#### Teilchenphysik mit höchstenergetischen Beschleunigern (Higgs & Co)



#### 4. Detectors II

14.11.2016



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Prof. Dr. Siegfried Bethke Dr. Frank Simon

#### **Detectors: Overview**

- Lecture Detectors I
  - Introduction, overall detector concepts
  - Detector systems at hadron colliders
  - Basics of particle detection: Interaction with matter
  - Methods for particle detection

#### Lecture Detectors II

- Tracking detectors: Basics
- Semiconductor trackers
- Calorimeters



# **Momentum Measurement with Trackers**



# **Tracking: Momentum Measurement in B-Field**

- Charged particles are deflected in magnetic field
  - only acts on the component transverse to the field

The radius of the trajectory gives transverse momentum:





# **Tracking: Momentum Measurement in B-Field**

- Charged particles are deflected in magnetic field
  - only acts on the component transverse to the field

The radius of the trajectory gives transverse momentum:

• parallel to the field there is no deflection

 $\Rightarrow$  the particle moves on a helix given by field and  $p_T$ 







# Charged particles are deflected in magnetic field

**Tracking: Momentum Measurement in B-Field** 

• only acts on the component transverse to the field

The radius of the trajectory gives transverse momentum:

 $rac{p_T}{\mathrm{GeV}/c} = 0.3 \, rac{B}{\mathrm{T}} \, rac{r}{\mathrm{m}}$ 

- parallel to the field there is no deflection
  - $\Rightarrow$  the particle moves on a helix given by field and  $p_T$



The total momentum is determined with the "dip angle" in addition to  $p_T$ :

 $p = p_T / sin\lambda$ 



•



- In real-world applications one does not measure a full circle, but just a slightly bent track segment
  - Characteristic variable: sagitta





- In real-world applications one does not measure a full circle, but just a slightly bent track segment
  - Characteristic variable: sagitta

Mathematical calculation:

$$s = r - \sqrt{r^2 - \frac{L^2}{4}}$$
$$\Rightarrow r = \frac{s}{2} + \frac{L^2}{8s} \approx \frac{L^2}{8s} \ (s \ll L)$$





- In real-world applications one does not measure a full circle, but just a slightly bent track segment
  - Characteristic variable: sagitta

Mathematical calculation:

$$s = r - \sqrt{r^2 - \frac{L^2}{4}}$$
$$\Rightarrow r = \frac{s}{2} + \frac{L^2}{8s} \approx \frac{L^2}{8s} \ (s \ll L)$$

Taking the relation of radius, momentum and B-field gives:

$$r = \frac{p_T}{0.3 B} \Rightarrow s = \frac{0.3 B L^2}{8 p_T}$$



- A minimum of 3 points are required to determine the sagitta
  - Taking into account the point-by-point measurement uncertainty:

 $\sigma^2(s) = \frac{1}{N-1} \sum_{i=1}^N \sigma^2(x)$  für N = 3 there are 2 degrees of freedom

 $\sigma(s)$  sagitta error  $\neg$ ,  $\sigma(x)$  uncertainty of a single point



- A minimum of 3 points are required to determine the sagitta
  - Taking into account the point-by-point measurement uncertainty:

 $\sigma^2(s) = \frac{1}{N-1} \sum_{i=1}^N \sigma^2(x)$  für N = 3 there are 2 degrees of freedom

 $\sigma(s)$  sagitta error  $\sigma(x)$  uncertainty of a single point

with 
$$p_T = \frac{0.3 B L^2}{8 s}$$
  
 $\sigma(s) = \sqrt{\frac{3}{2}} \sigma(x) \Rightarrow \frac{\sigma(p_T)}{p_T} = \frac{\sigma(s)}{s} = \frac{\sqrt{\frac{3}{2}} \sigma(x) 8 p_T}{0.3 B L^2}$ 



- A minimum of 3 points are required to determine the sagitta
  - Taking into account the point-by-point measurement uncertainty:

