Simulation of the Time Structure of Hadronic Showers in Highly Granular Calorimeters with RPC and Scintillator Readout

36th IMPRS Workshop

Philipp Goecke

pgoecke@mpp.mpg.de
517C B133 E9A9 E3CA BODE 7809 940E BB09 1510 4A6D

Outline

- Motivation
- Time Structure of hadronic showers
- CALICE Measurements of the Time Structure of Hadronic Shower
- Simulation and interpretation of observed time structure
- Conclusions & Outlook

Motivation

- Highly Granular Calorimeter are important in modern HEP experiments
 - Interest in rare events with high precision
 - to cope with pile-up
 - to be able to use Particle Flow Algorithm
 - to cope with background
 - to improve jet reconstruction
- Today it is possible to highly integrate digital electronics
- Originally invented in Linear Collider context
 - Developed at the CALICE Collaboration
 - today in use at every modern HEP experiments
 - LHC HL upgrade
 - CMS phase II Endcap Calorimeter upgrade

- Understanding of the time structure of hadronic showers may play a key role in exploiting the full potential of highly granular calorimeter
 - add a further dimension (space, energy and time)
- Relativistic component → instantaneous

 Understanding of the time structure of hadronic showers may play a key role in exploiting the full potential of highly granular calorimeter

add a further dimension (space, energy and time)

Relativistic component → instantaneous

instantaneous, detected via energy loss of electrons and positrons in active medium

instantaneous component: charged hadrons detected via ionisation in active medium

 Understanding of the time structure of hadronic showers may play a key role in exploiting the full potential of highly granular calorimeter

add a further dimension (space, energy and time)

Relativistic component → instantaneous

instantaneous component: charged hadrons detected via ionisation in active medium

delayed component:

- neutrons from evaporation and spallation
- photons, neutrons, protons from nuclear
 de-excitation following neutron capture
- momentum transfer to protons in hydrogenous active medium from slow neutrons

 Understanding of the time structure of hadronic showers may play a key role in exploiting the full potential of highly granular calorimeter

add a further dimension (space, energy and time)

Relativistic component → instantaneous

instantaneous, detected via energy loss of electrons and positrons in active medium

instantaneous component: charged hadrons detected via ionisation in active medium

delayed component:

- neutrons from evaporation and spallation
- photons, neutrons, protons from nuclear
 de-excitation following neutron capture
- momentum transfer to protons in hydrogenous active medium from slow neutrons

 Separation of components originating from different processes may enable improved energy resolution – time is the perfect handle to access this

Simulation

 To be able to develop new Calorimeter it is very important to be able to simulate it -HEP: GEANT4

 Make sure that CALICE data, that didn't exist beforehand, is matched by GEANT4 LHC Physics List QGSP_BERT

Simulation

 To be able to develop new Calorimeter it is very important to be able to simulate it -HEP: GEANT4

 Make sure that CALICE data, that didn't exist beforehand, is matched by GEANT4 LHC Physics List QGSP_BERT

- Quark-Gluon String Model for high energy interactions with Bertini cascade for below ~10 GeV interactions
- In CALICE Testbeams looked at timing
 - Neutrons important → QGSP_BERT_HP
 HP neutron package → thermal neutrons

Simulation

 To be able to develop new Calorimeter it is very important to be able to simulate it -HEP: GEANT4

 Make sure that CALICE data, that didn't exist beforehand, is matched by GEANT4 LHC Physics List QGSP_BERT

 Quark-Gluon String Model for high energy interactions with Bertini cascade for below ~10 GeV interactions

- In CALICE Testbeams looked at timing
 - Neutrons important → QGSP_BERT_HP
 HP neutron package → thermal neutrons

Only looking at particles that deposit Energy is not sufficient

10

had component

GEANT4 Simulation

- One has to rebuild the geometry of the detector in software
 - Here the full HCal is required

- Implement detector specific circumstances
 - For the T3B setup digitisation and photon statistics is important
 - The RPC setup is fast and digital so this is more simple to emulate it

- To be able to know which signal had what kind of history of processes before it ended up in the detector
 - Implement a Memory-Efficient way to track each particle

- In CALICE there are two experiments to measure the time structure of hadronic showers
 - The T3B with hydrocarbon scintillator as active material
 - The FastRPC with gas as active material
- Public results of CALICE Collaboration → I provide the final interpretation

- In CALICE there are two experiments to measure the time structure of hadronic showers
 - The T3B with hydrocarbon scintillator as active material
 - The FastRPC with gas as active material
- Public results of CALICE Collaboration → I provide the final interpretation

 suppression in gas detectors by a factor 8

- In CALICE there are two experiments to measure the time structure of hadronic showers
 - The T3B with hydrocarbon scintillator as active material
 - The FastRPC with gas as active material
- Public results of CALICE Collaboration → I provide the final interpretation

- suppression in gas detectors by a factor 8
- Not a detector effect (compare Muon and Pion)
- But there is an almost equal signal in the gas detector in tail

- In CALICE there are two experiments to measure the time structure of hadronic showers
 - The T3B with hydrocarbon scintillator as active material
 - The FastRPC with gas as active material
- Public results of CALICE Collaboration → I provide the final interpretation

- suppression in gas detectors by a factor 8
- Not a detector effect (compare Muon and Pion)
- But there is an almost equal signal in the gas detector in tail

Can we understand this in simulations?

