Status of PXD Production

- an attempt of a summary -

PXD Parallel Sessions on Wednesday

	Status of PXD9 Production	Rainer RICHTER 📋
SC+DQM Overview	Santander	09:30 - 09:50
Santander	Status PXD9 Probe Card	Marca Josep BORONAT AREVALO 📋
SL7-Testsetup	Santander	09:50 - 10:10
Santander	PXD9 EMI Study	Dr. Fernando ARTECHE 📋
DHH Powersupply-Control Implementation	Santander	10:10 - 10:30
Santander	Gated mode on H5	Carlos MARINAS 📄
	- Santander	11:00 - 11:20
IPMI IOI ONSEN and DATCON	PXD9 Gated Mode	Dr. Eduard PRINKER 📄
Santander	Santander	11:20 - 11:40
First experiences with EVB-DQM	PXD9 module testing preparations	Felix MÜLLER 📋
Santander	Santander	11:40 - 12:00
BonnDAQ	DCDB4.x Analog Perfromance	Mr. Philipp WIEDUWILT 📄
Santander	Santander	12:00 - 12:20
	DCDB4.x Digital Performance	Mr. Harrison SCHREECK 🗎
Documentation: Whitebook	Santander	12:20 - 12:40
Santander	DHPT1.2 Measurements	Hans KRÜGER 🛅
	Santander Status Switcher Bumping	12:40 - 13:00 Laci ANDRICEK 📄
	Santander	14:30 - 14:45
	Testing ASICs at KIT	Richard LEYS 📋
	Santander	14:45 - 15:00
	Power Supplies, Kapton & Cables	Stefan RUMMEL 📋
	Santander	15:15 - 15:35
	DHH System and Optical Link	Igor KONOROV 📋
	Santander	15:35 - 16:00

DEPFET shutter at SuperKEKB

Normal charge collection

- » Vgs=4V, Vclear=5V
- » all signal charge collected in internal gate

Hybrid 5 Set Up PXD9 small Belle II type matrix 32x64 pixels readout Final readout chain SwitcherB1.8Gated DCDBPipeline DHDT1 0

Bonn - 31.08.16

- DHPT1.0
- DHE

hoenig@physik.uni-bonn.de

Gated mode

- » Vgs=4V, Vclear=20V
- » all signal charge dumped to Clear

Challenge: switch all *Clear* contacts in the matrix from $\sim 5V \rightarrow \sim 20V$ shown on small matrix, but as expected, it's more difficult on the pilot modules

\triangleright Fast switching of the clear signal (5V \rightarrow 20V)

- \rightarrow 26nF of the entire matrix \rightarrow 135pF for one SWB channel (~4nF for one SWB)
- → To reduce peak current
 - Switch in groups: each SWB has **4 groups**, switched on and off consecutively
- → Provide current by local capacitors: each SWB has 100nF SMDs placed on the balcony

▷ Analogue part of the DCD gets "upset" during gated mode

- → Capacitive coupling between Clear and Drain lines (input of the DCD)
- → Voltage drop on supply due to high transient currents

Direct measurement of the Clear pulse

Two reasons for this identified

- 1. voltage drop along Vsub line on the balcony (SWB) causes worse behaviour of output driver of last SWB
- 2. poor quality of the decoupling caps on the balcony (minor influence..)

▷ Gated mode

- → SWB V_sub net changes **done**
- → Add more caps on Kapton, and possibly at docks patch panel off-module, in progress

▷ Standard operation

- → Improvement of line/space for data lines between DCD/DHP **done**
- → Reduction of line resistance of the SWB Clear strobe **done**

▷ No more modification of the on-module periphery required

▷ Continue sensor processing......

- ▷ PXD9-6: 3 wafers pilot run
 - → First module assembly, DESY test, gated mode tests
- ▷ PXD9-7: 4 wafers pre-production
 - └→ Lessons from pilot run incorporated (improved periphery routing)
 - → Modules for Beast2, module pre-production
 - → Status: finished, ready for assembly
- ▷ PXD9-8: 9 wafers, main production I
 - → Final modules, in two sub-batches for copper process and thinning
 - → Status -8a: Phase III back thinning done
 - → Status -8b: Phase II finished, ready for back thinning procedure, start phase III
- ▷ PXD9-9: 6 wafers, main production II
 - → Final modules
 - → Status: Phase II Metal2 done, currently being measured on probe station
- ▷ PXD9-10: 7 wafers, contingency...
 - Status: Phase I finished in stand-by before Phase II, to start next week

