

#### Search for hadronic Mono-V + $E_{\rm T}^{\rm miss}$

11.04.2016 - JDM Meeting Philipp Gadow (on behalf of the team) | Max-Planck-Institut für Physik, München

#### Content

#### mono-V

Analysis overview Pre-fit distributions Post-fit distributions Multi-jet background estimation

#### mono-Z' Status

# H ightarrow invisible Status

#### Conclusion and next steps

#### Mono-V analysis overview

Search for dark matter with hadronically decaying  $\mathbb{Z}/\mathbb{W}$  boson in the channels

- large-R jet +  $E_{\rm T}^{\rm miss}$  (merged)
- pair of small R-jet +  $E_T^{miss}$  (resolved)

using  $13.2 \, \text{fb}^{-1}$  of 2015 + 2016 data, interpreted in terms of





Effective Field Theory

Simplified Models

#### Mono-V analysis overview

Signal signature and dominant backgrounds

#### Signal signature (Olep)

- ▶ large-R jet +  $E_{T}^{miss}$  (merged)
- ▶ pair of small R-jet +  $E_T^{miss}$  (resolved)

#### Dominant backgrounds $t\bar{t}$ (1lep) W + jets (1lep) $Z \rightarrow \nu \bar{\nu}$ (2lep) estimated with $Z \rightarrow \mu \bar{\mu}$ $\ell$ not detected $\ell$ not detected

#### Event selection

Merged region

| 0 leptons                                                                                                       | 1 lepton                     | 2 leptons                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| HLTxe70, HLTxe90                                                                                                | C lepton triggers            | lepton triggers                                                                                                 |  |
| 0 loose e + $\mu$                                                                                               | 1 tight $\mu$                | 1 loose $\mu$ , 1 medium $\mu$                                                                                  |  |
| ► MET > 250 GeV                                                                                                 |                              |                                                                                                                 |  |
| ▶ MPT > 30 GeV                                                                                                  |                              |                                                                                                                 |  |
| • $n_{\text{large-}R \text{ jet}} > 0$                                                                          |                              |                                                                                                                 |  |
| • min $\Delta \phi(j, E_{\mathrm{T}}^{\mathrm{miss}}) > 20^{\circ}$                                             |                              |                                                                                                                 |  |
| • $\Delta \phi(\text{MET}, \text{MPT}) < 90^{\circ}$                                                            |                              |                                                                                                                 |  |
| • $\Delta \phi(\text{large-}R \text{ jet}, N)$                                                                  | $(\text{IET}) > 120^{\circ}$ |                                                                                                                 |  |
| use b-tagging (Otag, 1tag, 2tag)<br>discriminate between <del>W + jets</del> (Otag)<br>and <del>tī</del> (1tag) |                              | $\begin{array}{l} MET := E_{T}^{miss} + \sum p_{T}^{\mu} \\ MPT := p_{T}^{miss} + \sum p_{T}^{\mu} \end{array}$ |  |

#### Event selection

Resolved region

| 0 leptons                                                                                                 | 1 lepton          | 2 leptons                      |  |
|-----------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|--|
| HLTxe70, HLTxe90                                                                                          | C lepton triggers | lepton triggers                |  |
| 0 loose e + $\mu$                                                                                         | 1 tight $\mu$     | 1 loose $\mu$ , 1 medium $\mu$ |  |
| ▶ MET > 150 GeV                                                                                           |                   |                                |  |
| • $p_{\rm T}^{\rm miss} > 30  {\rm GeV}$                                                                  |                   |                                |  |
| • $n_{\text{central jet}} = 2 \text{ or } 3$                                                              |                   |                                |  |
| • $n_{\text{forward jet}} = 0$                                                                            |                   |                                |  |
| ▶ p <sub>leading jet</sub> > 45 GeV                                                                       |                   |                                |  |
| ▶ $p_{T}^{j1} + p_{T}^{j2} > 120 \text{ GeV}$ or $p_{T}^{j1} + p_{T}^{j2} + p_{T}^{j3} > 150 \text{ GeV}$ |                   |                                |  |
| • min $\Delta \phi(j, E_{\mathrm{T}}^{\mathrm{miss}}) > 20^{\circ}$                                       |                   |                                |  |
| • $\Delta \phi(\text{MET}, \text{MPT}) < 90^{\circ}$                                                      |                   |                                |  |
| • $\Delta \phi(\text{dijet}, \text{MET}) > 120^{\circ}$                                                   |                   |                                |  |
| $\blacktriangleright \ \Delta \phi(jet_1,jet_2) > 140^\circ$                                              |                   |                                |  |

