

Thermal studies at Valencia

C. Lacasta, C. Mariñas, M. Vos

IFIC-Valencia

Summary of measurements and new results

- First simulation results
- Air/liquid cooling influence
- Thermal studies of new materials

DEPFET Thermal mock-up

- Ideas and description
- Influence of air/liquid coling
- Cross-check with previous measurements

Options to discuss

- TPG/CVD-Diamond
- Glues
- Longer wafer

SUMMARY OF MEASUREMENTS AND NEW RESULTS

CSIC

NIVERSITAT

5

- Measurements made on a small microstrip detector.
- The heater is placed in the middle of the sensor.
- Pt100 resistance for temperature measurement
- Dimensions 34x14 mm²
- Thickness 300 μm

6

- Coolant coming from a chiller
- Desired T over a wide range

OEPFEY Influence of conduction Chip's Temperature vs. Power dissipated 70 PixelDe 65 ◆ Liquid 5°C Liquid 10°C 60 × ▲ Liquid 15°C 55 Chip's Temperature (°C) × ×Liquid 20°C ■ Liquid 25°C 50 Х Δ. 45 × 40 Х $\Delta T_{\rm SW} \approx 8^{\rm o} \,{\rm C}$ for $\Delta T_{\rm Coolant} \approx 20^{\rm o} \,{\rm C}$ Х 35 \times 30 25 20 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 0 Power (W) • Evolution of the switcher, for different temperatures of the cooling blocks, as a function of CSIC power dissipated by the chip.

- The slope is always the same. The difference is the offset.
- The influence of the cooling blocks in the center of the module is not so big.

7

VNIVERSITAT

• Once the air is blowing, the T varies slow, independently of the speed (at this range).

NIVERSITAT D VALENCIA

VNIVERSITAT ID VALÈNCIA

But...

10

DEPFET THERMAL MOCK-UP

VNIVERSITAT

Real thermal mock-up working!

DEPFET ILC-module with DCD's and SW's like heaters between the cooling blocks. The air connector is also visible

• Movie with the switcher sequence. In this case, the sequence is slower to see the effect of switching

• You will not see this effect anymore due to the fact that the camera is slower rather than the switching time (0,1s ON/0,2s OFF) 17

• Even with the Switchers in idle state, the DCD's generate enough power to heat the middle of the sensor.

- With lower temperatures of the cooling blocks, the DCD's heat is more constrained on the end of the module.
- The main work in the middle of the sensor, has to be done by the air!

CSIC

With and without TPG

Let's see the effect if we introduce the TPG as a contact between the sensor and the cooling blocks:

A more realistic approach...

• Now the power disipated by the Switchers and DCD's is bigger than before but half the expected value in the final module.

• The contact $\,$ with the cooling blocks is made by a couple of sheets of TPG. $500\mu m$ thick, 20 mm long and 17 mm wide. Overlap of $85mm^2$ underneath the balcony .

OPTIONS TO DISCUSS

CSIC

VNIVERSITAT ID VALÈNCIA

CVD (Chemical Vapor Deposition)-Diamond

• In-plane and out of plane thermal conductivity: 1800 W/mK (at 20°C)

- Density: 3.515 g/cm3
- The thinner the cheaper
- Good rigidity
- "Cleaner"
- Better for mechanical stability?

CSIC

Glue or grease?

Only glue

- For example: Elastosil 137-184 (available in Russia)
- Used in the ATLAS-SCT for gluing the spines
- Thinned down to 50 microns
- Thermal conductivity: 1,79 W/mK
- Good thermal and mechanical properties
- Good performance after irradiation with protons (photons??)
- Expert "at home": H.-G. Moser

Grease in the center+glue at the edges

- Several conductive substantes: Ceramic, metal, carbon, liquid metal based.
- Higher thermal conductivity (up to 10,5 W/mK)
- For example: Fischer Elektronik-WLPG 02- Heat Sink compound, Graphite (Farnell ref: 1315295)
- No aging, radiation or mechanical studies made yet.

- There is no need of grinding or polishing this area... we just need a big area for conduction
- Then we increase the area for heat exchange with the TPG/diamond on the DCD's balcony
- Handle wafer engineering: New materials for the handle wafer better suited than bulk silicon?

NIVERSITAT

VNIVERSITAT ID VALÈNCIA

Simulation:

- First qualitatively results are in good agreement with measurements.
- New and more detailed simulation is in progress. New results will be presented soon.
- Simulation parameteres are not well stablished! We need to know the numbers to introduce in the simulation!
- Karlsruhe and Valencia groups working together on this item. Good communication and useful ideas arised from our regular meetings. Cross-check between groups.

Measurements:

- An infraestructure is created in Valencia for thermal studies.
- Air and liquid cooling, power cycling and heaters are working.
- First results using a microstrip detector are obtained.
- TPG/CVD-Diamond (expected!) are valid solutions for heat removal.

DEPFET thermal mock-up:

- First DEPFET thermal mock-up is done in Valencia.
- Useful for calibration of the simulations.
- First results corroborate what expected:
 - Cooling blocks needed for keep the DCD's at a reasonable temperature
 - Air cooling needed for cooling the center of the sensor
 - A lot of power to be dissipated! We must think how to manage it!

