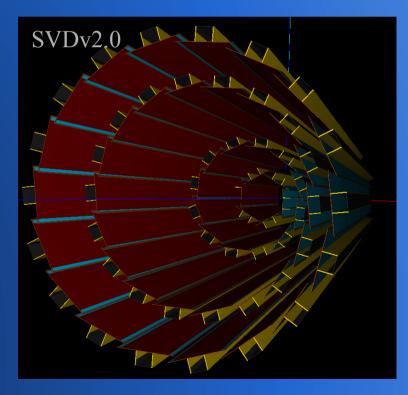

Optimization Studies of Pixel Dimensions

Z. Drasal^{*}, A. Moll⁺, K. Prothmann⁺

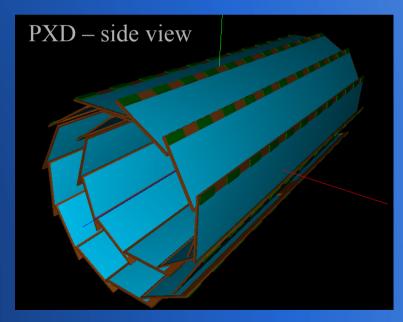
*Charles University Prague ⁺ MPI Munich


ILC Software for SuperBelle – Scheme

Mokka – Belle Geometry

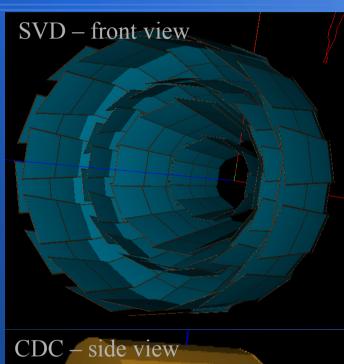
• Mokka model: *BelleTracker* (beam pipe + SVDv2.0 + CDC)

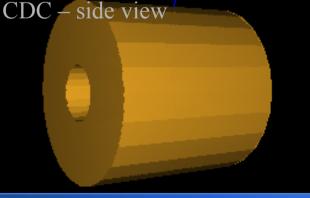
- Beam pipe: cylindrical onion-like structure (OK)
 - inner golden layer + inner Be wall + cooling gap (paraffin) + outer Be wall
- SVD: 4 layers of Si strip detectors DSSDs (OK)
 - organized in wind-mill structure
 - active part: layers \rightarrow ladders \rightarrow Si sensors (300 μ m)
 - passive part: kaptons (polyimide + Cu) + zylon ribs + CRFP support bridge & rims + Si sensors' rims
- **CDC:** Al cylinder with cone-shaped inner parts
 - active medium: gas He/C_2H_6 (50:50)
- Detailed model **OK** to verify simulations



Mokka – SuperBelle Geometry

• Mokka model: *SuperBelleTracker* (beam pipe + PXD + SVD + CDC)


- Beam pipe: cylindrical onion-like structure (OK)
 - inner golden layer + inner Be wall + cooling gap (paraffin) + outer Be wall
- **PXD:** 2 layers of Si pixel detectors DEPFETs (OK)
 - organized in wind-mill structure
 - active part: layers \rightarrow ladders \rightarrow Si sensors (50 μ m)
 - passive part: Si rims (450μm) + 12 switchers (300μm) + Si support bridge @ 2nd layer (400 μm)
 - option: rotate layers with beam pipe (by 22 mrad)


	R [mm]	# ladders	support
Pxl layer 1	18.00	10	no
Pxl layer 2	22.00	12	yes

Mokka – SuperBelle Geometry cont.

- *SVD*: 4 layers of Si strip detectors (DSSDs) in barrel part
 2 layers of Si strip detectors in forward region
 - organized in stagger-like structure
 - active part: layers \rightarrow ladders \rightarrow Si sensors (300 μ m)
 - passive part: Si sensors' rims only
 - missing dead material + design has changed → NEED TO BE IMPLEMENTED!
- **CDC:** Al cylinder with cone-shaped inner parts (as Belle)
 - active medium: gas He/C_2H_6 (50:50)
 - used TPC sensitive detector → NEED TO BE CHANGED!
 - design has changed NEED TO BE IMPLEMENTED!