0 lep, merged region, 0+ b-tags



- Poor modeling of low p<sub>T</sub><sup>miss</sup> values
- Overall reasonable data/MC agreement

0 lep, merged region, 0+ b-tags



▶ Blinding harmonised between mono-H and mono-V search

0 lep, merged region, split in b-tag regions

0 b-tags



#### 1 b-tag



- B-tagging now included in mono-V search
- ▶ good discrimination of tt̄

0 lep, resolved region, 0+ b-tags



 Moderate data/MC agreement, multi-jet contribution not included yet

0 lep, resolved region, split in b-tag regions

0 b-tags



#### 1 b-tag



- B-tagging now included in mono-V search
- ▶ good discrimination of tt̄

1 lep, merged region: W+jets (0 b-tags)



- moderate data/MC agreement
- ▶ slope in large-*R* jet shape

1 lep, merged region:  $t\bar{t}$  (1+ b-tags)



- reasonable data/MC agreement
- ▶ slope in large-*R* jet shape

2 lep, merged region:  $Z \rightarrow \mu \bar{\mu}$ , 0+ b-tags



resonable data/MC agreement

▶ high purity in *Z*+jets

merged region, 0 b-tags



merged region, 1 b-tag



merged region, 2 b-tags











resolved region, 0 b-tags



resolved region, 1 b-tag



resolved region, 2 b-tags



### Multi-jet background estimation in Olep, merged

in Olep, merged, still very preliminary

- $\blacktriangleright$  define QCD-enriched region by lowering requirement on MET  $> 150 \, {\rm GeV}$
- ► divide events in QCD and signal-like region by inversion of min  $\Delta \phi(j, \text{MET}) > 20^{\circ}$  requirement





Min dPhi(iet, MET) < 0.35

# Multi-jet background estimation

in Olep, merged, still very preliminary



▶ profile-likelihood fit for QCD shape normalisation: 0.058 ± 0.014

pulls  $\alpha_{VV}$  $\alpha_t$  $\alpha_{t\bar{t}}$  $\alpha_{W+jets}$  $\alpha_{Z+jets}$  $-0.037 \pm 0.994$  $-0.028 \pm 0.994$  $-0.093 \pm 0.993$  $-1.880 \pm 0.406$  $1.718 \pm 0.253$  $\sigma$ Philipp Gadow (MPP) Status report **mono-V** mono-Z'  $H \rightarrow$  invisible Conclusion and next steps 20 / 28

#### Multi-jet estimation

Aim for closure tests

- ► Take a QCD template of another variable, e.g. m<sub>large-R jet</sub> in the QCD region
- Apply the QCD normalisation factor derived from the QCD template fit in MET distribution
- Use the resulting QCD distribution in the signal-like region and check if the model describes the data

### Multi-jet estimation

Questions to JDM

- Overall opinion on this approach?
- For MET > 250 GeV the QCD event fraction appears to be small. What is small enough to be allowed to neglect it?
- If we don't neglect it, how should we derive QCD templates used in the final fit?
  - ▶ Note: the current study is based on blinded data.
  - Should we estimate the QCD contribution as presented here and rescale it to the expected normalisation given the unblinded data?
  - How should we estimate the uncertainy of the QCD template? Use the uncertainty of the QCD template fit? What about double counting of uncertainties then?

#### mono-Z' status

same set-up (trigger, object definitions, SR, CRs) as in mono-V interpretation in terms of  $Park Higgs = \sum_{r=1}^{Z'} \frac{q}{r} = Light Z' Vector$ 

- Dark Higgs model
- light Z' vector simplified model
- light Z'/Inelastic
   EFT models



Signal samples are in production(see C JDM talk)

- ► C Event generation details
- JIRA ticket
- ► C PANDA production page

#### $H \rightarrow$ invisible status

same set-up (trigger, object definitions, SR, CRs) as in mono-V



Signal production in progress, first validation plots created  $\rightarrow$  for *H* truth particle



#### Conclusion and next steps

mono-V

- added b-tagging to analysis for improved sensitivity
- mono-V QCD estimate strategy on good way, mono-H might benefit
- working on fit and sensitivity estimate with  $13 \, \text{fb}^{-1}$

mono-Z'

signals are being produced

 $H \rightarrow \text{invisible}$ 

working on signal production

#### Additional material

#### Multi-jet estimation

Why not the ABCD method?



#### Multi-jet estimation

#### Why not the ABCD method?



#### ABCD method unreliable for poor data/mc agreement

Philipp Gadow (MPP)

mono-V mono-Z'  $H \rightarrow$  invisible Conclusion and next steps