X0 imaging of PXD & SVD sensors: Review of material budget estimations

Ulf Stolzenberg, Benjamin Schwenker, Ariane Frey, Carlos Marinas, Florian Lütticke, Waleed Ahmed

September 15th 2016, 10th VXD Workshop in Santander

Material distribution on SVD and PXD modules

Motivation

- Low material budget is an essential part of the belle II ladder development especially for the PXD
- Complex stacks of many material layers especially in the SVD part
- Cross-check the belle2 software detector model by comparing BASF2 material scans to X/X_0 measurements of belle II modules

Goal

Find discrepancies in detector model and find out impact on vertex resolution of the belle II detector

SVD

Conclusion

Reconstruction of multiple scattering angles

- Planar object centered in high resolution telescope
- Multi GeV particle beam \rightarrow telescope sensor hits

Introduction

X/X₀ measurement/Material Scan

SVD

D

Conclusion

Reconstruction of multiple scattering angles

- Planar object centered in high resolution telescope
- Multi GeV particle beam \rightarrow telescope sensor hits
- Forward- backward Kalman Filter (KF) pair on hits

Introduction

SVD

) _____

Conclusion

Reconstruction of multiple scattering angles

- Planar object centered in high resolution telescope
- Multi GeV particle beam → telescope sensor hits
- Forward- backward Kalman Filter (KF) pair on hits
- θ_p calculated from track slopes (m_u, m_v)
- angle reco. error σ_{reco} derived from error propagation

tro	du	ctio	n

SVD

Conclusion

X/X_0 Measurements

Basic idea

Reconstruct kink angle distributions in pixels on central plane \rightarrow width of distribution depends on radiation length X/X_0 . Reconstructed scattering angle distribution consists of two parts:

First part: Multiple scattering distribution $f_{\text{scatt.}}$

- Most prominent models: Moliere and the Highland model
- Highland: Gaussian distribution, no description of non-gaussian-tails, parameter X/X₀
- Moliere: Describes whole distribution, parameters: X, density ρ, Z

In	rn	dur	"tin	n

SVD

Conclusion

X/X_0 Measurements

Basic idea

Reconstruct kink angle distributions in pixels on central plane \rightarrow width of distribution depends on radiation length X/X_0 . Reconstructed scattering angle distribution consists of two parts:

Second part: Angle resolution function $f_{\rm err}$

- Finite angle resolution on target plane \rightarrow gaussian with standard deviation of $\sigma_{\rm err}$ as resolution function $f_{\rm err}$ on target
- Expected value $\sigma_{\rm err}$ is affected by systematical errors (slightly wrong telescope sensor resolution, additional multiple scattering within telescope, wrong beam energy, etc)
- Introduce λ factor: calibrated angle reconstruction error $\sigma^*_{err} = \lambda \cdot \sigma_{err}$, λ should be close to 1.0

Introduction	X/X ₀ measurement/Material Scan	SVD	PXD	Conclusion
X/X_0	Measurements			

First step: Calibration with aluminum target

• Reconstructed multiple scattering angle distribution given by

$$\begin{array}{lll} f_{\rm reco} &=& f_{\rm scatt.}\left(\theta\right) \otimes f_{\rm err}\left(\theta,\lambda,\sigma_{\rm err}\right) \\ &=& f_{\rm scatt.}\left(\theta\right) \otimes \frac{1}{\lambda \,\sigma_{\rm err} \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{\theta}{\lambda \,\sigma_{\rm err}}\right)^2\right) \end{array}$$

- $\bullet~\ensuremath{\textit{f}_{\rm scatt.}}$ depends on material and particle beam parameters
- Target with well known material profile allows λ calibration via simultaneous fit of reconstructed angle distributions

Second step: Measurement on materials

• Use optimal calibration factor in other X/X_0 measurements

- BASF2 MaterialScan module can be used to do a planar scan of geant 4 detector model
- Define a measurement grid: Geantinos move on parallel paths through material in a given range
- Total Radiation length of material in flight path is computed

Exploded view of SVD layer 6

(4)

Conclusion

Origami flex -z

Origami flex ce

(3) Origami flex +z

Silicon sensors

6 Kapton Pitch

adapters

endmounts

airex isolation layer

SVD geometry

SVD ladder setup

- slanted and backward modules
- +z Origami: readout in + z direction
- ce and -z Origami: backward readout \rightarrow stack of two Origami flex layers in -z module region

2-DSSD module

Consists of ce and -z origami module, measurement of material distribution on 2-DSSD transferable to all other SVD Origami modules

Introduction

Setup of telescope for X/X_0 measurements

- Test beam campaign in Nov. 2015
- EUDET telescope with 6 M26 planes with 18 μ m pixel pitch \rightarrow resolution of hit coordinates $\approx 3 \,\mu$ m
- Beam energy of 4 GeV
- Spacings chosen like this to optimize angular resolution $\sigma_{\rm err}$ on central plane
- In this case $\sigma_{
 m err} pprox$ 140 μ rad
- calibration factor $\lambda = 1.171 \pm 0.003$
- Approximately 30 mio tracks in ce Origami region (only one flex layer)