MarlinReco – Belle & SuperBelle

• Chain of Marlin reconstruction tools:

- *MaterialDB*: (defines all materials required by Kalman filter in the tracking code)
 - Belle (OK), SuperBelle (OK for current geometry)
- MaterialDBView: (used in Marlin for visualization of geometry)
- VTXDigitizer: (detailed PXD digitizer both CPS & VPS options possible)
 - SuperBelle (OK)
 - currently used as SVD digitizer for Belle & SuperBelle as well
- SiStripDigi: (detailed SVD digitizer planned to be used for SVD instead of VTXDigi.)
 - finished, under tests
- CDCDigitizer: (digitizes data from central drift chamber simple gaussian smearing)
 - detailed digitizer needed (TPCDigitizer from ILC software fully functional, but doesn't simulate CDC response realistically)

MarlinReco – Belle & SuperBelle cont.

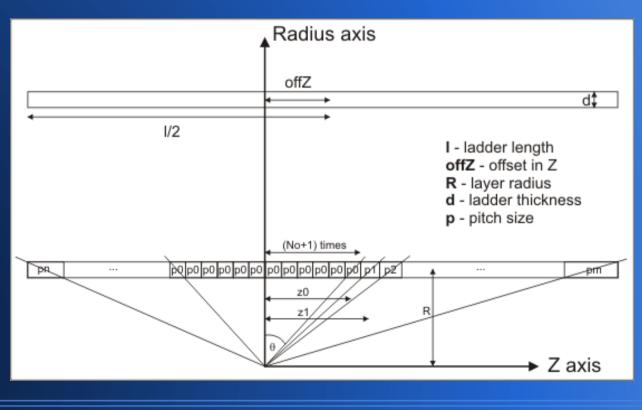
• Chain of Marlin reconstruction tools cont:

- Tracking:
 - Belle & SuperBelle adopted & fully functional
 - Outstanding issues (see slides from ILD Software Workshop: April 2009):
 - C++ wrapping for Aleph/Delphi F77 tracking code \rightarrow hardly managable base
 - error description impact parameters determined only by Si tracks due to problems with errors for full tracks → currently ONLY PXD AND SVD USED in our simulations!
 - material description
 - Need to work on own tracking code (C++ based only)

PXD Optimization Studies

• PXD Geometry (SuperBelle concept with 2 PXD layers):

- Bricked x non-bricked structure in $R-\Phi$ (bricked = odd rows are shifted wrt even rows by pitch half)
- 2nd layer with silicon support structure (5mm x 10mm)
- Variable pixel size (VPS) x constant pixel size (CPS) along Z axis
- 800 x 1000 pixels along Z axis, resp. 1600 x 2000 pixels along Z axis (2 x longer read-out time)


• Particle muon gun:

- Momentum scan: 0.1, 0.2, 0.4, 0.8, 1.5, 2.0 GeV (PXD resolution and cluster size studies performed with 0.5 GeV muons)
- Polar angle scan: 20, 40, 60, 80 degrees
- Azimuthal angle: isotropic uniform smearing

