CP-violatin in gfluon fusion production, EFT analysis Moriond17

Katharina Ecker

Max-Planck-Institut für Physik

22.07.2015

HComb

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Katharina Ecker (MPP)

CP-violatin in gfluon fusion production, EFT analysis Moriond17

22.07.2015 1 / 9

CP-violation in gluon fusion production

ICHEP style analysis: Consider only number of expected events in template cross section framework

- Expected limits for 1D Scan (κ_{Agg}) and 2D scan (κ_{Agg} , κ_{Hgg}) for expected Moriond 2017 dataset $\mathcal{L}_{Moriond17} = 35 \text{ fb}^{-1}$
- MC samples and statistics sufficient to build signal models in phase space region of interest?

 $\mathcal{L}_{\text{Moriond2017}} \approx 35 \text{ fb}^{-1} \rightarrow N_{\text{exp}} \approx 75$

 \Rightarrow Requirement: $\frac{\Delta N}{N} < 12\%$ within region of interest

Analysis setup and signal model

Description	DSid	$\cos\left(lpha ight)$	κ_{Hgg}	κ_{Agg}	κ_{SM}	MC stat.
SM	344158	1	1	0	1	200k (500k)
Mixture	344167	$\frac{1}{\sqrt{2}}$	1	0.5	1	100k
Mixture	344168	$\frac{\sqrt{1}}{\sqrt{2}}$	1	-0.5	1	100k
Mixture	344169	$\frac{1}{\sqrt{2}}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	50k
pure BSM	344170	$\frac{\frac{v^2}{1}}{\sqrt{2}}$	0	1	1	50k

- BSM contribution in ggF production modelled with morphing method: 344158,344167,344168
- Pest prediction scaling to PowHeg ggF+ttH+bbH number of expected events in the SM point is applied
- VBF+VH yields are taken from SM PowHeg samples \rightarrow Flat behaviour over κ_{Agg}
- Reducible and irreducible backgrounds are included
- No systematics included, no width scaling applied

Negative number of expected events in VH-leptonic category

• Problem: Negative number of expected events in VH-leptonic category

- ⇒ Known problem: ggF has large negative event weights in this category. So far, this has been compensated by VBF+VH contribution, but for a kAgg model VBF+VH contribution is flat over kAgg and the total Pdf goes negative.
- Short term solution: Remove VH-leptonic category from combined fit

1D scan of κ_{Agg} for $\mathcal{L} = 35 \text{ fb}^{-1}$

2D scan of $\kappa_{Agg}, \kappa_{Hgg}$ for $\mathcal{L} = 35 \text{ fb}^{-1}$

Katharina Ecker (MPP)

2D scan of $\kappa_{Agg}, \kappa_{Hgg}$ for $\mathcal{L} = 35 \text{ fb}^{-1}$

Katharina Ecker (MPP)

Nexp w. morphing error ($\mathcal{L} = 14 \text{ fb}^{-1}$): ggF, kAgg

Katharina Ecker (MPP)

Relative morphing error of ggF signal model in 2D plane $\kappa Agg, \kappa_{Hgg}$

