Local Hadron Calibration Status Report

LArg meeting

Sven Menke, MPP München

26. February 2009, MPP München/

on behalf of the MPP Munich HEC Group:

T. Barillari, J. Erdmann, P. Giovannini, A. Jantsch, A. Kiryunin, S. Menke, H. Oberlack, G. Pospelov, E. Rauter,

D. Salihagic, P. Schacht

- Introduction
- Local hadron calibration
 - Classification
 - Cell weighting
 - Out-of-cluster corrections
 - Dead-material corrections
 - Jet-level corrections

Status of new constants for QGSP_BERT

Algorithm improvements

- Particle ID for calibration hits
- Truth particle extrapolation

Readiness for First Data

- Pile-up, noise, bad cells
- in-situ strategies
- Application to top events

Introduction

- Aim is to have best possible response to hadrons and electrons in physics channels like $t\bar{t} \rightarrow Wb Wb \rightarrow I\nu j_b jjj_b$
 - pseudo event display in $r \phi$ and r - z illustrates this
 - use calorimeter objects calibrated to stable particle level to form jets which point back to primary partons

MC@NLO tt Event (semileptonic)

Hadron Calorimetry in ATLAS

- A hadronic shower consists of
 - EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
 - visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25%)
 - invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25 %)
 - escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- hadronic calibration has to account for the invisible and escaped energy and deposits in dead material and ignored calorimeter parts

From a Geant4 simulation of EMEC and HEC:

- EM energy strongly anti-correlated with visible non-EM energy
- visible non-EM energy strongly correlated with invisible energy
- need to separate EM part of the shower from the non-EM part
- apply a weight to the non-EM part to compensate invisible energy

How to separate EM fraction from non-EM fraction?

- $X_0 \ll \lambda \simeq 20 \, \mathrm{cm}$
- high energy density in a cell denotes high EM activity
- low energy density in a cell corresponds to hadronic activity
- apply weights as function of energy density

S. Menke, MPP München
Local Hadron Calibration Status Report
LArg meeting, 26. February 2009, MPP 4

Clusters

Cluster algorithms need to serve multiple purposes

- suppress noise (electronics noise and pile-up)
- keep electromagnetic showers in one cluster
- separate multiple signals which are close by
- work on very different sub-systems

Plots on the right and below show large variations in η for

• electronics noise at high luminosity

$$(\mathcal{L}=10^{34}~{
m cm}^{-2}{
m s}^{-2})~(\sim 10-10^3~{
m MeV})$$

• total noise at high luminosity

$$(\sim 2-10^4 {
m MeV})$$

• cell volume (
$$\sim$$
 2 \cdot 10⁴ $-$ 3 \cdot 10⁸, mm³)

S. Menke, MPP München

Cluster Making

- form clusters around seed cells with $|E_{\text{seed}}| > 4(\sigma_{\text{elec-noise}} \oplus \sigma_{\text{pile-up-noise}})$
- expand clusters around neighbor cells with $|E_{neigh}| > 2\sigma$
- include perimeter cells with $|E_{cell}| > 0\sigma$
- merge clusters if they share a neighbor cell
- expansion is driven by neighbors in 3D: usually 8 neighbors in the same layer (2D) plus cells overlapping in η and φ with central cell in next and previous layer (just 2 if granularity would be the same)

Cluster Splitting

- search for local maxima in cell energy with *E_{seed}* > 500 MeV in all clustered cells in EM-samplings (HAD-samplings secondary)
- re-cluster around local maxima with same neighbor driven algorithm but no thresholds and no merging
- cells at cluster borders are shared with energy and distance dependent weights

Jets <> Input

Pro's & Con's of towers and topo clusters as jet input

Towers

- + have always the same fixed size $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- + have no seed all cells end up in towers
- do not provide noise or pile-up suppression
- do not contain showers

Topo Clusters

- + provide efficient noise and pile-up suppression
- + correspond to individual hadrons
- need studies for the effects of noise thresholds
 work started by M. Simonyan
- typically have detector region dependent size $r \sim 0.1 0.2$

Classify and calibrate topo clusters to hadron-level

- Classification
 - use shower shape variables (cluster moments) like shower depth and (weighted) energy density of the cell constituents
 - em showers are less deep and have higher average energy density than had showers
 - make a cut on probability ratio to observe a neutral over a charged pion in a given bin derived from single pion simulations (right plot)

Calibration

- cell weights are applied to clusters classified as hadronic
- derive cell weights from Geant4 true energy (calibration hits) including invisible energy and absorber deposits and reconstructed cell energy for each η region and layer:
 - $w_i = \langle E_{\text{true}} / E_{\text{reco}} \rangle, i = \text{bin#}(E_{\text{cluster}}, E_{\text{cell}} / V_{\text{cell}})$
- example weights in main sampling of EM calorimeter for $2.0 < |\eta| < 2.2$
- Correct for dead material and out-of-cluster deposits for clusters classified as hadronic and electromagnetic (corrections differ)