Conception of PXD with VPS

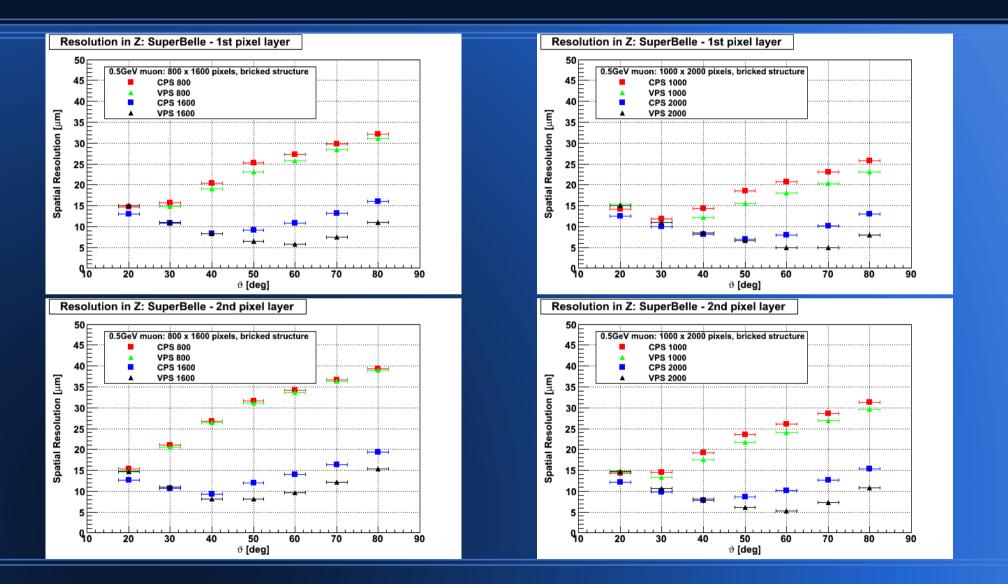
- **Resolution:** $\sigma_7 \approx \text{ pitch/(S/N)} \rightarrow \text{ide}$ a to keep resolution constant along Z axis
- Calculations: requirement for variable pitch in Z: $z_0/R = p_0/d \rightarrow N_0 = R/d 1/2$
 - $z_0 = p_0(N_0 + 1/2)$
 - $z_1 = p_0(N_0 + 1/2) + p_1/2$
 - $z_2 = p_0(N_0 + 1/2) + p_1 + p_2/2$

- Effect of VPS (1st layer) starts at?:
 - -800: theta = 23.1 deg
 - -1000: theta = 29.7 deg
 - -1600: theta = 52.6 deg
 - -2000: theta = 66.3 deg
 - for 2nd layer even worse

PXD with CPS x VPS – Calculations

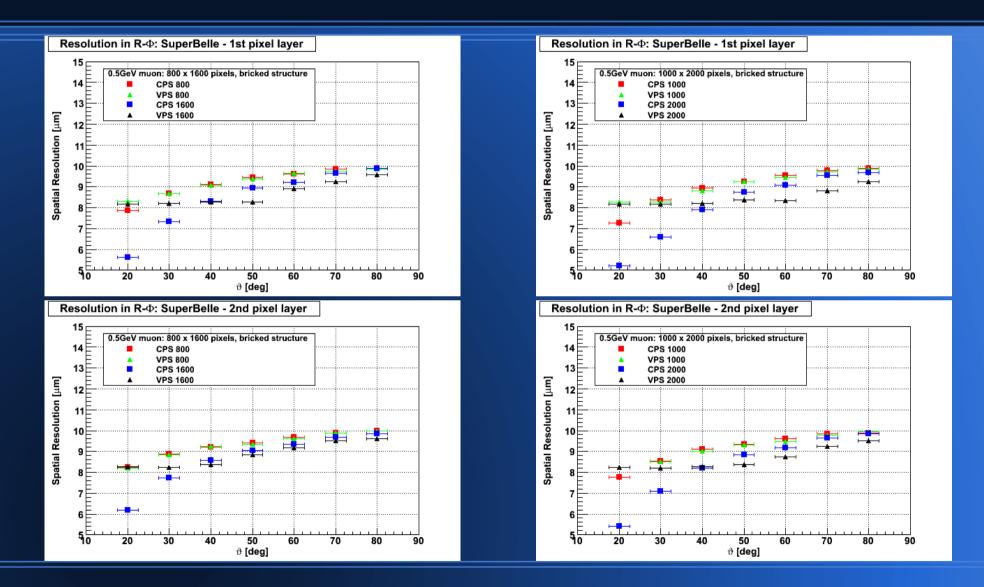
• **PXD** with two options simulated (in VTXDigitizer):

