

Development of the Data Handling Processor DHP

Tomasz Hemperek, Andre Kruth, <u>Hans Krüger</u>, University of Bonn Albert Comerma, Angel Diéguez, University of Barcelona

1

- Module layout
- Data rates
- DHP functionality
- Technology / C4 bump bonds
- Work plan

Module Layout

- DHP chip mounted on sensor module
 >90% data reduction
- need only 1-2 serial links for data out per module side
- Data handling hybrid to support one or more modules
- Scenario may change according to bandwidth requirements

End of Module Layout

DCD

- 150 x 150 µm² cells
- 16 rows, 10 columns
- x4 output multiplexing
- 6 chips, 1.5 x 4.7 mm

DHP

4

- 200 µ bump bond pitch
- 12 (6) x ??? mm
- one or two (or more) chips

Connector Decoupling

Signal Flow and Data Rates

Function Blocks

- data processing blocks (synthesized standard cell design)
 - common mode calculation (& correction)
 - pedestal correction
 - de-randomizing buffer
- memory blocks (raw frame data, pedestal correction)
- clock & timing management (PLL, prog. delay lines)
- DACs, slow ADC for monitoring temperature etc.
- slow control interface: JTAG
- Gigabit serial transmitter (LVDS, CML...)

Participation of UB in the DEPFET collaboration tasks

	F
ASIC Development	Synchronisation switcher/readout
Switcher	Beam clock synchronization
DCD	Trigger handling
Data Handling Processor (DHP)	Data control (up/download configuration data)
Data link	Slow control (currents, temperatures)
	Memory to buffer 10 frames
	Pedestal Memory needed for 0-suppression
	Eventually common mode suppression
	Readout buffer holding 4 0-suppressed frames
	IO modules
	+ integration

DEPFET Workshop Schloss Ringberg 3-6 May'09

Participation of UB in the DEPFET collaboration tasks

Meeting in Barcelona, November 11th, 2008

Phone meeting, March 25th, 2009

JTAG interface for slow control (designer Albert Comerma) Bandgap reference (designer Eva Vilella) DAC (8 bit, slow) (designer Lluis Freixes) ADC (10-12 bit, slow) Standar LVDS Input differential amplifier (it is still not clear->ARM IP?)

Progress

Agreements with MOSIS/IBM/ARM signed (Nov'08-Feb'09) Design kit for cms9lp and libraries ready (Mar'09) Design of bandgap an DAC started. Scheduled for June. Other modules scheduled for October.

In principle the DAC will be C-based. The ADC will be probably based on the DAC (SAR). JTAG from Synopsys.

DEPFET Workshop Schloss Ringberg 3-6 May'09

- DHP \rightarrow DCD
 - BitCLK (LVDS)
 - FrameSYNC (LVDS)
 - Row2SYNC (LVDS)
 - JTAG interface for configuration and boundary scan (1.8V CMOS)
- DCD \rightarrow DHP
 - 4 to1 multiplexed ADC data per output, 400MHz
 - single-ended inputs
 (differential input stage with common threshold, set by DCD)
 - no input termination
 - BitCLK, Row2SYNC return for testing and synchronization

Interface to Switcher

- Shift register based channel selection (all LVDS)
 - CLK
 - SEROUT
 - SERIN
 - GateStrb
 - ClearStrb
- JTAG slow control (1.8V CMOS)
 - TCK, TMS, TDI, TDO

Interface to DHH

- DHH \rightarrow DHP (all LVDS)
 - RowCLK (12.7 MHz, f0/40)
 - FrameSYNC (abort gap clock)
 - Trigger
 - JTAG (CMOS?)
- DHP \rightarrow DHH
 - DataOUT: one or two GBit links (LVDS or CML)
 - protocol ?