 $\sigma^2(s) = \frac{1}{N-1} \sum_{i=1}^N \sigma^2(x)$  für N = 3 there are 2 degrees of freedom

 $\sigma(s)$  sagitta error  $\sigma(x)$  uncertainty of a single point

with 
$$p_T = \frac{0.3 B L^2}{8 s}$$
  
 $\sigma(s) = \sqrt{\frac{3}{2}} \sigma(x) \Rightarrow \frac{\sigma(p_T)}{p_T} = \frac{\sigma(s)}{s} = \frac{\sqrt{\frac{3}{2}} \sigma(x) 8 p_T}{0.3 B L^2}$ 

generalization to an arbitrary number of points:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma(x)}{0.3 B L^2} \sqrt{720/(N+4)} p_T$$
R.L. Gluckstern, NIM 24, 381 (1963)



- A minimum of 3 points are required to determine the sagitta
  - Taking into account the point-by-point measurement uncertainty:

 $\sigma^2(s) = \frac{1}{N-1} \sum_{i=1}^N \sigma^2(x)$  für N = 3 there are 2 degrees of freedom

 $\sigma(s)$  sagitta error - ,  $|\sigma(x)|$  uncertainty of a single point

with 
$$p_T = \frac{0.3 B L^2}{8 s}$$
  
 $\sigma(s) = \sqrt{\frac{3}{2}} \sigma(x) \Rightarrow \frac{\sigma(p_T)}{p_T} = \frac{\sigma(s)}{s} = \frac{\sqrt{\frac{3}{2}} \sigma(x) 8 p_T}{0.3 B L^2}$ 

generalization to an arbitrary number of points:

$$\frac{\sigma(p_T)}{p_T} = \frac{\sigma(x)}{0.3 B L^2} \sqrt{720/(N+4)} p_T$$
R.L. Gluckstern, NIM 24, 381 (1963)

The bigger B, lever arm L and the number of measurements and the better the spatial resolution, the higher is the accuracy of the momentum measurement example (ATLAS Si-Tracker): N =7, L = 0.5, B = 2T, σ(x) = 20 µm, pt = 5 GeV/c: Δpt/pt = 0.5 %, r = 8.3 m, s = 3.75 mm



# **Conflicting Effect: Multiple Scattering**

 Charged particles are deflected when traversing matter: Multiple scattering via Coulomb interaction



$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} \qquad \theta_0 = \frac{13.6 \,\text{MeV}}{\beta \, c \, p} \, z \, \sqrt{x/X_0} \left[ 1 + 0.038 \ln(x/X_0) \right]$$

• valid for relativistic particles ( $\beta = 1$ ), the central 98% of the distribution, for layer thicknesses from  $10^{-3} X_0$  to  $100 X_0$  with an accuracy of better than 11%



- Two effects influence the momentum resolution σ(p<sub>T</sub>)/p<sub>T</sub> of tracking systems:
  - Momentum resolution of the tracker:  $\sigma(p_T) \propto p_T$



- Two effects influence the momentum resolution σ(p<sub>T</sub>)/p<sub>T</sub> of tracking systems:
  - Momentum resolution of the tracker:  $\sigma(p_T) \propto p_T$
  - Influence of multiple scattering

 $\theta \propto \frac{1}{p}$  and with that also the spatial inaccuracy due to scattering:

 $\sigma(x)_{MS} \propto \frac{1}{p}$ 



- Two effects influence the momentum resolution σ(p<sub>T</sub>)/p<sub>T</sub> of tracking systems:
  - Momentum resolution of the tracker:  $\sigma(p_T) \propto p_T$
  - Influence of multiple scattering

 $\theta \propto \frac{1}{p}$  and with that also the spatial inaccuracy due to scattering:

 $\frac{\sigma(p_T)}{m} \propto \sigma(x)_{MS} \times p_T$ 

 $\sigma(x)_{MS} \propto \frac{1}{p}$ 

We know:

and with that: 
$$\frac{\sigma(p_T)}{p_T}\Big|_{MS} = const$$



- Two effects influence the momentum resolution σ(p<sub>T</sub>)/p<sub>T</sub> of tracking systems:
  - Momentum resolution of the tracker:  $\sigma(p_T) \propto p_T$
  - Influence of multiple scattering

 $\theta \propto rac{1}{p}$  and with that also the spatial inaccuracy due to scattering:

 $\frac{\sigma(p_T)}{\sigma(x)_{MS}} \propto \sigma(x)_{MS} \times p_T$ 

 $\sigma(x)_{MS} \propto \frac{1}{p}$ 

We know:

and with that: 
$$\frac{\sigma(p_T)}{p_T}\Big|_{MS} = const$$

The measurement of low-momentum particles is limited by multiple scattering! At higher momenta the intrinsic resolution of the detector dominates.



- Depends on detector geometry and charge collection:
  - distance between strips
  - charge sharing between neighboring strips



- Depends on detector geometry and charge collection:
  - distance between strips
  - charge sharing between neighboring strips

Easiest case: The full charge is collected on a single strip:



- Depends on detector geometry and charge collection:
  - distance between strips
  - charge sharing between neighboring strips

Easiest case: The full charge is collected on a single strip:



- Particle impact generates a signal in the hit strip
  - The response does not depend on impact point, no point on the strip is "special"
  - Equal probability distribution for particle position:

$$P(x) = \frac{1}{d} \qquad \Rightarrow \int_{-d/2}^{d/2} P(x) \, dx = 1$$



- Depends on detector geometry and charge collection:
  - distance between strips
  - charge sharing between neighboring strips

Easiest case: The full charge is collected on a single strip:



- Particle impact generates a signal in the hit strip
  - The response does not depend on impact point, no point on the strip is "special"
  - Equal probability distribution for particle position:

$$P(x) = \frac{1}{d} \qquad \Rightarrow \int_{-d/2}^{d/2} P(x) \, dx = 1$$

The reconstructed impact position is always the strip center:

$$\langle x \rangle = \int_{-d/2}^{d/2} x P(x) \, dx = 0$$



*Teilchenphysik mit höchstenergetischen Beschleunigern:* WS 16/17, 04: Detectors II

Frank Simon (fsimon@mpp.mpg.de)

• The spatial resolution orthogonal to the strip direction is thus:

$$\sigma_x^2 = \left\langle (x - \langle x \rangle)^2 \right\rangle = \int_{-d/2}^{d/2} x^2 P(x) \, dx = \frac{d^2}{12}$$



• The spatial resolution orthogonal to the strip direction is thus:

$$\sigma_x^2 = \left\langle (x - \langle x \rangle)^2 \right\rangle = \int_{-d/2}^{d/2} x^2 P(x) \, dx = \frac{d^2}{12}$$

• General law for tracking detectors (also applies to wire chambers, pixels, ...) without signal sharing across several channels:

$$\sigma = \frac{d}{\sqrt{12}}$$



• The spatial resolution orthogonal to the strip direction is thus:

$$\sigma_x^2 = \left\langle (x - \langle x \rangle)^2 \right\rangle = \int_{-d/2}^{d/2} x^2 P(x) \, dx = \frac{d^2}{12}$$

 General law for tracking detectors (also applies to wire chambers, pixels, ...) without signal sharing across several channels:

$$\sigma = \frac{d}{\sqrt{12}}$$

- For silicon detectors with a strip pitch of 80  $\mu m$  (ATLAS) the minimum resolution is ~ 23  $\mu m$
- If the charge is collected by more than one strip, and if the charge sharing depends on the position of the particle impact the resolution can be substantially improved by calculating the center of gravity of the total signal



# Tracker Technologies Gas Detectors



# **Reminder: The Classic Ionization Chamber**



- electric field, resulting in avalanche multiplication
- Depending on the applied voltage, the signal is proportional to the original energy deposition or goes into saturation