- CPS constant pixel size along Z axis; with bricked structure
- VPS variable pixel size along Z axis (see next slide); with bricked structure

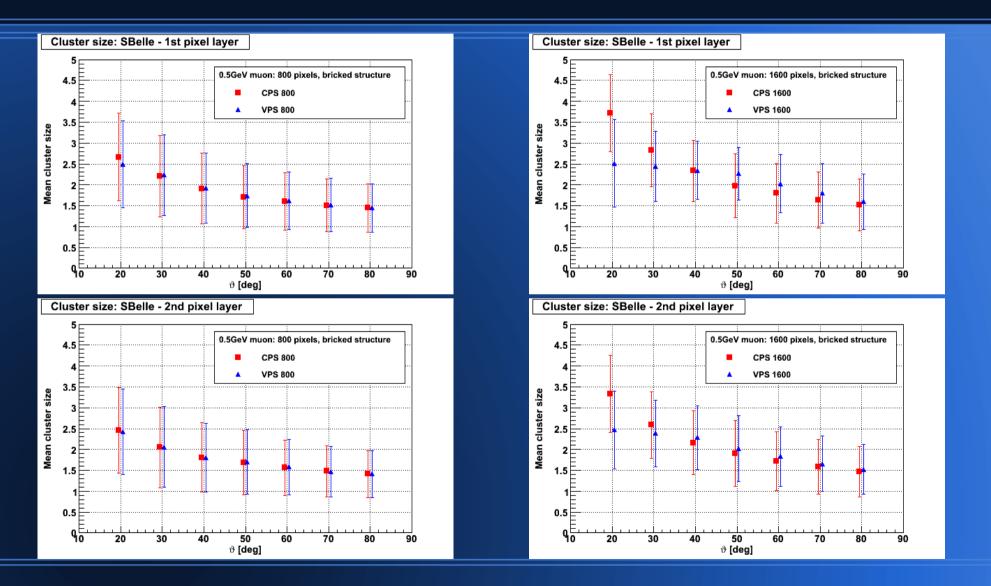

Configuration	$R \; [mm]$	l [mm]	$N_{\rm pixels}$	p_0 [µm]	$p_{\rm n}~[\mu { m m}]$	$p_{\rm m}~[\mu {\rm m}]$
CPS0800_B_layer1	18.0	98.0	800	122.5	122.5	122.5
CPS1000_B_layer1	18.0	98.0	1000	98.0	98.0	98.0
CPS1600_B_layer1	18.0	98.0	1600	61.3	61.3	61.3
CPS2000_B_layer1	18.0	98.0	2000	49.0	49.0	49.0
CPS0800_B_layer2	22.0	117.4	800	146.8	146.8	146.8
CPS1000_B_layer2	22.0	117.4	1000	117.4	117.4	117.4
CPS1600_B_layer2	22.0	117.4	1600	73.4	73.4	73.4
CPS2000_B_layer2	22.0	117.4	2000	58.7	58.7	58.7
VPS0800_B_layer1	18.0	98.0	800	117.1	117.1	177.5
VPS1000_B_layer1	18.0	98.0	1000	87.8	93.9	177.2
VPS1600_B_layer1	18.0	98.0	1600	38.2	93.9	177.2
VPS2000_B_layer1	18.0	98.0	2000	21.9	93.9	177.2
VPS0800_B_layer2	22.0	117.4	800	145.2	145.2	174.2
VPS1000_B_layer2	22.0	117.4	1000	111.6	111.6	174.2
VPS1600_B_layer2	22.0	117.4	1600	56.0	91.9	174.0
VPS2000_B_layer2	22.0	117.4	2000	35.6	91.9	174.0

