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Motivation

● Highly Granular Calorimeter are important in modern HEP experiments

– Interest in rare events with high precision

– to cope with pile-up

– to be able to use Particle Flow Algorithm

● to cope with background
● to improve jet reconstruction

● Today it is possible to highly integrate digital electronics

● Originally invented in Linear Collider context 

– Developed at the CALICE Collaboration

– today in use at every modern HEP experiments

● LHC HL upgrade

–  CMS phase II Endcap Calorimeter upgrade
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Time Structure of hadronic showers
● Understanding of the time structure of hadronic showers may play a key role in 

exploiting the full potential of highly granular calorimeter 

add a further dimension (space, energy and time)

● Relativistic component → instantaneous instantaneous, detected via energy loss of
electrons and positrons in active medium

instantaneous component: charged
hadrons detected via ionisation in 
active medium

delayed component:
 ‣ neutrons from evaporation and spallation
 ‣ photons, neutrons, protons from nuclear 

de-excitation following neutron capture
 ‣ momentum transfer to protons in 

hydrogenous active medium from 
slow neutrons

Separation of components originating from different processes may enable 
improved energy resolution – time is the perfect handle to access this
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Simulation
● To be able to develop new Calorimeter it is very important to be able to simulate it - 

HEP: GEANT4

● Make sure that CALICE data, that didn't exist beforehand, is matched by GEANT4 
LHC Physics List QGSP_BERT

Quark-Gluon String Model for high energy interactions with Bertini cascade for 
below ~10 GeV interactions

In CALICE Testbeams looked at timing

Neutrons important → QGSP_BERT_HP

HP neutron package → thermal neutrons

Only looking at particles that deposit Energy is not sufficient 
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GEANT4 Simulation

● One has to rebuild the geometry 

of the detector in software

– Here the full HCal is required

● Implement detector specific circumstances

– For the T3B setup digitisation and photon statistics is important

– The RPC setup is fast and digital – so this is more simple to emulate it

 

● To be able to know which signal had what kind of history of processes before 
it ended up in the detector

– Implement a Memory-Efficient way to track each particle
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Experiments
● In CALICE there are two experiments to measure the time structure of 

hadronic showers

– The T3B with hydrocarbon scintillator as active material

– The FastRPC with gas as active material

● Public results of CALICE Collaboration → I provide the final interpretation

 
suppression in gas 
detectors by a factor 8

Not a detector effect 
(compare Muon and Pion)

But there is an almost 
equal signal in the gas 
detector in tail

Can we understand this in simulations?
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The Simulation

● I am able to reproduce the general features

● The difference of both signals is also in the simulation
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Data vs Simulation

● Good agreement of data with MC in the FastRPC Simulation

● Scintillator: Too few TofH in the time range from ~ 20 to 50 ns
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Validation of simulation analysis 
with old simulations

● Old simulated data is 

reanalyzed with 

re-implemented digitization

● Too few MeV – scale neutrons

In Geant4 Version 10.1

● Simulation of detector effects 

is working correctly

– I can look into the simulated physics
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Where does the difference come from?

● neutron elastic scattering:
dominant between ~5 and ~30 ns not relevant

 neutron capture:
kicks in immediately                                       thermalisation is slower
taking over at ~50 ns taking over at ~75 ns
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Results - Relative Contributions

● Scintillator: almost all energy deposits within ~5 and ~30 ns are connected 
to neutron elastic scattering

● Almost all late activity has neutron capture in its history

● Scintillator moderates the neutrons down to ~ eV “thermal neutrons”
Gas lacking the n-moderation → has less neutron Capture 
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Conclusions

● Attribution of processes to hadronic shower time structure possible

● Clears up the difference of both setups in intermediate phase: 

Strong sensitivity to MeV-scale neutrons in scintillator results in substantial 
visible activity a few 10 ns into the shower development

● Clears up the observation of almost equal response of scintillators and RPCs in 
late contribution: 

Neutron capture in the absorber, followed by detection of secondaries (large 
photon contribution) in the active medium
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Outlook

● CALICE will study to improve the Energy resolution with the help of hadron 
shower timing information

● LHC HL upgrade will use the time of occurrence of events within the same 
bunch (“in-time pileup”) to resolve events of interest

– Pile-up suppression for neutral particles

– Higher time resolution → better vertex association
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The End

Thank you!
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Backup
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T3B & FastRPC Setups
behind 38 Layers of sampling HCal

● T3B (Tungsten Timing Test Beam):

Plastic Scintillator

● 15 cells, read out with fast digitizers 
over long (~ 2 μs) times

● FastRPC (Resistive Plate Chambers)

Gaseous Detector
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Processes of particular interest

● Neutron elastic scattering

– most efficient when scattering on protons – 
particularly relevant for hydrogenous materials: plastic 
scintillator

– Assumed to be behind the difference in the few 10 ns 
region - scattering of MeV - scale neutrons results in 
O 1 MIP signals

● Neutron capture

– capture of eV - scale neutrons on heavy nuclei, 

results in emission of few MeV photons

– Capture takes place in absorber, 

photons convert to e+ e- pairs 

(or e- via Compton scattering), 

resulting in signal in sensitive volume
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Simulation Process Accounting

● Geant4 has ~ 60 Processes of interest

● Each particle in the Geant4 simulation gets a process 
variable that stores information about all processes that have 
happened to that particle. When new particles are produced, 
they inherit the state of their parents.
– Technically: A 64 bit integer - allows to encode 64 different 

processes
– one bit for each process implemented in 

the physics list
– Tagging of processes of interest

● Identification of neutron-proton 
elastic scattering
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Geant4 physics list

● The physics list defines particles and their interactions

● under heavy development

Old T3B Simulation: 
good agreement of the data with 
QBBC-based simulations
(GEANT4 9.4p03)

New T3B Simulation: 
shows substantially lower activity in 
Intermediate time frame:
less MeV - scale neutrons?
(GEANT4 10.01p02 )
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Comparison of GEANT4 Versions

Differences seen in the same region

Geant4 10.1 has less activity from 20 to 40 ns

QGSP_BERT_HP in 9.4p03 vs 10.01.p02
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Comparison of GEANT4 Versions

● mean time of first hit as a function of radius consistent

● But: less “first hits” at larger radius - results in less late hits in total

● Consistent with MeV - scale neutron interpretation - less pronounced 
“neutron cloud” in 4.10 -> would result in fewer hits at high r, since 
neutrons spread out most
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All Processes
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All Processes Scintillator



  33

All Processes Gas
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Electromagnetic Contributions

● Promt processes driven by       and Photons

● Also at late times the shower is quite electromagnetic – photons from neutron capture
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Simulation Results
Relative Contributions

● Electromagnetic 
contributions important 
throughout the shower 
development

● In the Scintillator less EM 
contribution in the 
intermediate phase → 
neutron Elastic Scattering 
taking over
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