Introduction

Setup of telescope for X/X_0 measurements

- Test beam campaign in Nov. 2015
- EUDET telescope with 6 M26 planes with 18 μ m pixel pitch \rightarrow resolution of hit coordinates $\approx 3 \mu$ m
- Beam energy of 4 GeV
- Spacings chosen like this to optimize angular resolution $\sigma_{\rm err}$ on central plane
- In this case $\sigma_{
 m err} pprox$ 140 μ rad
- calibration factor $\lambda = 1.171 \pm 0.003$
- Approximately 30 mio tracks in ce Origami region (only one flex layer)

Introduction

Setup of telescope for X/X_0 measurements

- Test beam campaign in Nov. 2015
- EUDET telescope with 6 M26 planes with 18 μ m pixel pitch \rightarrow resolution of hit coordinates $\approx 3 \mu$ m
- Beam energy of 4 GeV
- Spacings chosen like this to optimize angular resolution $\sigma_{\rm err}$ on central plane
- In this case $\sigma_{
 m err} pprox$ 140 μ rad
- calibration factor $\lambda = 1.171 \pm 0.003$
- Approximately 30 mio tracks in ce Origami region (only one flex layer)

X0 imaging of PXD & SVD sensors: Review of material budget estimations

cooling pipe,

X0 imaging of PXD & SVD sensors: Review of material budget estimations

cooling pipe, APV25 chip,

X0 imaging of PXD & SVD sensors: Review of material budget estimations

2

0.5

cooling pipe, APV25 chip, keratherm,

X0 imaging of PXD & SVD sensors: Review of material budget estimations

cooling pipe, APV25 chip, keratherm, plastic clamp,

X0 imaging of PXD & SVD sensors: Review of material budget estimations

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside,

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside, metallizations (vias) and

cooling pipe, APV25 chip, keratherm, plastic clamp, carbon fiber plies in edges of support structure on backside, metallizations (vias) and part of a capacity

Conclusion

SVD: Material scan - X/X_0 measurement comparison

SVD

Conclusion

SVD: Material scan - X/X_0 measurement comparison

SVD

Conclusion

SVD: Material scan - X/X_0 measurement comparison

Conclusion

SVD: Material scan - X/X_0 measurement comparison

SVD

Conclusion

SVD: Material scan - X/X_0 measurement comparison

Conclusion

SVD: Material scan - X/X_0 measurement comparison

Introduction

SVD

8.5

Material scan with grooves

PXD

Conclusion

11. u[mm]

PXD X/X_0 image

Material scan without grooves

E -14

-15.5

-16.5

-17 -17.5 -18 7.5

Balcony thickness in material scan 420 μ m (specifications: 525 μ m), 4-5 μ m copper layer in balcony region is missing

Introduction

SVD

Material scan with grooves

Conclusion

PXD X/X_0 image

Material scan without grooves

PXD

Balcony thickness in material scan 420 μ m (specifications: 525 μ m), 4-5 μ m copper layer in balcony region is missing

Introduction

SVD

Material scan with grooves

PXD

Conclusion

11. u[mm]

PXD X/X_0 image

X0 image

Material scan without grooves

Balcony thickness in material scan 420 μ m (specifications: 525 μ m), 4-5 μ m copper layer in balcony region is missing and switcher 400 μ m (appr. 300 μ m ecpected)

Introduction	X/Xo_measurement/Material Scan	SVD	PXD	Conclusion
Conclusion	and Outlook			

Conclusion

- More information on the X/X_0 measurements can be found at http://arxiv.org/abs/1609.02402
- Comparing material scans and X/X_0 measurements gives us the opportunity to do a quantitative cross check of the geant4 belle II detector model
- Some missing structures (SVD Keratherm, capacities) and mismodelled regions (PXD balcony thinning, SVD cooling pipe) have been identified, work still ongoing

In	 0	dı	10	t 1 /	nn.

SVD

Conclusion

Conclusion and Outlook

Outlook

- Find out which discrepancies are relevant for vertex resolution
- Do additional measurements in order to have X/X_0 measurements that are transferable to the VXD detector as a whole

Further SVD measurements

- Second measurement on the 2-DSSD module, this time in both the ce and -z region
- Measurement of pure kapton pitch adapter and Origami flex

Further PXD measurements

- Measurement from switcher balcony across the sensitive area to the balcony on the other side
- Measurement should be done near connection region between forward and backward module

Introduction	X/X_0 measurement/Material Scan	SVD	PXD	Conclusion

Thank you!