- R =layer radius
- l = ladder length
- $p_o = \text{minimal pixel size in } Z$
- $p_n = \text{minimal pixel size in } -Z$
- $p_m = \text{minimal pixel size in } +Z$

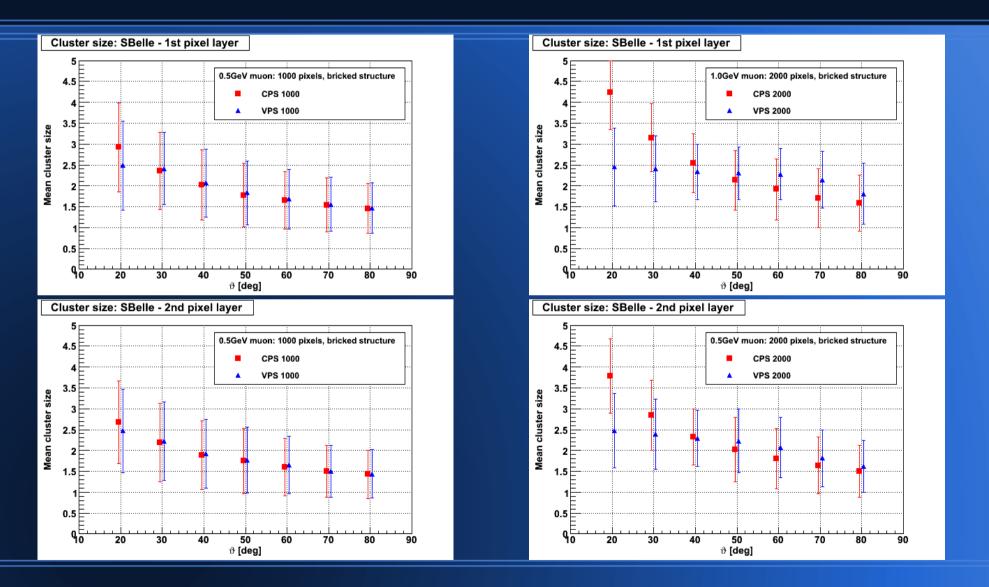
• for CPS
$$p_o = p_n = p_n$$


• for VPS
$$p_o \neq p_n \neq p_m$$

Results: PXD Resolution in Z


4th May 2009

Results: PXD Resolution in $R-\Phi$

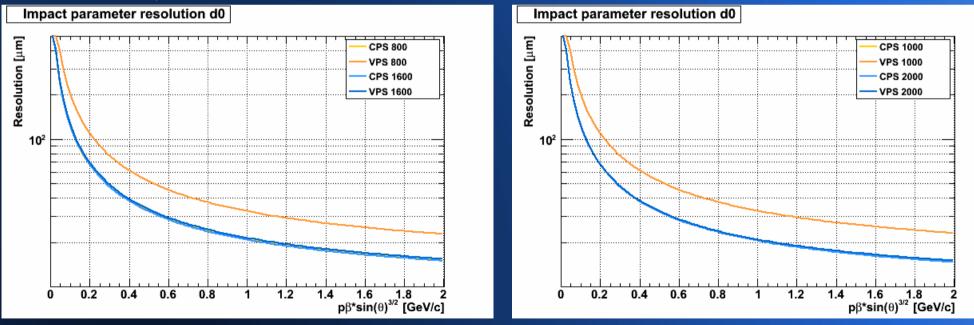

4th May 2009

Results: PXD (800 x 1600 pixels) Cluster Size

4th May 2009

Results: PXD (1000 x 2000 pixels) Cluster Size

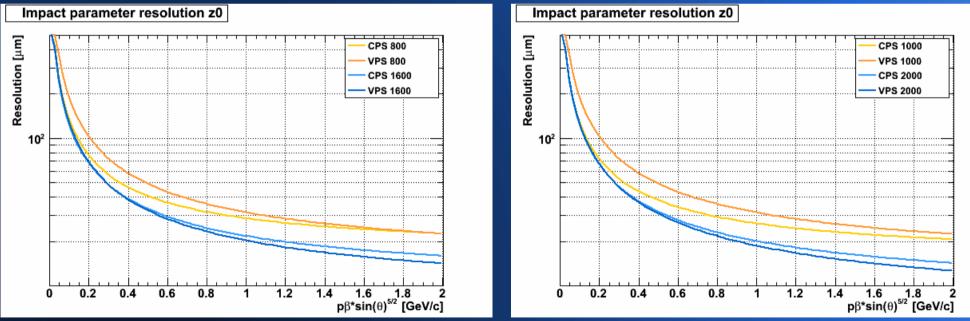
PXD Resolution & Cluster Size: Conclusions


• Effects of VPS wrt CPS:

- VPS cluster size: constant along Z axis until the critical angle achieved (critical angle is defined as: $\tan(\pi/2 9) = p_0/d$) \rightarrow for higher angles one can expect improvement for VPS spatial resolution by several microns (along Z axis)
- Bricked structure improves PXD resolution in $R-\Phi$ for CPS only (20 40 degrees)
- Generally: effect negligible for PXD with small number of pixels, i.e. 800, 1000 pixels