\triangleright Percentage of live pixels

		Pilot run		Pre-production							
	W30	W35	W36	W31	W37	W38	W40				
IF	0*	98.44	98.96	98.8	98.4	98.8	100.0				
OF1	100.00	98.44	98.96	99.0	98.1	0	99.5				
OF2	99.48	98.96	99.48	99.0	0	0	99.3				
OB1	97.72	99.40*	0	99.4	98.4	97.9	100.0				
OB2	99.48 0		98.96	99.5	99.5	0	99.9				
IB	97.92	0	99.48	100.0	99.0	99.0	100.0				
Total	83.3% 66.6%		83.3%	100%	83.3%	50%	100%				

*failure due to operator error during testing

- 34/42 (80.1%) working sensors
- 25/42 (59.5%) prime grade sensors (>99% pixels)
- 9/42 (21.4%) second grade sensors

\triangleright Percentage of live pixels

	W32	W33	W41	W42	W43	W44	W45	W46	W47	
IF	100	0	99.5	99.3	100	99.0	99.5	99.5	99.5	
OF1	99.5	100	99.5	0	100	100	99.5	100	98.5	
OF2	100	100	0	100	0	100 100		99.9	0	
OB1	0	100	0	99.5	0	99.0	0	99.5	0	
OB2	100	0	0	100	99.9	100	100	100	0	
IB	100	0	100	100	100	100	100.	99.5	99.5	
Total	83.3%	50%	50%	83.3%	66.7%	100%	83.3%	100%	50%	

Combined production run yield PXD9-7 and -8

- 74/96 (87.5%) working sensors
- 64/96 (66.7%) prime grade sensors (>99% pixels) •

Yield is better than expected

already now enough sensors

for phase 2 and 3!

 \triangleright April beam test at DESY was done with:

ASICs

- → DCDB4: "old" DCDBpipeline with known minor shortcomings
- → DHPT1.1: latest DHPT submitted autumn 2015
- → SwitcherBv2.0: last samples of the "old" version
- \triangleright Main issues with this chip set
 - → Data transfer problems between DCD and DHP
 - → Off-Module data transfer (DHP related)
 - → Still: successful and stable operation in the beam at 20% lower frame rate
- ▷ New (final) chip versions to overcome communication and stability problems
 - \rightarrow DCDB4.1 and DCDB4.2
 - → DHPT1.2
 - → SwitcherBv2.1

DCDB4.1 features:

- > Parallel sampling mode for probe tests at full speed via JTAG, needle pads
- Programmable LVDS current (2 levels)
- Programmable RefLVDS (2 levels, normal and by ~30mV increased)
- ▷ Gain settings and other minor adjustments

DCDB4.2 features:

- ▷ Same as DCDB4.1
- > Additionally new test pattern for better data transfer adjustment
- ▷ And changed layout of ADC transistors to avoid "long codes"

- Both chip types are positively tested on the probe station at KIT at Bonn and Goettingen
- :- comprehensive test programme on H5 paired with DHPT1.1/SWB2.1 and DEPFET matrix

DCD4.x Testing Procedure

- test DCD4.1 and DCD4.2 functionality on Hybrid5 level
- confirm that stable operation is possible with both DCD designs
 - check correct implementation of gains
 - check that ADCs operation can be optimized within specifications
 - INLpp < 8 ADU within +-100 ADC
 - noise < 1.0 ADU
 - no long codes above 6 ADU
 - no bit errors visible in ADC curves
 - gains should be homogeneous among all DCD channels
 - adjust with new IPSourceMiddle DAC

noise < 0.55 for all channels

Sr90 Signal Spectrum

- Sr90 spectrum measured with H5.0.24 with **DCD4.1** at gain En60
- done with ACMC and 2bit DAC offset at full speed (GCK 76MHz)!

GEORG-AUGUST-UNIVERSITÄT

Sr90 Signal Spectrum

- Sr90 spectrum measured with H5.0.14 with **DCD4.2** at gain En60
- compare to DCDpp measurement

Final chip: decision to equip Phase 2 modules with DCDB4.2 Pre-testing on probe station scheduled

- ▷ SwitcherBv2.1 is positively tested on probe station and on hybrid level
 - → Chips work as expected
 - → First samples bumped and placed on pilot module (DCDB4 and DHPT1.1)
 - \rightarrow In operation with DCDB4.x on H5 level (see previous slides..)
 - → Additional 500 chips received from foundry
 - ▷ Bumping (UBM process) causes problems with the new Switcher
 - \triangleright On one pad the substrate pad and only on this pad
 - → Very little or no Nickel deposition
 - Main difference to old Switcher
 - \hookrightarrow Chip is wider...
 - → Different passivation (1µm Nitride/Oxide <-> PI)
 - \mapsto Guard ring of the chip exposed, connected to bulk

- \rightarrow Different electrochemical potential causes reduced Ni growth on substrate
- \rightarrow Solution: isolate chip edge! First trials by manual coating chip by chip ...
 - ightarrow Successful but very time consuming process with bad yield
 - → Batch process established, successful first trial, but failed finally due to process instabilities

Selected optically good chips
It worked – sort of...