# A Common Technique: Drift Tubes



• For example: ATLAS muon system

Measurement of the drift time: gives smallest distance to wire

Left/right ambiguity: Several staggered layers are required

 $\Rightarrow$  Typical spatial resolution ~100  $\mu$ m





# A Common Technique: Drift Tubes

• For example: ATLAS muon system

Measurement of the drift time: gives





# **TPC: 3D Track Reconstruction**

• The drift chamber idea - pushed further: Combination of 2D spatial information and time into real 3D point reconstruction



readout at the anode typically with MWPCs, newer technologies increasingly common



#### Schon länger im Einsatz: TPC bei STAR



Foto: LBL

(b) (a)

(C)

(d) Events with low track multiplicity Au+Au collisions at 9.2 GeV/nucleon

4 m diameter, 4.2 m long •



#### Schon länger im Einsatz: TPC bei STAR



Foto: LBL

• 4 m diameter, 4.2 m long



Particle identivication vie specific energy loss dE/dx

(pion ID also works at high energy!)



# STAR TPC: Central Au+Au Collisions at 200 GeV



- TPCs can reconstruct complex events with many particles several 1000 tracks
  - The limitation: Long readout times due to the drift time of electrons:  $\sim 40 \ \mu s$



# The biggest TPC: ALICE

• 4.9 m diameter, 5 m length



Pb-Pb collisions at 2.76 TeV/ nucleon - many thousand tracks per event!



*Teilchenphysik mit höchstenergetischen Beschleunigern:* WS 16/17, 04: Detectors II

Frank Simon (fsimon@mpp.mpg.de)

Image: CERN

# Tracker Technology: Semiconductor Detectors



#### **Spatial Resolution: Strip Detectors**




# 2D - Resolution with Silicon



- Caveat: The electronics on one side has to be on high voltage instead of ground, due to the bias voltage across the sensor
- Complicates the detector infrastructure considerably, often avoided by using several single-sided layers with different strip orientation



#### The Limits of Strip Detectors





For high particle densities there
 are ambiguities when going from
 1D hits to 2D points: Track
 reconstruction collapses at some
 point

 Also: Spatial resolution typically only good in one coordinate (orthogonal to strip) - Insufficient to reconstruct secondary vertices





*Teilchenphysik mit höchstenergetischen Beschleunigern:* WS 16/17, 04: Detectors II

y

## **Pixel Detectors - The Principle**



- Pixel-detectors allow tracking in environments with high particle density without ambiguities
- Good spatial resolution in two coordinates with a single layer (depending on pixel size and charge sharing between pixels)
- Very high channel count -> Challenging readout, in particular if it needs to be fast



## **Pixel Detectors - The Principle**



- Pixel-detectors allow tracking in environments with high particle density without ambiguities
- Good spatial resolution in two coordinates with a single layer (depending on pixel size and charge sharing between pixels)
- Very high channel count -> Challenging readout, in particular if it needs to be fast

... relatively high material budgets with fast readout: separate electronics layer!



#### **ATLAS Pixels: A Closer Look**





## **Technologies for the Future: 3D Silicon**

- The dream: All on a single chip
  - sensitive detector
  - analog pulse shaping
  - digitization
  - communication and control





## **Technologies for the Future: 3D Silicon**

- The dream: All on a single chip
  - sensitive detector
  - analog pulse shaping
  - digitization
  - communication and control
- Use of several thin Si layers which can be based on different processing technologies
- Important: The electrical connection between the different layers



**Opto Electronics** 

Digital Layer

Analog Layer

and/or Voltage Regulation

50 um

#### At the moment different technologies are being developed and tested..

**Optical In** 

Power In



**Optical** Out

## **Calorimetry: Energy Measurement**



# The Concept

- Originally from chemistry: Measurement of the released heat by a chemical reaction: Here increase of temperature of a wellknown amount of water
- For elementary particles: Measurement of the energy of a particle by total absorption
  - 1 cal = 10<sup>7</sup> TeV: Very small energies, no temperature increase!
  - Somewhat more sophisticated strategy for energy measurement needed