- Important effects on PXD with 1600, resp. 2000 pixels; need to prove that overall performance won't degrade in the presence of background (read-out time is 2x longer) → impact parameter resolution studies required
- The simulated resolution & cluster size serve:
 - as an input for tracking & Kalman filter (as hit position covariance matrix)
 - as an input to estimate background rate @ PXD layers

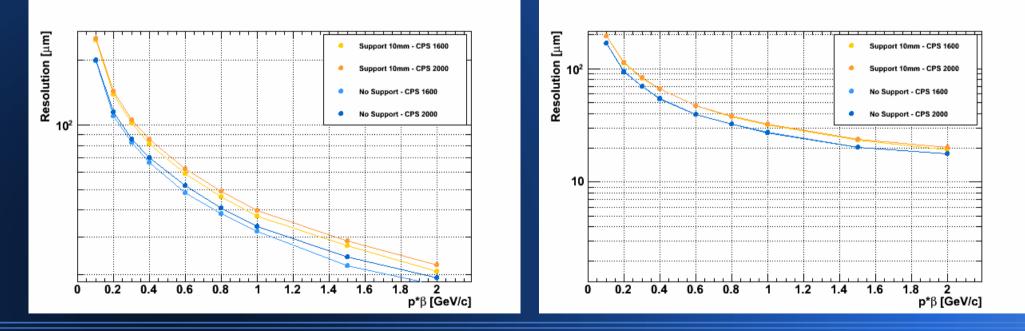
Results: D0 Impact Parameter Resolution of PXD + SVD (Fit)

• Model: TrackerSuperBelle (2 PXD layers + 4 SVD layers, no CDC)


- compared fit functions for different options CPS x VPS (800, 1600, 1000, 2000 pixels)
- VPS x CPS \rightarrow no difference in R- ϕ
- due to tracking problems results are subject to further investigations (PRELIMINARY RESULTS)!

Results: Z0 Impact Parameter Resolution of PXD + SVD (Fit)

• Model: TrackerSuperBelle (2 PXD layers + 4 SVD layers, no CDC)


- compared fit functions for different options CPS x VPS (800, 1600, 1000, 2000 pixels)
- VPS x CPS \rightarrow improvement for 1600 & 2000 pixels; degradation for 800 & 1000 pixels
- due to tracking problems results are subject to further investigations (PRELIMINARY RESULTS)!