- $\,\triangleright\,$ Balls are all about 40-50 μ m, as the others
- \triangleright Mostly central
- \triangleright Need for testing \rightarrow KIT
- ▷ Have now: 16 Au-stud chips, 12 from first batch w/ manual PR coating

- > Assemble a "wafer" by pick-and-place of Switchers to support with alignment marks
 - → Accuracy ~few microns, subsequent wafer level lithography possible
 - \mapsto Possibility to apply standard technology bumping by electro-plating

 \triangleright Tests at IZM are ongoing ... litho processes to be done this week

- \triangleright DHPT1.2 submitted April 27 to correct two minor bugs in the DHPT1.1
 - Improvement of the long term reliability of the off-module driver (CML) ╘
 - ╘ Better definition of the clock phase at start up

DHPT1.2

- \triangleright 100 chips received of July
 - Probe station tests \rightarrow
 - \rightarrow Assembly of H5 with DCDB4
 - \rightarrow Testing is ongoing....

CML Performance Comparison

CML output high and low level as a function of IBIAS (w/o termination)

Bugs fixed in DHPT 1.2	universität bonn			
CML Driver	Test Results			
 CML driver power routing Ground rail (VSS) had a too high wiring resistance (~30 Ohm), parasitic extraction did not spot this because of substrate model Rerouting of power nets → R_{VSS} < 0.2 Ohm 	~			
CML driver bias routing				

- Removed ESD resistor in bias connection and reduced parasitic resistance \rightarrow _ increase of bias current, less sensitivity to voltage supply
- Internal system clock phase

▷ Testing is ongoing....

Data Link Synchronization

DHPT1.2

- We have seen an issue with the data link between DHE and DHPT 1.2
- DHPT 1.2 puts out invalid symbols \rightarrow link does not synchronize

- Very recent finding, need to cross-check with DHH emulator
- Behavior not reproducible in simulation (full layout, all corners)
- :- no final conclusion yet
- :- two more weeks for evaluation, then decide which chip to place on Phase 2 modules
- :- fall-back: DHPT1.1

- > Slight quality issues with Taiyo, but mostly the costs forced us to qualify a new vendor
- ▷ Prototyping was done, testing included
 - ← Electrical, mechanical, metallurgy, bondability ... ^{Criteria}

h						
Criterium	Taiyo – L2bwd V1.1, L1bwd V2.0 2015-05, 2016-03	Kaupke – L1fwd V2.0 2016-03				
Mechanics						
X-Y Dimensions	• OK	• OK				
Z Dimension flex	• 300 μm,	 OK (350 μm) 				
	430 μm at vias at bond area					
Z Dimension rigid	• OK (1 mm)	• OK (1 mm)				
Material						
Quality of bond pads	Fair in latest production	• OK				
Pull-Test on bond wires	• OK (4.9 g)	• OK (6.1 g)				
Shape after bending	Some deformation	Some deformation				
Damages after bending	• OK	• OK				
Electrical						
• R of power lines (130 μm)	• 10.8 Ω/m	• 8.5 Ω/m				
R of diff. lines	• 16.4 Ω/m	• 17.3 Ω/m				
• Z of diff. lines	 ≈ 90 Ω 	 ≈ 93 Ω 				
Attenuation of diff. lines	• 11.7 dB/m	• 10.2 dB/m				
Logistic						
Production Time	• 6 – 8 weeks	 6 – 8 weeks 				
Test Protocol	Partly unclear, Z0 per lot	Promised: E-Test + Z0				

M. Fras, MPI for Physics, Munich

Belle-II PXD9 Kapton Cable: Taiyo vs. Kaupke

21 Apr 2016 / Page 2

Flip Chip of ASICs (~240°C):

- ▷ Bumped ASICs have the same solder balls (SAC305)
 - → DHP bumping at TSMC, DCD bumping via Europractice
 - → SWB bumping on chip level at IZM Berlin
- ▷ Flip Chip of PXD modules at IZM Berlin

SMD placement (~200°C):

- ▷ Passive components (termination resistors, decoupling caps)
- ▷ Dispense solder paste/jetting of solder balls, pick, place and reflow
 - → PbSn 37/63 solder

Kapton attachment (~170°C), wire bonding:

- Solder paste printing on kapton,
 - └→ SnBi solder
- > Wire-bond, wedge-wedge, 32 µm Al bond wires