Local Hadron Calibration > Cluster Moments

9 most popular moments are on AOD

- LATERAL normalized second lateral moment
- LONGITUDINAL normalized second longitudinal moment
- SECOND_R the width squared of the cluster
- SECOND_LAMBDA the length squared of the
- CENTER_LAMBDA the cluster center depth in the calorimeter
- CENTER_MAG the distance IP cluster center
- FIRST_ENG_DENS the first moment of $\rho = E/V$
- ENG_FRAC_MAX the ratio of the hottest cell energy over the cluster energy
- ISOLATION fraction of cells neighbouring the perimeter cells of the cluster which are not included in other clusters

other important moments available on ESD are

- CENTER_X/Y/Z the position of the cluster
- ENG_FRAC_EM the fraction of cluster energy in EM samplings
- ENG_FRAC_CORE the fraction of cluster energy in the leading cells in every sampling
- DELTA_PHI/THETA/ALPHA angular deviations of the shower axis from IP-cluster-center axis
- ENG_CALIB_* 13 of the 19 new moments of calibration hit energies associated to the cluster (in simulations with calibration hits; these are also on AOD)

Moments > Comparisons to Barrel CTB 2004 (H8)

P. Speckmayer

- look at cluster moments for 20 GeV pions from 2004 barrel test beam data (black points) and compare to G4 simulation (dashed blue lines)
- differences in ⟨η⟩ might be due to simplified beam trajectories in simulations
 compare also with η-reweighted
- distributions (red)
 shower depth and energy density in good agreement
- $\langle r^2 \rangle$ shows no agreement at all

- very important to use only moments which are well described
- validation of default athena algorithms with test beam data is crucial

Moments > Comparisons to Endcap CTB 2004 (H8)

J. Erdmann

200 GeV pions from 2004 endcap test beam data in the FCal region (solid green histogrms) and G4 QGSP (blue) and QGSP_BERT (red) simulations)

best description for λ_{center} and $\langle \rho \rangle$

- largest deviations in LATERAL and LONGITUDINAL
- QGSP_BERT slightly better than QGSP

Local Hadron Calibration > Energy Corrections

Cell weights

 account for the non-compensation of the calorimeters

Out-Of-Cluster Corrections

 recover lost energy inside the calorimeters due to noise thresholds

Dead-Material Corrections

 recover lost energy outside the calorimeters

Cell Weights

can be defined non-ambiguously from calibration hits and reconstructed cell energy

Out-Of-Cluster & Dead-Material corrections

- need assignment algorithm of nearby calibration hits to clusters
- can correct only those cases where a signal cluster is present
 - jets need additional corrections for lost low energetic particles

S. Menke, MPP München < Local Hadron Calibration Status Report < LArg meeting, 26. February 2009, MPP 12

New athena based weight extraction

- **new** athena package CaloLocalHadCalib to
 - extract classification, cell weights and out-of-cluster corrections from (private) ESDs with calibration hits

Algorithms present are: GetLCClassification,

- GetLCWeights,
- GetLCOutOfCluster
- produce one set of histograms per athena job; merged later if needed
- package is in CVS and in release 14.5.0

Refinement of hadronic weights with CaloLocalHadCalib and 14.2.21

- based on $\sim 6 \cdot 10^6$ single pions $(\pi + , \pi^-, \pi^0)$ produced as mc08.10741[012] on the grid
- no noise cuts in cell selection
- use inversion method ($E_{true}/\langle E_{rec}\rangle$ instead of $\langle E_{true}/E_{rec}\rangle$)
- include TileGap1, TileGap2

Refinement of out-of-cluster corrections

- store corrections relative to cluster energy on EM-scale
- correct for out-of-cluster energy assigned to clusters only
 with help of recently added CaloCalibHitClusterMoments
 ENG_CALIB_TOT: total calib hit energy for a cluster
 ENG_CALIB_OUT_M: medium (Δα < 0.5) associated out-of-cluster calibration hits in proportion to
 ENG_CALIB_TOT of all matching clusters
 ENG_CALIB_OUT_L/T: same for loose (Δα < 1.0) and tight (Δα < 0.3) association disabled by default
- the new moments are available automatically for each dataset with calibration hits on ESD/AOD/DPD
- similarly for dead-material energy Gena implemented new calibration-hit-based moments ENG_CALIB_DEAD_TOT: dead material energy assigned to all clusters inside the medium cone (see above) with relative weight $\sqrt{E}\exp(-\Delta R/0.2)$.
- detailed studies are possible with the following additional moments defined by Gena: ENG_CALIB_EMB0/EME0/TILEG3: calibration hit energy in pre-sampler and tile gap scintillator inside clusters

ENG_CALIB_DEAD_EMB0/TILE0/TILEG3/EME0/HECO/FCAL/LEAKAGE/UNCLASS: associated dead material energy according to the 8 different regions

Refinement of dead material corrections

- correct for dead material energy assigned to clusters only
 with Gena's assignment of dead material hits to clusters
- treat presamplers as dead-material
 - simplifies the separation of out-of-cluster and dead-material corrections
- effect of bias in dead-material corrections understood: binning in noise containing quantity creates bias for cut > 0
 use reco vs. truth instead of truth vs. reco for profile
- make leakage correction explicit instead of implicit