Results: Effect of Support Structure

• Z0 (left) x D0 (right) resolution w/o support structure a 2nd layer

- results for muons passing through the support structure only ($\sim 50 70$ degrees for VPS, ~ 50 for CPS geometry)
- roughly factor of 2 degradation (SVD without dead material → won't have such a strong effect after full implementation of SVD ...)

Background at SuperBelle

- Main sources of background:
 - Synchrotron radiation background: Soft SR \sim keV + Hard SR \sim 40 keV
 - Particle background: Brehmsstrahlung + Coulomb scattering with residual gas + Touschek effect
- Estimation:
 - Background rate estimate for Belle SVD2 inner layer (@ 20 mm) \approx 23500 s⁻¹mm⁻²
 - Increase by factor of 6 expected at SuperBelle (initial phase)
 - 1/R² dependence of background rate
 - Integration time: 10 μ s, resp. 20 μ s
 - Occupancy = rate · <cluster_size> · <pixel_area> · integration_time

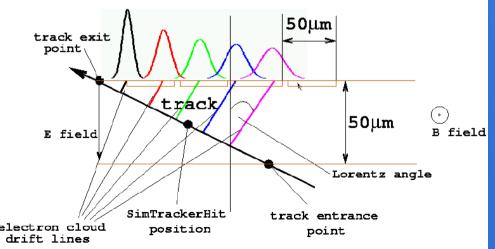
	R [mm]	<i>rate</i> $[s^{-1}mm^{-2}]$	Occupancy	Occupancy	Occupancy	Occupancy
			CPS/VPS 2000	CPS/VPS 1600	CPS/VPS 1000	CPS/VPS 800
Pxl layer 1	18.00	180000	2.2/2.0 %	2.5/2.3 %	1.7/1.6 %	2.1 %
Pxl layer 2	22.00	120000	1.6/1.5 %	1.9/1.8 %	1.3 %	1.6 %

Summary

• Simulation software status:

- Mokka: all geometry models prepared – need to implement full geometry of SVD (with dead material) and new design of CDC (with appropriate sensitive detector)

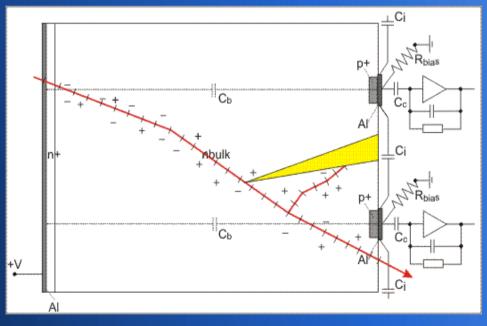
- MarlinReco:


- digitize SVD with StripDigitizer
- write appropriate digitizer for CDC and use it for digitization
- use CDC in tracking

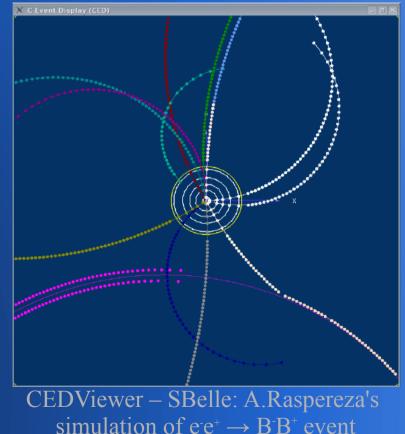
• CPS x VPS studies:

- resolution studies performed & compared
- cluster size studies performed & compared
- D0 & Z0 impact parameter studies done (without background & without CDC) → plans to use full tracking code (after problems with errors fixed by ILC soft. developers) → verify with Belle performance → make full simulations in the presence of background