The Simulation

- I am able to reproduce the general features
- The difference of both signals is also in the simulation

Data vs Simulation

- Good agreement of data with MC in the FastRPC Simulation
- Scintillator: Too few TofH in the time range from ~ 20 to 50 ns

Validation of simulation analysis with old simulations

- Old simulated data is reanalyzed with re-implemented digitization
- Too few MeV scale neutrons
 In Geant4 Version 10.1
- Simulation of detector effects is working correctly
 - I can look into the simulated physics

Where does the difference come from?

neutron capture:
 kicks in immediately
 taking over at ~50 ns

Results - Relative Contributions

- Scintillator: almost all energy deposits within ~5 and ~30 ns are connected to neutron elastic scattering
- Almost all late activity has neutron capture in its history
- Scintillator moderates the neutrons down to ~ eV "thermal neutrons"
 Gas lacking the n-moderation → has less neutron Capture

Conclusions

- Attribution of processes to hadronic shower time structure possible
- Clears up the difference of both setups in intermediate phase:
 - Strong sensitivity to MeV-scale neutrons in scintillator results in substantial visible activity a few 10 ns into the shower development
- Clears up the observation of almost equal response of scintillators and RPCs in late contribution:
 - Neutron capture in the absorber, followed by detection of secondaries (large photon contribution) in the active medium

Outlook

- CALICE will study to improve the Energy resolution with the help of hadron shower timing information
- LHC HL upgrade will use the time of occurrence of events within the same bunch ("in-time pileup") to resolve events of interest
 - Pile-up suppression for neutral particles
 - Higher time resolution → better vertex association

The End

Thank you!

Backup

T3B & FastRPC Setups behind 38 Layers of sampling HCal

 15 cells, read out with fast digitizers over long (~ 2 μs) times

T3B (Tungsten Timing Test Beam):

Plastic Scintillator

FastRPC (Resistive Plate Chambers)
 Gaseous Detector

Processes of particular interest

Neutron elastic scattering

- most efficient when scattering on protons particularly relevant for hydrogenous materials: plastic scintillator
- Assumed to be behind the difference in the few 10 ns region - scattering of MeV - scale neutrons results in O 1 MIP signals

Neutron capture

- capture of eV scale neutrons on heavy nuclei,
 results in emission of few MeV photons
- Capture takes place in absorber,
 photons convert to e+ e- pairs
 (or e- via Compton scattering),
 resulting in signal in sensitive volume

Simulation Process Accounting

Geant4 has ~ 60 Processes of interest

- Each particle in the Geant4 simulation gets a process
 variable that stores information about all processes that have
 happened to that particle. When new particles are produced,
 they inherit the state of their parents.
 - Technically: A 64 bit integer allows to encode 64 different processes

- one bit for each process implemented in the physics list
 - Tagging of processes of interest
 - Identification of neutron-proton elastic scattering

Geant4 physics list

- The physics list defines particles and their interactions
- under heavy development

Old T3B Simulation: good agreement of the data with **QBBC-based simulations** (GEANT4 9.4p03)

New T3B Simulation: shows substantially lower activity in Intermediate time frame: less MeV - scale neutrons? (GEANT4 10.01p02)

28

Comparison of GEANT4 Versions

QGSP_BERT_HP in 9.4p03 vs 10.01.p02

Differences seen in the same region

Geant4 10.1 has less activity from 20 to 40 ns

Comparison of GEANT4 Versions

- mean time of first hit as a function of radius consistent
- But: less "first hits" at larger radius results in less late hits in total
- Consistent with MeV scale neutron interpretation less pronounced "neutron cloud" in 4.10 -> would result in fewer hits at high r, since neutrons spread out most

All Processes

All Processes Scintillator

All Processes Gas

Electromagnetic Contributions

- Promt processes driven by π^0 and Photons
- ullet Also at late times the shower is quite electromagnetic photons from neutron capture $_{34}$

Simulation Results Relative Contributions

 Electromagnetic contributions important throughout the shower development

 In the Scintillator less EM contribution in the intermediate phase → neutron Elastic Scattering taking over