Developing a Method for Measuring Plasma Radius using Schlieren Imaging IMPRS Workshop

Anna-Maria Bachmann

Max-Planck-Institute for Physics, Munich bachmann@mpp.mpg.de

November 7, 2016

Advanced Wakefield Experiment (AWAKE) at CERN

Principle of AWAKE Experiment

Physics of Plasmas 21, 123116 (2014); doi: 10.1063/1.4904365

Plasma Based Acceleration

- Propagation of a proton beam through rubidium plasma
- Seeding of self-modulation instability (SMI) through co-propagating laser
 - \rightarrow Generation of the wakefield
 - \rightarrow Acceleration of injected electrons

Formation of Micro Bunches

AWAKE Design Report

Plasma Radius Measurement at AWAKE

Radial wakefield at the front of the beam

- Particle density $n_0 = 10^{15} \, \text{cm}^{-3}$
- Beam size $\sigma_r = \sigma_z = 1/k_p \approx 0.17 \, \text{mm}$
- \Rightarrow Transverse component eq 0 until $r \lesssim 1 \, \mathrm{mm}$
- \Rightarrow Require plasma radius $r_{\text{plasma}} > 1 \, \text{mm}$

Schlieren image through windows at the end of the cell

 \rightarrow Value should be larger than or equal to that along the cell

AWAKE Design Report

Plasma Radius Measurement at AWAKE

Radial wakefield at the front of the beam

- Particle density $n_0 = 10^{15} \, \mathrm{cm}^{-3}$
- Beam size $\sigma_r = \sigma_z = 1/k_p \approx 0.17 \, \mathrm{mm}$
- \Rightarrow Transverse component eq 0 until $r \lesssim 1$ mm
- \Rightarrow Require plasma radius $r_{\text{plasma}} > 1 \, \text{mm}$

Schlieren image through windows at the end of the cell

 \rightarrow Value should be larger than or equal to that along the cell

AWAKE Design Report

⇒ Need to determine experimentally plasma radius

Principle of Schlieren Imaging

Principle of Schlieren Imaging

Without Object

All parallel incoming rays go through one point

Block non-deflected rays

 \rightarrow only deflected rays reach screen

⇒ Intensity proportional to the **change** of index of refraction

Principle of Schlieren Imaging

Without Object

All parallel incoming rays go through one point

Block non-deflected rays

 \rightarrow only deflected rays reach screen

- \Rightarrow Intensity proportional to the change of index of refraction
- ⇒ Increasing contrast of the object by blocking background

Schlieren Image of Density Perturbation in Air

Schlieren Image of Density Perturbation in Air

- Beam expander to increase spot size to image larger objects
- Aperture to suppress aberrations
- Lenses 1 and 2 act as thick lens to image object
- Razor blade to block undeflected rays

 → up and down deflection becomes
 visible

Schlieren Image of Density Perturbation in Air

- Aperture to suppress aberrations
- Lenses 1 and 2 act as thick lens to image object
- Razor blade to block undeflected rays

 up and down deflection becomes
 visible

Schlieren image of floating air coming out of a compressed air can through a nozzle

Knife Edge as Block in Focal Plane

ightarrow Density perturbation becomes visible

Refractive Indices of Vapor and Plasma

 ${\sf Refractive\ index\ of\ vapor}$

$$n_{\mathrm{vapor}}(r) = \mathrm{Re}\left(\sqrt{1 + rac{N_i(r)\,e^2}{\epsilon_0\,m_\mathrm{e}}}\,\sum_{j
eq i} rac{f_{ij}}{(\omega_{ij}^2 - \omega^2 - rac{i\,\omega}{\epsilon_{ij}})}
ight) \
ightarrow n_{\mathrm{vapor}} pprox 1 + 2 \cdot 10^{-2} \; \mathrm{for} \; d\omega = -5 \, \mathrm{GHz}$$

Refractive index of unexcited Rb vapor around D2 line

$\Delta n_{\text{vacuum,plasma}}$ very small

⇒ Schlieren effect comes

not from the appearance of plasma
but from the disappearance of vapor

Refractive index of plasma

$$n_{\mathsf{plasma}} = \sqrt{1 - \frac{n_{\mathsf{pe}} \, \mathrm{e}^2}{\epsilon_0 \, m_{\mathsf{e}}}} \, \frac{1}{\omega^2}$$

$$\rightarrow n_{\mathsf{plasma}} \approx 1 - 3 \cdot 10^{-7} \, \mathsf{for} \, d\omega =$$

 γ \rightarrow $n_{\mathsf{plasma}} pprox 1 - 3 \cdot 10^{-7} ext{ for } d\omega = -5 \, \mathsf{GHz}_{6/12}$

Absorption Spectroscopy for Laser Wavelength Determination

Rb Spectroscopy around D2 Transition Line

Atomic Level Structure of Rubidium

Choosing a Laser Wavelength using Spectroscopy

Lower temperature

- ightarrow Less Doppler broadening ightarrow Resolution of hyperfine structure
- ightarrow Wavelength determination with absorption spectroscopy

Higher temperature

→ Higher density → Stronger signal at Schlieren imaging

Set Up at MPP for Imaging an Excitation Column

Set Up Including Spectroscopy and Schlieren Imaging

- Excitation of atoms through pump beam tuned to a wavelength close to transition line D2 (but no ionization)
- Absorption spectroscopy to determine laser wavelength at lower temperature
- Schlieren Imaging of excitation column