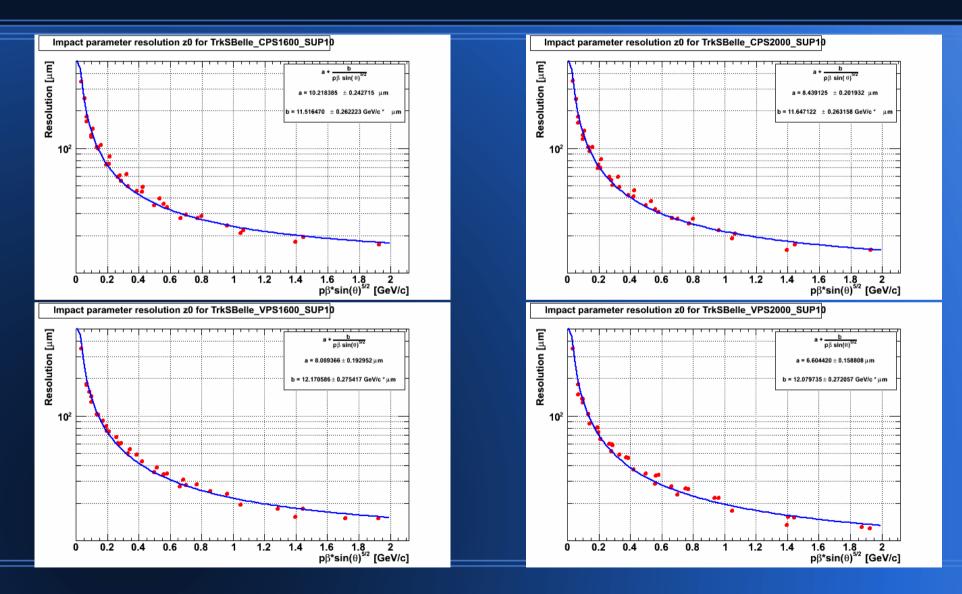
Backup – PXD Digitizer


- *VTXDigitizer*: MarlinReco pixel digitizer adapted A. Raspereza's VTXDigitizer
 - <u>Input:</u> LCIO SimTrackerHits → <u>Output:</u> LCIO TrackerHits
 - <u>Processes:</u>
 - Global to local ref. system transformation
 - Ionization points generated: energy loss fluctuation added \rightarrow e-h pairs along the path created
 - Signal points generated: e⁻ drift performed \rightarrow e⁻ Lorentz shift in mag. field of 1.5 T calculated \rightarrow e⁻ diffusion calculated
 - Digits produced: pixels with signal bigger than threshold (2 x noise) found
 - noise for pixels set = 100 e
 - noise for strips set = 1200 e
 - Local to global ref. system transformation
 - Hits produced + resolution calculated
 - Background generated

Backup – SVD Digitizer


• SiStripDigi: MarlinReco strip digitizer

- <u>Input:</u> LCIO SimTrackerHits → <u>Output:</u> LCIO TrackerHits
- Geometry: Mokka hits transformation from global to local reference system
- <u>Physical processes:</u>
 - Generation of e-h pairs (E_{eh} =3.65 eV)
 - Drift of e-h pairs in electric field
 - Diffusion of e-h due to multiple collisions
 - Lorentz shift of e-h pairs in magnetic field
 - Mutual microstrip cross talks (wrt. AC or DC)
 - Noise: sensor, electronics ...
- <u>Clustering:</u> (based on COG algorithm)
 - Cluster finding (seed strips + their neighbours)
 - Cluster transformation back to global ref. s.



Backup – Tracking & Pattern Recogn.

- Chain of Tracking processors (for more details see http://ilcsoft.desy.de/portal):
 - LEPTracking \rightarrow SiliconTracking \rightarrow FullLDCTracking
 - TrackCheater tracking based on MC information
- Pattern recognition in CDC performed: inward search for continuous hit patterns compatible with helix hypothesis (DELPHI code)
- Fit CDC tracks with Kalman filter
- Perform separate pattern recognition in SVD
- Combine SVD tracks and CDC tracks
- Extrapolate track back to the PXD area
- Assign hits on backward helical road
- Refit track after inclusion of new hits using Kalman filter

Backup – Z0 Impact Parameter Resolution In Numbers