SuperKEKB timing

- SuperKEKB **RF frequency** f0 = **508 MHz** (508.89 MHz precisely)
- Number of slots per cycle: 5120
- Circulation time: 10.061 µs
- System clock f0/12 = 42.3 MHz (or f0/4, f0/8, f0/16, f0/256)
- Abort gap: 200 ns (~100 bunches)
- Clock for abort gap available (frame clock)
- DEPFET read-out synchronous with beam circulation (128 rows):
 row clock = 508 MHz / (5120/128) = 508 MHz / 40 = 12.7 MHz
- Use f0/8 and divide by 5 (DHH?)

Technologies

- 130 nm good for analogue performance (i.e. clock management chip DCM), many function blocks and libraries readily available
- But: 90 nm better for digital performance and size constraints (end of stave)
- Chip area function limited → same functionality in 90nm (~4k/mm²) not more expensive than 130nm (~2k/mm²)

Vendor (90 nm)		min. block size [mm²]	price [\$]	price [€]	price/mm² [€]	bump bond pitch [µm]
UMC (Europractice)	std. MPW	16		41.800	2.613	162 ?
	mini@sic	3.5		7.000	1.991	
IBM (MOSIS)	std. MPW	16	100.000	62.500	3.906	200 🗸
	min	4	25.000	15.625	3.906	
TSMC (Europractice)	std. MPW	16	89.910	56.194	3.512	180
	mini@sic	4	9.850	6.156	1.539	
Chartered (own MPW runs)	???					

C4 Bump Bonding @ IBM

- C4 bump bonds option for MPW available (130mn and 90nm)
- Costs: \$ 8.000 per engineering lot (for extra wavers + bumps)
- technology options:

design	bump $arnothing$	pitch	availability
3 on 6	?	150µ	(mentioned in the design document) MPW?
4 on 6	100µ (130µ, HTS)	200µ	MPW via MOSIS
5 on 10	130µ (146µ, HTS)	250µ	MPW via MOSIS

solder typ)e	reflow temp.	UBM
HTS	Pb97Sn3	345°C-375°C (215°C-255°C with mod.)	TiW/Cr/Cu/Cu (Ni barrier option)
LTS	Sn99.5Ag0.5	235°C-255°C	?

Open issues

- ADC resolution of the DCD (8 or 6 bit or variable)
- Frame timing: 10 or 20 µs
- Trigger rate
- Number of (electrical) rows: 128 or 256
- DCD output data format and synchronization timing
- SEU hardness?
- Interface to DHH (cable, protocol)
- ...

Need to have these numbers fixed !

- Chip size, bump bond footprint
- Memory size
- Data bus width

- ...

End of Module Layout – split DHP

DCD

- **150 µm** x 150 µm cells
- 6 chips, 1.5 x 4.7 mm
- Input: 16 rows, 10 columns
- Output: 4 rows, 10 columns

DHP

- 200 µm bump bond pitch
- 2 chips
- 6.1 x ??? mm
- Input: 4 rows, 30 columns

End of Module Layout - 'one to one'

DCD

- **150 µm** x 150 µm cells
- 6 chips, 1.5 x 4.7 mm
- Input: 16 rows, 10 columns
- Output: 4 rows, 10 columns

DHP

- 200 µm bump bond pitch
- 6 chips
- 1.7 x ??? mm
- One 1Gbit link per DHP
 → 6 Gbit per module
- Need to change input layout:
 - 5 rows, 8 columns

Next steps

- Test chip with full custom analog blocks (October 2009)
 - basic data processing flow (synthesized)
 - diff. input, Gbit LVDS driver
 - DAC, Iref...
- DHP 0.1 (Q2 2010)
 - full data processing
 - 40 inputs (fits to one DCD chip)
 - bump bond IOs
- DHP 1.0 (Q1 2011)
 - full chip (40, 120 or 240 inputs ...)

Specs to be negotiated \rightarrow synchronize with DCD development

backup

DCD + DHP footprints

6 chip DHP option

- Further reduced costs
- one Gbit link per chip @ 6 Gbit r/o per module
- but: even more redundant logic
- Need to change input pad layout
 - DCD: 4 x 10 @ 150µ ٠
 - DHP: 5 x 8 @ 200µ ٠

DHP Data Processing

