

Multijet estimation for mono-V DM search

12.10.2016 - MPP Internal Meeting Philipp Gadow | Max-Planck-Institut für Physik, München

mono-V Dark Matter search

Search for events with large missing transverse momentum with detected $W/Z\ \mbox{boson}$

mono-V Dark Matter search

Event selection

Merged Regime		Resolved Regime
	Trigger (xe70, xe90)	
	Trigger (e24, mu24,)	
	0 loose e + μ	
	1 tight μ	
	1 loose $+$ 1 medium μ	
$E_{ m T}^{ m miss}>250{ m GeV}$		$E_{ m T}^{ m miss} > 150{ m GeV}$
	$p_{\rm T}^{\rm miss} > 30{\rm eV}$	
at least one large- <i>R</i> jet		2 - 3 central jets
		0 forward jets
	$\Delta \phi(E_{T}^{miss}, p_{T}^{miss}) < \pi/2$	
	min $\{\Delta \phi(j, E_{\mathrm{T}}^{\mathrm{miss}}\} < 0.35$	
$\Delta \phi(J, E_{\rm T}^{\rm miss}) > 2.1$		$\Delta \phi(dijet, E_T^miss) > 2.1$
		$\Delta\phi(j,j) > 2.4$
		leading j $p_{ m T}>45{ m GeV}$
		$j_{ m T}^1+j_{ m T}^2>120{ m GeV}$
		oder $j_{T}^1+j_{T}^2+j_{T}^3>150GeV$

Zero Lepton (merged regime)

- $E_{\rm T}^{\rm miss} > 100 \,{\rm GeV}$ (for final analysis: $E_{\rm T}^{\rm miss} > 100 \,{\rm GeV}$)
- ▶ p_T^{miss} > 30 GeV
- no leptons
- ▶ $n_{\text{large-}R \text{ jets}} > 0$ for large-R jets with $p_{\text{T}}^{J} > 250 \text{ GeV}$, $|\eta| < 1.2$ and > 2 ghost-associated track jets

Input

Input files and reconstruction options:

- ▶ Latest CxAOD production ($\int \mathcal{L} dt = 13.2 \, \text{fb}^{-1} \text{ data}$):
 - > /eos/atlas/unpledged/group-tokyo/users/yenari/ 20160708/HIGGD1_13TeV/CxAOD_00-24-07
 - > /eos/atlas/unpledged/group-tokyo/users/yenari/ 20160719/HIGG5D1_13TeV/CxAOD_00-24-10
- CxAOD Framework analysis options:
 - Blinded analysis, pile-up weight recomputed and applied, MET scale factors applied

Event selection (only 0 lepton, merged regime) :

- $E_{\rm T}^{\rm miss} > 100 \,{\rm GeV}$
- $p_{\rm T}^{\rm miss} > 30 \, {\rm GeV}$
- ► no leptons
- ▶ $n_{\text{large-}R \text{ jets}} > 0$ for large-R jets with $p_{\text{T}}^{J} > 250 \text{ GeV}$, $|\eta| < 1.2$ and > 2 ghost-associated track jets

Philipp Gadow (MPP)

mono-V: QCD

Missing transverse momentum (MET)

Moderate data/MC agreement, dominant contribution from dijet sample

mono-V QCD Control Region QCD MC Data-driven Estimation

Missing transverse momentum (MPT)

Reasonable data/MC agreement for $p_{T^{miss}} > 200 \text{ GeV}$ (bad modeling of QCD fragmentation)

Philipp Gadow (MPP)

mono-V: QCD

mono-V QCD Control Region QCD MC Data-driven Estimation

Large-R jet: m

Reasonable data/MC agreement

Large-R jet: p_T

Reasonable data/MC agreement up to $p_{\rm T} < 400 \, {\rm GeV}$

Large-R jet: D_2

Reasonable data/MC agreement

Azimuthal distance between E_{T}^{miss} and $p_{T}^{miss} \Delta \phi(E_{T}^{miss}, p_{T}^{miss})$

Reasonable data/MC agreement

Minimal azimuthal distance between jet and E_{T}^{miss} min $\Delta \phi(j, E_{T}^{miss})$

Reasonable data/MC agreement

Minimal azimuthal distance between jet and E_{T}^{miss} min $\Delta \phi(j, E_{T}^{miss})$

Reasonable data/MC agreement

Minimal azimuthal distance between jet and E_{T}^{miss} min $\Delta \phi(j, E_{T}^{miss})$

Reasonable data/MC agreement

Comparison to figures from ATL-COM-PHYS-2015-1231

12 / 15

Similar distributions in current analysis as in old supporting note.

Data-driven QCD estimate

ABCD-Method

Divide in 4 regions according to QCD rejection variables, if variables are uncorrelated it holds that:

$$\frac{n_A}{n_B} = \frac{n_C}{n_D}$$

Correlation between Anti-QCD variables

- Correlation factor of -0.14 not negligible (compared to supporting note: 0.07)
- Fewer events in control region C than in signal region: method questionable

Summary

- mostly reasonable data/MC agreement in kinematic distributions
- data-driven QCD estimate with ABCD method seems questionable

Next steps:

- alternative methods: largest-error estimation: show that dijet-contribution to distributions is negligible
- ▶ implement resolved region, then work on 1-lepton