GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Update on Template Method for m_{top} determination in the I+jets channel

preliminary results from top-mixing exercise

Giorgio Cortiana

ゆるタラゴた

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

G. Cortiana

Introduction

The idea is to apply the template method to measure mtop in the TopMixing samples.

This is a good exercise in order to prepare ourselves to real data (to come later this year)

In this talk focus is on TopMixing Exercise v1 (i.e. top, W+jets and single top only).

In order to cope with data streaming, electron and muon channel are maintained separated.

Top mass templates

Fitting all top mass templates together

We can fit all top mass templates for signal together by requiring that all parameters (p_i) depend linearly on m_{top}:

$$p_i = \alpha_i + \beta_i \cdot m_{top}$$

The fits returns α_i and β_i (14 parameters in total)

Fit result:

 $\chi^2/ndof$ = 1.24 for e (1.20 for μ)

In this way we obtain a continuous function which interpolates between templates and can be used in an un-binned likelihood fit

Background m_{top}-independent

Parameterization of the background w/o contributions from single top and all-hadronic ttbar

Gamma + Gaus for parameterization: 7 parameters, m_{top} – independent by construction.

The fit : un-binned likelihood terms

$$L(m_{top}) = L_{shape}(m_{top}) \times L_{N_s + N_b} \times L_{bkg}$$
shape
$$L_{shape}(m_{top}) = \prod_{i=1}^{N} \frac{N_s \cdot P_{sig}(m_{rec}^i \mid m_{top}) + N_b \cdot P_{bkg}(m_{rec}^i)}{N_s + N_b}$$
normalization
$$L_{N_s + N_b} = \frac{e^{-(N_s + N_b)} \cdot (N_s + N_b)^N}{N!}$$
background
$$L_{bkg} = e^{-\frac{(N_b^{exp} - N_b)^2}{2\sigma_{N_b^{exp}}^2}}$$
process
e-channel proces
e-channel process
e-channel

Minimize $-\log(L)$ with respect to N_s , N_b , and m_{top} P_{sig} and P_{bkg} are the normalized probability density functions determined from template fits

MPI-Top meeting, Mar. 6th, 2009

	6.0	8.7	
tion	0.3	0.33	
	G. C	ortiana (6

14.1

0.86

18.1

0.99

Signal

W+jets

BKG frac (no stop)

Single top

Pseudo-experiment results @ 10/pb

MPI-Top meeting, Mar. 6th, 2009

Pseudo-experiment results @ 10/pb

MPI-Top meeting, Mar. 6th, 2009

Some systs

Note: syst are evaluated running 5 pe @ 150/pb.

Top mixing sample results: e-channel

Top mixing sample results: μ-channel

Conclusions/plans

- A machinery to determine m_{top} using un-binned-likelihood fits on top mixing samples (v1) has been setup
 - Results are well in agreement with the expectations
- For the next top mix sample exercise:
 - refine signal/bkg parameterization
 - refine our matrix-method-based background normalization to account also for Z+jets.
- Apart from Top mixing exercises, we also need to see whether with the matrix-method we could also determine the QCD background (which may not be negligible), the current idea could be to use a two step procedure: top+W/Z vs QCD, and then top vs W/Z after QCD subtraction.

- backup slides -

Pseudo-experiments (cartoon)

for a given generated top quark mass and L_{int} (i.e. $m_{top} = 172.5 \text{ GeV}$, $L_{int} = 10 \text{ pb}^{-1}$):

PDFs in the µ-channel

Procedure sanity-checks using shapes

matrix method (D0)

Matrix method is used in D0 to get the normalization of QCD events.

$$N_{1} = \varepsilon_{1}^{top} N^{top} + \varepsilon_{1}^{W} N^{W}$$
$$N_{2} = \varepsilon_{2}^{top} N^{top} + \varepsilon_{2}^{W} N^{W}$$

$$N^{W} = \frac{N_{1} - N^{top} \varepsilon_{1}^{top}}{\varepsilon_{1}^{W}}$$

By knowing $\varepsilon_{1,2}^{top}$ and $\varepsilon_{1,2}^{W}$ from MC and the number of observed events in the the "data" regions 1 and 2, we can calculate the number of top and W+jets events we had before kin sel. Applying then the kin sel efficiency we can get the normalization of top and W in the observed distribution

MPI-Top meeting, Mar. 6th, 2009

pseudo-exp with he following samples:

- tT Acer MC
- W+jets bkg

From the expected number of events in 146 pb-1 Using the SM x-sec, pseudo data were constructed varying the top and w+jet contribution (from 0.1 to 10 times the expectations) $\epsilon_{1,2}^{top}$ and $\epsilon_{1,2}^{W}$ are derived once from the corresponding MC samples.

We then applied the matrix method to normalize Top and W+jets contribution

pseudo-exp with he following samples:

> T Acer MC W+jets bkg

From the expected number of events in 146 pb-1 Using the SM x-sec, pseudo data were constructed varying the top and w+jet contribution (from 0.1 to 10 times the expectations) $\epsilon_{1,2}^{top}$ and $\epsilon_{1,2}^{W}$ are derived once from the corresponding MC samples.

We then applied the matrix method to normalize Top and W+jets contribution

Top x 10

Wenu+jets x 1

pseudo-exp with he following samples:

- tT Acer MC
- W+jets bkg

From the expected number of events in 146 pb-1 Using the SM x-sec, pseudo data were constructed varying the top and w+jet contribution (from 0.1 to 10 times the expectations) $\varepsilon_{1,2}^{top}$ and $\varepsilon_{1,2}^{W}$ are derived once from the corresponding MC samples.

We then applied the matrix method to normalize Top and W+jets contribution

pseudo-exp with he following samples:

- tT Acer MC
- W+jets bkg

From the expected number of events in 146 pb-1 Using the SM x-sec, pseudo data were constructed varying the top and w+jet contribution (from 0.1 to 10 times the expectations) $\varepsilon_{1,2}^{top}$ and $\varepsilon_{1,2}^{W}$ are derived once from the corresponding MC samples.

We then applied the matrix method to normalize Top and W+jets contribution