Procedure for Schlieren Images of the Excitation Column

Image Processing

- subtraction of noise from the other images
- subtraction of image
 - without pump beam
 - without Schlieren beam

from image with pump and Schlieren beam

⇒ Excitation column becomes visible Various blocking of the two beams

→ Images in 4 configurations for image processing

Example at a detuning frequency $df = 5 \,\text{GHz}$

Schlieren Images of Excitation Column at Different Detuning Frequencies around Transition Line D2

- at $df \lesssim \pm 3\,\mathrm{GHz}$ no transmission of the Schlieren beam
- at $df \gtrsim \pm 9\,\mathrm{GHz}$ no significant phase shift any more
- change of sign of Δn around transition line D2 visible

Plasma Radius Measurement at CERN

Specification ionizing laser at CERN						
	Power P	4 TW				
	Duration Δau	100 fs				
	Wavelength λ	$(780\pm10)\mathrm{nm}$				

- ightarrow Intensity $I \gg 1.7 \cdot 10^{12} \, \mathrm{Wcm}^{-2}$ for $r \leq 1 \, \mathrm{mm}$ and length $z = 10 \, \mathrm{m}$
- → Excitation and ionization

Plasma Radius Measurement at CERN

Speci	fication	ioniz	ing	laser	at	CERN
Power P		4 TW				

Power P	4 TW			
Duration Δau	100 fs			
Wavelength λ	$(780\pm10)\mathrm{nm}$			

- ightarrow Intensity $I\gg 1.7\cdot 10^{12}\,{
 m Wcm}^{-2}$ for $r\leq 1\,{
 m mm}$ and length $z=10\,{
 m mm}$
- → Excitation and ionization

 \Rightarrow Is it possible to see plasma formation in the middle of excitation?

 Development of a method to determine the radius at AWAKE in the case of ionized vapor

- Development of a method to determine the radius at AWAKE in the case of ionized vapor
- Schlieren imaging to show an excitation column
 - \rightarrow Schlieren imaging at CERN to show a plasma column

- Development of a method to determine the radius at AWAKE in the case of ionized vapor
- Schlieren imaging to show an excitation column
 - ightarrow Schlieren imaging at CERN to show a plasma column
- Calculation of the Schlieren images with a plasma column (not shown here)
 - \rightarrow Comparison with measurement

- Development of a method to determine the radius at AWAKE in the case of ionized vapor
- Schlieren imaging to show an excitation column
 - → Schlieren imaging at CERN to show a plasma column
- Calculation of the Schlieren images with a plasma column (not shown here)
 - → Comparison with measurement

Thank you!

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Schlieren vs Shadowgraphy of Excited Atoms

Signal at $\Delta f = -9\,\mathrm{GHz}$

Formulas of Fourier Optics

Propagation over z along optical axis 1

$$S_0(\vec{k}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_0(\vec{r}) \exp(-i \, \vec{k} \, \vec{r}) \, d^2 \vec{r}$$

$$u_1(\vec{r}, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_0(\vec{k}) \exp(i \, z \, \sqrt{k_0^2 - \vec{k}^2}) \exp(i \, \vec{k} \, \vec{r}) \, d^2 \vec{k}$$

Phase Shift through Object

 $u_1(\vec{r}) = u_0(\vec{r}) \cdot \exp(i \Phi)$ with Φ phase shift through object

¹HECHT, E.: Optics (4th ed.). Addison Wesley, 1987

GOAL: Plasma Radius Measurement using Schlieren Imaging

Parameters

- Beam size $\sigma_{beam} = 5 \text{ mm}$
 - Plasma radius
 - $r_{plasma} = 1 \, \mathrm{mm}$
- Focal lengths $f_1 = 500 \text{ mm},$ $f_2 = 100 \text{ mm}$
- Laser detuning $\Delta \omega = 20 \, \mathrm{GHz}$

Index of refraction

• for vapor

$$n(r) = RE\left(\sqrt{1 + \frac{N_i(r)\,e^2}{\epsilon_0\,m_e}\,\sum_{j\neq i}\frac{f_{ij}}{(\omega_{ij}^2 - \omega^2 - \frac{i\,\omega}{\tau_{ij}})}}\right)$$

for plasma

$$n = \sqrt{1 - \frac{\omega_{pe}^2}{\omega^2}}$$

Gaussian Beam - Plasma Column - No Cut Off

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Radius of plasma column: $r_{plasma} = 1 \text{ mm}$

Contours of the plasma column due to diffraction

- ⇒ Information about the size
- \Rightarrow No information about the shape

Gaussian Beam - Plasma Column - Horizontal Knife Edge

Parameters:

- Standard derivation of Gaussian beam: $\sigma_r = 5 \text{ mm}$
- Focal lengths and propagation distances f1 = L1 = 500 mm, f2 = L2 = 100 mm
- Radius of plasma column: $r_{plasma} = 1 \text{ mm}$
- Position horizontal knife-edge: $y = 0.04 \, \text{mm}$

Half of the plasma column and its contour is imaged

- ⇒ Information about the size
- \Rightarrow Information about the shape