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Advanced Wakefield Experiment (AWAKE) at CERN

Principle of AWAKE Experiment

Physics of Plasmas 21, 123116 (2014); doi: 10.1063/1.4904365

Plasma Based Acceleration

• Propagation of a proton beam
through rubidium plasma

• Seeding of self-modulation
instability (SMI) through
co-propagating laser
→ Generation of the wakefield
→ Acceleration of injected
electrons

Formation of Micro Bunches

AWAKE Design Report
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Plasma Radius Measurement at AWAKE

Radial wakefield at the front of the beam
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• Particle density n0 = 1015 cm−3

• Beam size σr = σz = 1/kp ≈ 0.17 mm

⇒ Transverse component 6= 0 until r . 1 mm
⇒ Require plasma radius rplasma > 1mm

Schlieren image through windows at the
end of the cell
→ Value should be larger than or equal to
that along the cell
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AWAKE Design Report

⇒ Need to determine experimentally plasma radius
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Principle of Schlieren Imaging

Without Object

All parallel incoming
rays go through one
point

Block non-deflected
rays

→ only deflected rays
reach screen

Lens1 Lens 2

Object

plane

Focal

plane

Image

plane

⇒ Intensity proportional to the change of index of refraction

⇒ Increasing contrast of the object by blocking background
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Schlieren Image of Density Perturbation in Air
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Imaging condition

• Beam expander to increase spot size to
image larger objects

• Aperture to suppress aberrations

• Lenses 1 and 2 act as thick lens to
image object

• Razor blade to block undeflected rays
→ up and down deflection becomes
visible
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Schlieren image of floating air coming
out of a compressed air can through a
nozzle

Knife Edge as Block in Focal Plane

→ Density perturbation becomes
visible
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Refractive Indices of Vapor and Plasma

∆nvacuum,plasma very small

⇒ Schlieren effect comes
not from the appearance of plasma
but from the disappearance of vapor

Refractive index of vapor

nvapor(r) = Re

√
1 + Ni (r) e2

ε0 me

∑
j 6=i

fij

(ωij
2−ω2− i ω

τij
)


→ nvapor ≈ 1 + 2 · 10−2 for dω = −5 GHz

Refractive index of unexcited Rb vapor
around D2 line
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Refractive index of plasma

nplasma =

√
1− npe e2

ε0 me

1
ω2

→ nplasma ≈ 1− 3 · 10−7 for dω = −5 GHz
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Absorption Spectroscopy for Laser Wavelength Determination

Rb Spectroscopy around D2 Transition Line

Frequency f [GHz]
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Choosing a Laser Wavelength using Spectroscopy

Lower temperature
→ Less Doppler broadening → Resolution of hyperfine structure
→ Wavelength determination with absorption spectroscopy
Higher temperature
→ Higher density → Stronger signal at Schlieren imaging
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Set Up at MPP for Imaging an Excitation Column

Set Up Including Spectroscopy and Schlieren Imaging

• Excitation of atoms through pump beam tuned to a wavelength close to
transition line D2 (but no ionization)

• Absorption spectroscopy to determine laser wavelength at lower
temperature

• Schlieren Imaging of excitation column
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Procedure for Schlieren Images of the Excitation Column

Image Processing

• subtraction of noise from the
other images

• subtraction of image

• without pump beam
• without Schlieren beam

from image with pump and
Schlieren beam

⇒ Excitation column becomes
visible

Various blocking of the two beams
→ Images in 4 configurations for image processing

Example at a detuning frequency df = 5 GHz
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Schlieren Images of Excitation Column at Different
Detuning Frequencies around Transition Line D2
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• at df . ±3 GHz no transmission of the Schlieren beam

• at df & ±9 GHz no significant phase shift any more

• change of sign of ∆n around transition line D2 visible
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Plasma Radius Measurement at CERN

Lens 1 Lens 2 Vapor

Block Screen
f f f f
1 1 2 2

Plasma

Ionizing 

Laser

Imaging

Laser

Specification ionizing laser at CERN
Power P 4 TW

Duration ∆τ 100 fs
Wavelength λ (780± 10) nm

→ Intensity I � 1.7 · 1012 Wcm−2 for r ≤ 1 mm and length z = 10 m

→ Excitation and ionization

⇒ Is it possible to see plasma formation in the middle of excitation?
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Conclusion

• Development of a method to determine the radius at AWAKE
in the case of ionized vapor

• Schlieren imaging to show an excitation column
→ Schlieren imaging at CERN to show a plasma column

• Calculation of the Schlieren images with a plasma column
(not shown here)
→ Comparison with measurement

Thank you!
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Schlieren vs Shadowgraphy of Excited Atoms

Without Blocking
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Formulas of Fourier Optics
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Propagation over z along optical axis 1

S0(~k) =
∫∞
−∞

∫∞
−∞ u0(~r) exp(−i ~k~r) d2~r

u1(~r , z) =
∫∞
−∞

∫∞
−∞ S0(~k) exp(i z

√
k2

0 − ~k2) exp(i ~k~r) d2~k

Phase Shift through Object

u1(~r) = u0(~r) · exp(i Φ) with Φ phase shift through object
1HECHT, E.: Optics (4th ed.). Addison Wesley, 1987
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GOAL: Plasma Radius Measurement using Schlieren
Imaging
Parameters

• Beam size
σbeam = 5 mm

• Plasma radius
rplasma = 1 mm

• Focal lengths
f1 = 500 mm,
f2 = 100 mm

• Laser detuning
∆ω = 20 GHz
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Gaussian Beam - Plasma Column - No Cut Off

Parameters:

• Standard derivation of Gaussian beam: σr = 5 mm

• Focal lengths and propagation distances
f 1 = L1 = 500 mm, f 2 = L2 = 100 mm

• Radius of plasma column: rplasma = 1 mm

y

z0.4 mm
-0.4 mm

Contours of the plasma
column due to
diffraction

⇒ Information about
the size
⇒ No information about
the shape
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Gaussian Beam - Plasma Column - Horizontal Knife Edge

Parameters:

• Standard derivation of Gaussian beam: σr = 5 mm

• Focal lengths and propagation distances
f 1 = L1 = 500 mm, f 2 = L2 = 100 mm

• Radius of plasma column: rplasma = 1 mm

• Position horizontal knife-edge: y = 0.04 mm

y

z0.4 mm

Knife edge

Half of the plasma
column and its contour
is imaged

⇒ Information about
the size
⇒ Information about
the shape
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