Ladder gluing:

- ▷ Manuel procedure established
- Qualification of automated assembly pending

 \triangleright

There are many other important topics towards next DESY test, phase 2, and beyond

- ▷ EMI tests have been done at ITAinnova
- ▷ Power supplies are in production, first units are already available
- Dash For power cables, a new more reliable vendor with agreed QC has been found
- \triangleright Test systems for series module testing in construction

- ▷ Sensor production ahead of schedule
 - → Yield better than expected....
- ▷ New versions of DCDB4.x fully functional
 - → Ready for Phase 2 module assembly after pre-test
- ▷ New SWBv2.1 fully functional
 - → Tested on H5 level
 - \rightarrow Issue with bumping on chip level, necessity to change technology \rightarrow IZM
 - → Bumped chips for phase 2 modules are being pre-tested on probe station
- ▷ DHPT1.2 still under test
 - → Off-module link shows initial problems with synchronization to DHH system
 - → Under investigation
- ▷ Start Phase 2 module assembly as soon as SWB2.1 and DCDB4.2 pre-test are done
 - → Expected to be in 2-3 weeks
 - → If DHPT1.2 not ready, use DHPT1.1
 - → Goal: have all modules available mid November

Schedule spring 2016

Nr.		Task Name		3. Qtl, 2016			4. Qtl, 2016			1. Qtl, 2017			2. Qtl, 2017			3. Qtl, 2017			4. Qtl, 2	2017
	0		Jun	Jul	Aug	Sep	Okt	Nov	Dez	Jan	Feb	Mrz	Apr	Mai	Jun	Jul	Aug	Sep		Okt
1		PXD components			Ì	1			Ì		1		1							
2	_	PXD9			1	1			1		-		1							
3	<u></u>	PXD 9.7 production																		
4		Phase II																		
5		Phase III																		
6	1	PXD 9.8 production																		
7		Phase II																		
8		Phase III				*		-												
9	1	PXD 9.9 production																		
10	-	Phase II																		
11		Phase III					L	1	<u> </u>	L										
12		PXD 9.10 production																		
13	-	Phase II						1			1									
14	-	Dhase III									T+									
15	-	Phase III			-							1								
10	_	ASICS																		
10	_	SwitcherB18 V2.1	01.06		~															
1/		first chips available	01.06.																	
18		bumping and test																		
19		chips bumped available			\$ 29.07.	-	-									-				
20		DCDB4.1 Testing			-				1											
21		first chips available		4	29.07.															
22		DHPT1.2			-															
23		TSMC production																		
24		Chip testing																		
25		chips available			29.07.															
26		Kapton Flex pre-prod. 5 sets																		
27		pre-production 5 sets available																		
28	-	Kanton Elex main prod																		
29		all kantons available		•		▲ 23	.09.													
30		Modulo Assembly pro-production				•														
21	-	2 11 EWD 2 11 BWD																		
31	_	3 LI-FWD, 3 LI-BWD																		
32	_	Flip Chip																		
33		SMD																		
34		Test																		
35		3 L2-FWD, 3 L2-BWD																		
36		Flip Chip																		
37		SMD			1	-1														
38		Test																		
39		Main Module Assembly																		
40		L1-FWD, L1-BWD						<i>,</i>												
41		Flip Chip																		
42		SMD																		
43		Test					1		1	H	1					1				
44		L2-FWD, L2-BWD												1			1			
45		Flip Chip									-	L								
46		SMD																		
47		Test														1				
49		Kapton attachment pre-production																		
40	-	3 11-EWD 3 11-BWD							1		1			1						
49	-	2 12 EMD 2 12 BWD			-			-			-					1				
50	-	S L2-FVVU, S L2-BWU					-	-			L					-				
51		kapton attachment main prod								¥						-				
52	_	L1-FWD, L1-BWD																		
53		L2-FWD, L2-BWD																		
54		Module testing pre-production				<u>•</u>														
55		3 L1-FWD, 3 L1-BWD																		
56		3 L2-FWD, 3 L2-BWD				T_														
57		Module testing main production								E	1									
58		Ladder Assembly pre-production				🔶										1	1			
59		3 L1 ladders				1					1									
60		3 L2 ladders				-					1									
61		Ladders for Phase 2 ready				1	21.1	10.						1		1	1			
62		Ladder Assembly main production				-	-				I	I	_							
62	-	Ladder testing and Half Shell Assambly				-		-		-		1		1		1 a	1			
03	-	Lauder testing and nait Shell Assembly									1			1			<u> </u>			
64	-	PAD commissioning															1			13.40
65		PXD half shells at KEK							1										4	12.10.