Backup Slides

X0 imaging of PXD & SVD sensors: Review of material budget estimations

SVD Inconsistencies

Origami flex Specifications

- stack of 75 μm of polymide, 50 μm of epoxy glue, 50 μm, 30 μm of solder resist and 15-27 μm of copper
- Some unknown amount of glue between Origami flex, airex insulation layer and silicon sensor

Origami flex geant 4 model

- 200 μm of Kapton Hybrid, which consists of 90 % kapton, 9 % copper and some small amount of Ni and Au
- 200 μ m of this material yield an radiation length of 1.2 %

Some simplifications in the geant 4 detector model and copper fraction probably too low

Introduction	X/Xo_measurement/Material Scan	SVD	PXD	Conclusion
SVD	Inconsistencies			

Introduction	X/Xo_measurement/Material Scan	SVD	PXD	Conclusion
SVD Inc	consistencies			

APV Specifications

- 100 μm of Silicon and additional layer of 5 to 9 μm of copper
- X/X₀ between 1.42% and 1.69%

APV geant 4 model

100 μm of Silicon, no copper

•
$$X/X_0 = 0.11\%$$

Copper layer beneath APVs is missing and should be included

Introduction	X/X ₀ measurement/Material Scan	SVD	PXD	Conclusion
SVD Inc	onsistencies			

Cooling pipe specifications

- diameter: 1.6 mm, wall thickness of $100 \,\mu$ m, consists of stainless steel $(X_0 = 17.7 \,\text{mm})$
- X/X₀ in center region (2 x wall thickness) 1.13 %

Cooling pipe geant 4 model

• diameter 1.6 mm, wall thickness 50 μ m, iron

wall thickness in geant 4 detector model changed to 100 $\mu \rm m$ for this presentation

Introduction	X/Xo_measurement/Material Scan	SVD	PXD	Conclusion
SV/D Inc	onsistencies			
	Unsistencies			

Keratherm specifications

- 4 x 31.5 mm² pad with thickness of 1 mm
- radiation length unknown

Keratherm geant 4 model

• not included in geant 4 detector model

As a dummy material for the Keratherm we included a $320 \,\mu\text{m}$ thick Silicon block with the correct dimensions to the geant 4 geometry. The thickness of the Silicon was determined in such a way, that it matches the X/X_0 measurements. The Keratherm pads should be added in some other way in the future.

SVD

Conclusion

PXD Inconsistencies

Balcony Specifications

- The thickness of the unthinned Silicon balcony is 525 μm
- There is a 4-5 μ m copper layer in the balcony region
- grooves

Balcony geant 4 model

- Unthinned balcony is $420 \,\mu \text{m}$ of Silicon
- no copper layer
- no grooves, but a large region with a mean thickness of Silicon in the grooves region

The Silicon and copper layer should be included/changed in the geant 4 detector model, grooves have already been included on the switcher balcony for this presentation

Introduction	X/Xo_measurement/Material Scan	SVD	PXD	Conclusion
PXD Inc	onsistencies			

Switcher Specifications

- \bullet Size: Newest revision 1.9 x $3.6\,\mathrm{mm}^2$
- 300 μ m of Silicon

Switcher geant 4 model

- Size: 2.035 × 3.6 *mathrmmm*²
- 400 μm of Silicon, small fraction of gold (6 permille)

Switcher dimensions and thickness should be corrected

Introduction	X/Xo_measurement/Material Scan_	SVD	PXD	Conclusion
Aluminum	grid			

- 0.2 mm thick aluminum layers, with different hole configurations
- taped to metal plate within telescope arms
- increase of material budget by 0.22 % per hole

Example of a reconstructed angle distribution

Composition of the Reco Distribution

Reconstructed MSC angle distribution is a convolution between the pure MSC angle distribution and a Gaussian noise distribution caused by the reconstruction errors

Introduction	X/X ₀ measurement/Material Scan	SVD	PXD	Conclusion
MSC mo	dels			

Highland (HL) model

$$\sigma = \frac{0.0136 \cdot q[e]}{\beta \cdot p \, [\text{GeV}]} \cdot \sqrt{\frac{X}{X_0}} \left(1 + 0.0038 \ln \left(\frac{X}{X_0}\right)\right)$$

V. L. Highland, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 1975

Moliere model

$$\begin{split} f\left(\theta\right) \,\mathrm{d}\theta &= \quad \frac{1}{\chi_c \sqrt{B}} \left(\frac{2}{\sqrt{\pi}} e^{-\frac{\theta}{\chi_c \sqrt{B}}} + \frac{f_1\left(\theta\right)}{B} + \frac{f_2\left(\theta\right)}{B^2} \right) \,\mathrm{d}\theta \ , \,\mathrm{where} \\ \chi_c &= \quad \frac{22.9 \, z \, Z}{p \, c \, \beta} \cdot \sqrt{\frac{\rho \, X}{A}} \ . \end{split}$$

Correction terms f_1 and f_2 . Values can be calculated or taken from a table (see paper by Moliere).

Moliere, Z. Naturfschg 1948

SVD

Conclusion

Calibration for SVD data set @ 4 GeV

Calibration results SVD

- Simultaneous fit in 12 regions
- Highland model was used
- Result: $\lambda = 1.171 \pm 0.003$

Fitted kink angle distributions

Introduction

X/X₀ measurement/Material Scan

SVD

)

Conclusion

Calibration for SVD data set @ 4 GeV

Calibration results SVD

- Simultaneous fit in 12 regions
- Highland model was used
- Result: $\lambda = 1.171 \pm 0.003$
- rather large value (typical: $\lambda \approx 1.1$)

Fitted kink angle distributions

