

MJ – Estimation in 11ep merged regime

Andreas Hönle

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Wednesday 19th October, 2016

Status of MJ for Hep

Resolved

- ▷ Can use the Fake Factor method
- ▷ Fake Factors provided SM
- ▷ Included by Forrest & Stephen in production
- Calculating f by ourselves is tricky, but in progress

Merged

- ▷ Cannot use the FF method: no I-jet CR
- ▷ Check necessity of MJ estimation with Isolation Inversion method

Lepton Isolation

Isolation Inversion

A. Hönle - MJ - Estimation in Hep merged regime

Idea

- ▷ Isolation inversion is only used in the **merged** regime (PRSR).
- ▷ In analysis: Signal lepton needs tight isolation.
 → Invert isolation to get control region.
- ▷ Because of QCD topology: region is QCD-**enriched**.
- ▷ Don't have MJ CxAODs
 - Mismatch of Data and MC in this region is interpreted as MJ
 - Extract MJ shape for MET, use in tight isolation signal region
 - Float normalization; TFractionFitter

A. Hönle - MJ - Estimation in Hep merged regime

MET MU

MET M

NET El pre-fit MET Mu pre-fit + Data + Data multijet multijet Nata - MC 150 50 MET EI MET_Mu post-fit MET_El post-fit 120 + Data + Data multijet multijet electroweak 1000 MJ contributi (0.52 ± 1.75) 5 MJ contribution multijet post/pre 11.2 % multijet post/pr 200

MET_EI

| tag | pfat events in tight lepton iso CRs and SRs

 $\chi^2/\mathbf{ndf} \ll 1$

with and without multijet

6/1

Summary O

Fit summary:

- ▷ MJ fit fraction small: e: $< (0.5 \pm 1.75)$ %, μ : $< (1.77 \pm 2.74)$ %
- $\triangleright \ \chi^2/\textit{ndf} \ll 1$ with and without MJ

In any case, MJ is without a doubt small. To further suppress it, check 2 approaches:

⊳ Tighten MET cut

▷ Suggestion by Takuya: MET/pTV > 0.2

Tighter MET cut

I tag I pfat tight lepton

Isolation Inversion method

Takuya cut: MET/pTV > 0.2

MJ estimate, no cut

MJ estimate, with cut

Cut has basically no effect on MJ estimate.

A. Hönle - MJ --- Estimation in Hep merged regime

Summary

- MJ background was estimated for MET in Itaglpfat (PRSR) regions with the Isolation Inversion method
- ▷ Naive fit shows very small (negligible?) MJ contribution
- Tighter MET cut would eliminate MJ even in the inverted isolation region but would also kill large fractions of signal, esp. for low resonance masses
- ▷ First checks with Takuya cut don't show improvement

Not mentioned today: Fake Factor method (resolved).

Short summary:

- ▷ Had to produce new MJ CxAODs missing I-jet events.
- ▷ First check: necessary events are there.
- ▷ ToDo: Split into $E_{\rm T}^{\rm miss}$, $|\eta|$, $p_{\rm T}^{\rm V}$ bins and calculate f

BACKUP

10/19/2016

A. Hönle - MJ - Estimation in 11ep merged regime

Detailed requirements – Fake Factor CRs

10/19/2016

