLC allows this logic to be flexible.
 Most likely use: Mask interlock signals:
 Disregard the "temperature not reached" signal in short test runs.
 - Allows more input signals for PS interlocks:
 Actual temperature/humidity in the VXD volume.
 Automatic powerdown on high instantaneous radiation?
 - Allows SVD to also learn about the IBBelle status.

Cabling E-Hut — Special Cables

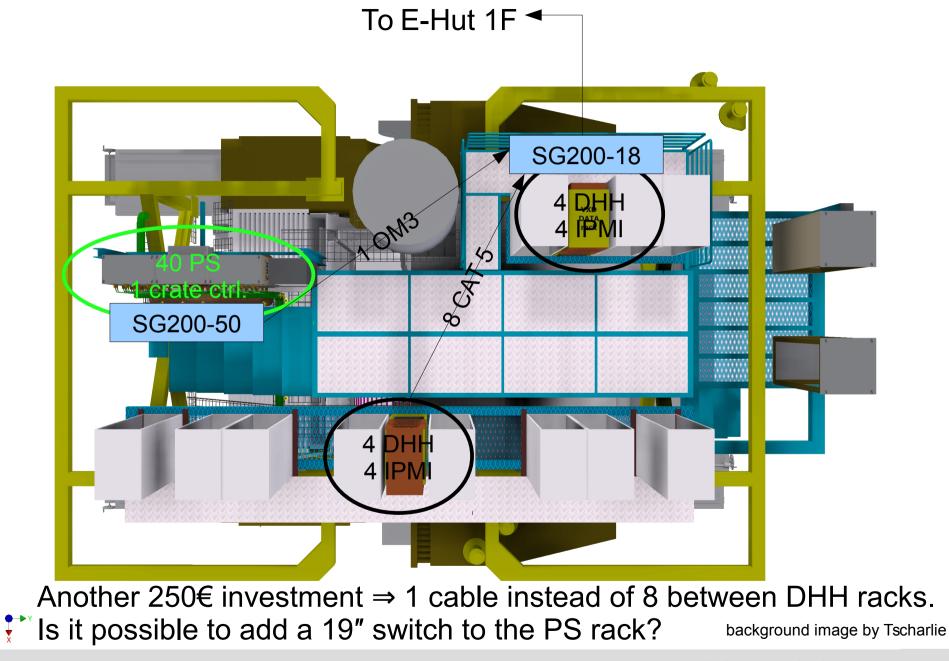
- Interlock from IBBelle to PLC
 - n× "twisted pair".
- Interlock from PLC to PS.
 - Simple two-wire cable.

 Proposal: ALPHA WIRE 5473L SL005: 3 twisted pairs, 0,22mm², LSZH, CM grade flammability, 100 ft roll, 31,90€.


PXD SC Cabling


- Requirements
 - Separate network segments for PS, DHH, and IPMI
 - (In case of problems: Group PS and/or DHH into multiple segments.)
 - One <u>physical</u> segment is OK, we can use VLANs.
 - \Rightarrow requires switches that can add VLAN tags per input port.
- Cabling to E-Hut
 - We can use cables foreseen as spares for ONSEN-DHH communication. OM3 between DHH racks and E-Hut 1F.
- Bad luck...
 - 48+2 (uplink) port switches are readily available. (more ports would not fit on a 1U 19" frontpanel)
 - we have 56 cables + 1 uplink…
 - \Rightarrow no chance to use only one switch
- Suitable switches: e.g. SG200 series from Cisco
 - Available: 48+2 ports 600€, 24 + 2 ports, 16+2 ports: 250€
 - Also a good option for the E-Hut side.