> Heat dissipation is not a minor issue... we have to use all the posibilities!

- Maximize the conduction through the cooling blocks and the forced convection with air
- Use materials with good thermal properties
- Minimize the thermal resistance of any joint

CSIC

Thank you very much!

2nd Int. Workshop on DEPFET detectors and Applications

Basic concepts

Heat is transferred by three kinds:

- 1. <u>Conduction</u>: Heat transfer occurs across the medium
- 2. <u>Convection</u>: Heat transfer between a surface and a moving fluid
- 3. <u>Radiation</u>: Emission of energy in the form of e.m. waves

Convection

• <u>Conduction</u> is the process of heat flow from regions of higher temperatures to regions of lower temperatures through a medium

• To quantify the heat transfer processes \rightarrow Fourier's Law

$$q''_{x} = -k \frac{dT}{dx} = -k \frac{T_{2} - T_{1}}{L} = k \frac{\Delta T}{L}$$

Steady state: T linear

 $q''_x \equiv$ Heat flux $(W/m^2) \rightarrow$ Transfer rate in the x direction per unit area normal to the direction of transfer $k(T, P) \equiv$ Thermal conductivity $(W/m \cdot K) \rightarrow$ Transport property, characteristic of the wall material $dT/dx \equiv$ Temperature gradient

$$q_x(W) = q_x'' \cdot A = k \cdot A \cdot \frac{\Delta T}{L}$$

Heat rate by conduction through a plane wall of area A

• <u>Thermal resistance</u>: This concept provides an alternative to Fourier's Law, analogous to Ohm's Law:

 $R_k(K/W) = T/Q = L/kA$

As an electrical resistance is associated with the conduction of electricity, a thermal resistance may be associated with the conduction of heat

$$Q = \Delta T^* (1/R_1 + 1/R_2 + 1/R_3) = Q_1 + Q_2 + Q_3$$

Parallel

Series

Resistances in series $\mathcal{Q}=\Delta T/\left(L/k_1A_1+L/k_2A_2+L/k_3A_3\right)=\Delta T/\left(R_{k1}+R_{k2}+R_{k3}\right)$

 $T_1 - \underbrace{\mathsf{WWW}}_{L_1/k_1/S_1} \underbrace{\mathsf{T}_b}_{L_2/k_2/S_2} \underbrace{\mathsf{WWW}}_{L_3/k_3/S_3} T_2$

CSIC

VALENCIA

- Forced: The flow is caused by external means (fan, pump)
- Free: Due to density differences in the fluid

 $T_s, T_{\infty} \equiv$ Surface and fluid temperature $q'' \equiv$ Convective heat flux (W/m^2)

 $h \equiv$ Convection heat transfer coefficient $(W/m^2 \cdot K) \rightarrow$ Depends on the surface geometry and the nature of fluid motion

OFPFE,

Pixel D

• <u>Radiation</u> is the process of heat emission by matter that is at nonzero temperature.

- Energy transmitted by e.m. waves
- No material medium is required
- At normal temperature range, the main part is I.R. radiation
 - Metallic surfaces emit or absorb radiation energy slowly
 - Dark surfaces emit or absorb more effectively
- Stefan-Boltzmann law

$$E = \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma} \cdot T_s^4$$

 $E \equiv \text{Emissive power}(W/m^2)$

$$\sigma = 5.67 \cdot 10^{-8} W / m^2 \cdot K^4 \equiv \text{S.B. Constant}$$

 $T_s = Surface temperature$

CSIC

 $0 \le \varepsilon \le 1 \equiv \text{Emissivity} \Rightarrow$ Radiative property of the surface. Provides a measure of how a surface emits energy relative to a blackbody. Depends on the material, the surface and the finish. If blackbody, emissivity=1.

SEPFE,

Emissivity... not such an easy thing...

CSIC

NIVERSITAT

• Emissivity: Ratio of the radiation [•] Pixel Defendence emitted by a real material from a blackbody at the same temperature

- Silicon emissivity depends on:
 - Surface temperature
 - Wavelength
 - Dopant concentration (n or p type)
 - Surface conditions (rough/smooth)
 - Thickness

SEPFE,

Heat flow paths

• θ jc: Thermal resistance from junction to package surface (junction to case). Value determined by the thermal conductivity of the materials of the chip and package surface, thermal conductivity length, and area.

• θ jb: Thermal resistance from junction to solder balls (junction to ball). Value determined by chip adhesive, thermal conductivity of the printed wiring board, and layout of the solder balls.

 \bullet θbp: Thermal resistance from ball lands to printed wiring board surface (ball to PWB).

- \bullet $\theta ca:$ Resistance composed of heat convection and heat radiation from package surface to atmosphere (case to ambient)
- θ pa: Resistance composed of heat convection and heat radiation from printed wiring board to atmosphere (PWB to ambient)
- θjs: Thermal resistance from junction to side of package (junction to side)
- θ sa: Thermal resistance from side of package to atmosphere (side to ambient)

- Heat generation
- (hot spots)
- Power consumption