## Measuring Energy with a Calorimeter

- Convert the energy of the incident particle to a detector response
- Choose something that is easily detectable also for "small" energies
  - Electric charge
  - Photons (in or close to visible range)





# Measuring Energy with a Calorimeter

- Convert the energy of the incident particle to a detector response
- Choose something that is easily detectable also for "small" energies
  - Electric charge
  - Photons (in or close to visible range)



N.B.: Also other channels are used - thermal for example in cryogenic DM-search experiments, acoustic measurements, ... Not covered here!



# Measuring Energy with a Calorimeter

- Calorimetric processes are stochastic:
  - Counting of photons / created charge carriers
  - Number of secondary particles in showers induced by high-energy particles

Energy resolution often well-described by 
$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- Three components:
  - a: The stochastic term: The counting aspect of the measurement: Simple statistical error: scales with the square root of the number of particles
     ⇒ Resolution term scales with 1/√E
  - b: The noise term: Constant, energy-independent noise contribution to the signal Resolution term scales with 1/E
  - c: The **constant** term: Contributions that scale with energy: Influence of inhomogeneities in the detector material, un-instrumented or dead regions, ...
    - → Resolution term is independent of energy



## **Calorimeter Types**

- The dream: Contain the full energy of one particle, convert all energy into a measurable signal which is linear to the deposited energy
- Reality is often different, in particular when measuring hadrons

#### Two types: *homogeneous calorimeters* and *sampling calorimeters*



- The shower develops in the sensitive medium
  - Potentially optimal energy resolution: Complete energy deposit is measured
  - Challenging readout: No passive readout structures in detector volume



## **Calorimeter Types**

- The dream: Contain the full energy of one particle, convert all energy into a measurable signal which is linear to the deposited energy
- Reality is often different, in particular when measuring hadrons



Two types: homogeneous calorimeters and sampling calorimeters

- The shower develops (mostly) in dense absorber medium, particles are detected in interleaved active structures
- Potentially reduced energy resolution: Only a fraction of the deposited energy is detected



#### **Particle Showers**

- Measurement of highly energetic particles: Showers
  - Electromagnetic: Successive pair creation / Bremsstrahlung



• Hadronic: Hadronic cascade with hadronic and em content





#### **Characteristic Parameters of Showers - EM**

- Longitudinal development described by X<sub>0</sub>
- Lateral shower size given by Moliere Radius  $\rho_M$  (also depends on  $X_0$ ) 90% of all energy is contained in a cylinder with a radius of 1  $\rho_M$  around the shower axis
- Shower maximum: Depth where number of particles in the shower is maximal
  - $t_{max} \sim In(E_0/\epsilon) + t_0$  in  $X_0$ , with  $t_0 = -0.5$  für  $e^-$ , +0.5 für  $\gamma$





## **Characteristic Parameters of Showers - Hadronic**

- The length scale of hadronic showers is given by the nuclear interaction length  $\lambda_l$  (mean free path between hadronic interactions)
  - $\lambda_l > X_0$  for all materials with Z > 4



|             | λι      | X <sub>0</sub> |
|-------------|---------|----------------|
| Polystyrene | 81.7 cm | 43.8 cm        |
| PbWO        | 20.2 cm | 0.9 cm         |
| Fe          | 16.7 cm | 1.8 cm         |
| W           | 9.9 cm  | 0.35 cm        |

- Relativistic hadrons created in interactions with nuclei, carry a sizeable fraction of momentum of original particle [O GeV]
- About 1/3 of all pions created are π<sup>0</sup>: instantaneous decay to photons, em subshower
- Neutrons created in evaporation/spallation, photons from neutron capture -> MeV (or lower)
- Energy loss due to binding energy, ...