Top-of-Detector Layout


OM3 fibres end here and here

background image by Tscharlie

Easiest (?) Solution

DQM (Summary from last telcos)

Pedestals

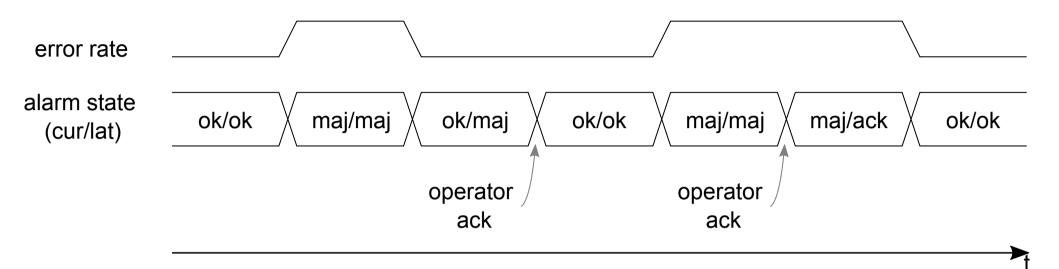
The pedestals situation:

- Taking them and (especially) uploading them takes several minutes ⇒ we should avoid having to do this on run start.
- We cannot skip pedestal taking, unless they are stable.
 - temperature-related drift seems not to be a problem.
 - but sampling time jitter is \Rightarrow new DHP could help
- The answer to this question has important implications from BonnDAQ to run-control.

Note: When we take them also influences how they are treated:

- Taken on run start ⇒ conditions database, or never saved at all (probably not a good idea...).
- Kept for longer and re-used \Rightarrow configuration database.

- In a BonnDAQ-less PXD, all expert measurements have to be performed via the normal DAQ chain.
 - Requires a special trigger scheme, running TTD, global coordination.
 ⇒ no longer PXD-only "local" runs.
 - \Rightarrow taking pedestals on run start could be difficult
 - and a lot of algorithms to be ported from BonnDAQ to EVB-DAQ, tested, ... ⇒ manpower
- After discussions during Telcos, the baseline now is to install and use BonnDAQ indefinitely.
- Downsides:
 - Money...
 - Another system to maintain.
- Cabling: the required network cables between DHH and E-Hut are already in the list of cables to be installed by the company.


- Many histograms are obvious, but we still need to write this down somewhere.
 - hit maps
 - occupancy
 - efficiency
 - Landau
- Others are only in some peoples' minds.
 - Please step forward!
- There is a wiki page to collect DQM-related information at https://confluence.desy.de/display/BI/PXD+DQM!
- Also, we need "expected" histograms to compare against.

- basf2 writes a log message on alarm conditions.
 - This will be converted to some kind of alarm, but not in the alarm system the PXD shifter sees.
- Integration with the BEAST alarm system is not easily possible:
 - basf2 doesn't know all conditions to decide if it is an alarm or not.
 - Not every error is also an alarm!
 - Alarms may already be reported in another location earlier in the data path.
 - We need to learn when the state of the system is back to OK.
 - \Rightarrow we need to keep track of the current alarm state somewhere.
 - Also when data taking stops: error rate is 0, this should be reported as OK.
 - Writing a log message per error is likely to flood the system when things break for good.
 - the log message needs to be parsed to learn which error occurred.
- We will try to get full histogram data (i.e. raw error counts) into the alarm server, generate alarms on value changes.
 - Either as a "fit", if this NSM2 output is compatible with the NSM2-EPICSgateway,
 - or I will try and extract the histogram receiver code to produce a data source for the alarm system.

Alarm Flow

- There is both the current alarm state, and a latched state.
- Current state: obvious.
 - Not so interesting in this case: A single DQM error will only produce a very short alarm state.
- Latched: worst state since last acknowledge
 - Can be "acknowledged".
 - This is what the operator sees.

Other DQM Problems

- Responsibilities!
- Full-18MP histograms are not possible.
 - Decide on a strategy to reduce the resolution: group by switcher row, DCD column, ...
 - Can the DQM framework be extended to allow re-configuration at runtime to request full-resolution histograms for areas of the sensors?
 - Or reduce the required network load to allow them? longer update interval? multicast?

Thank you!

Switch usage

- 48+2 ports @ PS:
 - 40× PS CAT5
 - 1× PS crate control
 - 1× uplink to DHH rack OM3
- 16+2 ports @ DHH:
 - 2×4× DHH CAT5
 - 2×4× DHH IPMI CAT5
 - 1 PS switch OM3
 - 1 uplink to E-Hut OM3