Expected effects

- better weighting performance due to correct simulation
- smaller out-of-cluster and dead-material corrections since we correct for assignable stuff only (Discussion at Ringberg)
- better defined base for jet-level corrections

Local Hadron Calibration - Jet-level corrections

Linearity for truth-jet-matched di-jet events in the barrel

- compared are em-scale, (old) local hadron calibrated scale, global H1 weight scale
- overshoot at high energies due to changed physics list
 - solved with new constants
- undershoot at low energies for local hadron calibration due to lost particles without correlation to calorimeter signals
 - confirmed with calibration hit plot from P. Giovannini

Jet-level corrections based on constituents need to be applied

S. Menke, MPP München

Local Hadron Calibration - Jet-level corrections

A. Jantsch

Linearity for truth-jet-matched di-jet events in the barrel

- compared are em-scale, (old) local hadron calibrated scale, local hadronic + jet-level-corrected scale
 - ▶ linearity is restored within 2%

Resolution for truth-jet-matched di-jet events in the barrel

again em-scale, (old) local hadron calibrated scale, local hadronic + jet-level-corrected scale
 resolution improves for low jet energies (*E* < 100 GeV) where corrections are largest

Code will be in CVS soon

- modular to choose different constituent based jet-moment
- constants will become conditions data

On my wishlist since a long time:

- if we'd know exactly which primary generator particle caused which calibration hit, we'd have no ambiguities in jet-truth-matching!
- deficits in the jet-truth-matching can be made visible
- actual true expected energy can be derived for clusters, jets, MET, ...
- Gena modified 10 athena packages to keep ParentID for every G4Track
 provides new method CaloCalibrationHit::particleID() returning the barcode of the primary particle causing the hit

Performance price

average time per event, sec	standard 14.2.21 2139.7 ± 187.6	hits with ParticleID 2320.2 ± 173.1	~ 1.08 ↑	
memory per event, Mb	694.1	684.1	~ 1.0	1.4
simul size, Mb/event	2.35	5.68	~ 2.4 ↑	J4
av.number of DM hits per event	40770 ± 6277	245500 ± 95160	~ 6.0 ↑	
av.number of active+inactive hits	70840 ± 18660	176300 ± 62100	~ 2.5 ↑	

- about the same factors for all JX samples
- **•** CPU time increases by $\sim 10\%$
- disk size per simulated file increases by ~ 140% or 3.3 Mb/ev
- disk size per digitized file increases also by 3.3 Mb/ev

Foreign calibration energy of Cone4LC *reco* matched jet

Average ratio of calibration energy inside *reco* jet which doesn't belong to the particles of true matched (ΔR <0.3) jet as a function of energy of reco jet (left), eta of reco jet (right).

Gennady Pospelov, MPI Munich

hadronic calibration meeting, October 8, 2008 02

Algorithm Improvements Fruth Extrapolation

Extrapolation tool can be used when no ParticleID is present

Current status

- code JetParticleExtrapolationTool is in CVS in JetSimTools-00-01-04
- will be used in rel 15.0.0 to have less ambigous truth matching

Readiness for First Data 🕨 In-Situ Studies

- jet-level checks with early data on QCD events
- take leading jets and plot amount of tagged hadronic and tagged electromagnetic energy per jet vs. η
 - tests the classification
- take leading jets and compare ratio of jet energy after each calibration step over em-scale energy vs.η
 - tests each calibration step separately
- compare with di-jet simulations to provide feedback
 - classification probes impact of deficits in moment description
 - η-structure is sensitive to dead material
 relative calibration steps probe physics lists
- feedback loop: modify similation/digitization (sometimes just adding cross-talk as seen in CTB2004 is enough) and compare again ...

Conclusions

Local Hadron Calibration Constants

- ~ 6 · 10⁶ single pions (π+,π⁻,π⁰) mc08.10741[012] have been used to produce new constants
 ▶ uploaded in conditions database (thanks Walter!)
- checks of physics lists and moments done on CTB2004 H6 and H8 (P. Speckmayer & J. Erdmann)
 - continued by A. Kiryunin
- production of constants is now completely athena based in package CaloLocalHadCalib
- some small refinements for classification and weights
- cleaner definition for out-of-cluster corrections
- dead-material corrections will soon be updated to

Jet-level corrections

- proposed new package from A. Jantsch
- corrects for losses not directly correlated with individual constituents
- restores linearity and improves resolution

New Algorithms

- code by G. Pospelov to attach ParticleID to CalibrationHit exists
 - ▶ is in CVS already and can be used in release 15.0.0 during simulation with CalibrationHits

Cluster/String

• even without CalibrationHits and ParticleID improved truth matching with code from M. Pecsy

Early Data

- modularity of calibration approach leads to good data/MC tests (P. Giovannini)
- application to top-physics (see talk by T. Barillari) for in-situ performance checks