## Homogeneous ECAL: Anorganic Crystals

- Hohe Reinheit: Gute Transmission des Szintillationslichts
- Hohe Dichte: Bestimmt die Tiefe des Kalorimeters

Example: CMS ECAL





- PbWO<sub>4</sub>: Fast, high-density scintillator
  - Density ~ 8.3 g/cm<sup>3</sup> (!)
  - ρ<sub>M</sub> 2.2 cm, X<sub>0</sub> 0.89 cm
  - low light yield: ~ 100 photons / MeV, temperature dependent: -2%/°C



## Sampling Calorimeter: STAR ECAL



- Plastic scintillator plates between lead absorbers
- The light is collected in each plate by wavelength-shifting fibers
- The fibers guide the light outside of the magnetic field, where it is concentrated per "tower" and read out with a PMT



#### Homogeneous vs Sampling: Resolution!



- Stochastic Term:
  - STAR: ~ 14%
  - CMS: 2.8%



## Homogeneous vs Sampling: Resolution!





# Alternative Technology: ATLAS Liquid Argon





Barrel EMC

- (The ATLAS barrel HCAL uses steel + plastic scintillator)
- Endcap EMC and HCAL
- ECAL: Pb-LAr, with "accordeon geometry"





# LAr Calorimeters

- LAr: Density 1.4 g/cm<sup>3</sup>, X<sub>0</sub> 14 cm
  relatively high sampling fraction
- Charge is produced by throughgoing particles
- Charge collection on electrons
   (no amplification!)
- high purity of cryogenic liquid required - but then (with constant filtering) the active medium is indestructible also by high radiation levels
- accordeon geometry simplifies readout, minimizes drift length and thus allows high rates





## **Resolution of Hadronic Calorimeters**

- The general considerations for calorimeters apply also here
  - stochastic, constant and noise term
- but: Typically the detector respons differently to pure hadronic sub-showers and electromagnetic components (due to different length scale of interactions and "invisible" losses in hadronic reactions):  $e/\pi > 1$
- Fluctuations of electromagnetic fraction deterioriate resolution and result in nonlinearities: deviations from expected 1/√E behavior



AD+ Dy>tt

*Teilchenphysik mit höchstenergetischen Beschleunigern:* WS 16/17, 04: Detectors II

39

## **Resolution of Hadronic Calorimeters**

- The general considerations for calorimeters apply also here
  - stochastic, constant and noise term
- but: Typically the detector respons differently to pure hadronic sub-showers and electromagnetic components (due to different length scale of interactions and "invisible" losses in hadronic reactions):  $e/\pi > 1$
- Fluctuations of electromagnetic fraction deterioriate resolution and result in nonlinearities: deviations from expected 1/√E behavior



can be fixed with "compensating calorimeters"  $e/\pi = 1$  - But requires very specific geometries, for best results the use of Uranium absorbers and provides rather poor electromagnetic performance

#### Signal (in energy units) obtained for a 10 GeV energy deposit

C. Fabjan, F. Gianotti, Rev. Mod. Phys. 75, 1243 (2003)



## **ATLAS Barrel HCAL**



- Stainless steel / scintillator
- Scintillator cells parallel to particle incidence works since most particles are low energy and travel at larger angles
- Readout with two fibers per tile
- 3 longitudinal segments, fibers are bundled for each segment and read out with a PMT outside

magnet





## **Global Performance for Hadrons - CMS**





- A fantastic ECAL PbWO<sub>4</sub>
   crystals with APD readout
- EM energy resolution
   ~ 2.8%/√E
- The price to pay: Single hadron stochastic term ~93%





## **Global Performance for Hadrons - ATLAS**



- LAr ECAL, Scintillator HCAL in Barrel both longitudinally segmented
  - EM resolution ~9%/√E
  - Single hadron stochastic term ~42% (with software "compensation" making use of segmentation)





### **Important Measurement: Missing Energy**

- Is used to reconstruct "invisible" particles
  - Neutrinos, for example in the decay of W bosons
  - New particles, for example possible dark matter particles
- An indispensable tool to search for New Physics
- Calorimeter measure the energy of all particles (except muons) The most crucial system for total energy measurements





## Imaging Calorimeters: Now "Main Stream"

 In spring 2015, CMS has selected the "High Granular Calorimeter" HGCAL for the HL-LHC upgrade of its forward calorimeters



HGC-ECAL: Silicon sensors Tungsten / Copper absorber n = 1.441.479 = 2.63.6TI **HGC-HCAL**:

Silicon sensors Brass absorbers



## Summary

- Event reconstruction with collider detectors:
  - Tracking detectors to measure the momentum of charged particles Via track curvature in magnetic field
    - Technology: Mostly semi-conductor or gaseous detectors
  - Calorimeters to measure the energy of (almost) all particles
    - Subdivided into
      - Electromagnetic and hadronic calorimeters
      - Homogeneous and sampling calorimeters
    - Reconstruction of invisible particles by the measurement of the total event energy (and of missing energy by applying momentum conservation)



## Summary

- Event reconstruction with collider detectors:
  - Tracking detectors to measure the momentum of charged particles Via track curvature in magnetic field
    - Technology: Mostly semi-conductor or gaseous detectors
  - Calorimeters to measure the energy of (almost) all particles
    - Subdivided into
      - Electromagnetic and hadronic calorimeters
      - Homogeneous and sampling calorimeters
    - Reconstruction of invisible particles by the measurement of the total event energy (and of missing energy by applying momentum conservation)

#### Next Lecture:

Trigger, Data Acquisition, Computing - S. Bethke, 21.11.2016



#### Schedule

| 1.  | Introduction                                   | 17.10. |
|-----|------------------------------------------------|--------|
| 2.  | Accelerators                                   | 24.10. |
|     | no lecture                                     | 31.10. |
| 3.  | Particle Detectors I                           | 07.11. |
| 4.  | Particle Detectors II                          | 14.11. |
| 5.  | Trigger, Data Acquisition, Computing           | 21.11. |
| 6.  | Monte Carlo Generators and Detector Simulation | 28.11. |
| 7.  | QCD, Jets, Proton Structure                    | 05.12. |
| 8.  | Tests of the Standard Model                    | 12.12  |
| 9.  | Top Physics                                    | 07.12. |
|     | Christmas                                      |        |
| 10. | Higgs Physics I                                | 09.01. |
| 11. | Higgs Physics II                               | 16.01. |
| 12. | Physics beyond the SM                          | 23.01. |
| 13. | LHC Outlook & Future Collider Projects         | 30.01  |
|     | no lecture                                     | 06.02  |



#### **Extra Material**



## Verbesserte Energieauflösung: Kompensation

- Der Detektor-Parameter e/ $\pi$  wird durch die Geometrie und Materialien bestimmt
- Um e/π = 1 (Kompensation) zu erreichen, muss das Signal des Kalorimeters f
  ür Hadronen erh
  öht werden,
- Aktives Material mit Sensitivität für langsame Neutronen: Plastik-Szintillator mit H
- möglich: Erhöhung der Neutronenaktivität durch bestimmte Absorber, zB Uran



 Kompensation ist bei geeigneter Wahl des Sampling-Verhältnisses möglich



## Verbesserte Energieauflösung: Kompensation

- Der Detektor-Parameter  $e/\pi$  wird durch die Geometrie und Materialien bestimmt
- Um  $e/\pi = 1$  (Kompensation) zu erreichen, muss das Signal des Kalorimeters für Hadronen erhöht werden,
- Aktives Material mit Sensitivität für langsame Neutronen: Plastik-Szintillator mit H
- möglich: Erhöhung der Neutronenaktivität durch bestimmte Absorber, zB Uran



 Kompensation ist bei geeigneter Wahl des Sampling-Verhältnisses möglich

#### Aber:

- kein (oder fast kein) Material vor dem Kalorimeter!
- Kleine Sampling-Verhältnisse (Absorber mit kleinem X<sub>0</sub>):
  - Schlechte EM-Auflösung

