Theoretical physics at MPP
– a historical perspective

100 Years Anniversary
MPI for Physics

10 – 12 October, 2017

W. HOLLIK
MAX-PLANCK-INSTITUT FÜR PHYSIK, MÜNCHEN
\[R_{\mu\nu} - g_{\mu\nu} R + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu} \]

\[\Delta \rho \cdot \Delta g \geq \frac{\hbar}{2} \]
now celebrating
now celebrating

a few years ago . . .

July 11th, 2008
50th Anniversary of MPI
in 2008: 50 Years of MPP in Munich

the MPP building in 1958
Timeline of the MPP

1917 founded as *Kaiser Wilhelm Institut für Physik* in Berlin
1937 new building in Berlin Dahlem
1939 taken over by “Heereswaffenamt” (Army Ordnance)
1942 given back to Kaiser Wilhelm Gesellschaft
1945 occupied by US and Soviet troops
1946 re-established as *Max Planck Institut für Physik*, Göttingen
1958 moved to Munich
2021 move to Garching (?)
<table>
<thead>
<tr>
<th>Period</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917 - 1945</td>
<td>Kaiser Wilhelm Institut für Physik</td>
</tr>
<tr>
<td>1938 - 1945</td>
<td>Max Planck Institut für Physik (2nd name)</td>
</tr>
<tr>
<td>1946 - 1958</td>
<td>Max Planck Institut für Physik</td>
</tr>
<tr>
<td>1958 - 1991</td>
<td>Max Planck Institut für Physik und Astrophysik</td>
</tr>
<tr>
<td>1991 - now</td>
<td>Max Planck Institut für Physik</td>
</tr>
</tbody>
</table>
during 100 years

- The era as Kaiser Wilhem Institut
 1917 - 1945

- The Institute at Göttingen
 1946 - 1958

- The Institute in Munich
 – the era Heisenberg 1958 - 1970
 – after 1970 until end of the millenium
 – the new millenium
The Beginning
farewell from classical physics at the upcoming 20th century

space and time

- special relativity
 Einstein 1905

- general relativity
 field equations of gravitation
 Einstein 1915

- deflection of light
 Einstein 1916

- confirmed by observation
 Eddington 1919

microcosm

- black body radiation
 Planck’s constant \hbar
 Planck 1900

- photoelectric effect
 light quanta “photons”
 Einstein 1905

- specific heat of crystals
 Einstein 1906, Debye 1912

- atomic spectra
 Bohr 1913, Sommerfeld 1916

 semiclassical treatment not satisfactory
1911 Kaiser Wilhelm Gesellschaft founded

- proposal of an institute for physics [by Max Planck et al.] promoting research in theory and experiment scientists free of teaching and other duties
- ideal candidate: Albert Einstein *(at ETH Zurich)* in Berlin since 1914
- institute delayed by financial problems

1917 Kaiser Wilhelm Institut für Physik founded
no separate building for KWI Institut, private apartment of the director

part of institute’s mission:
distributing money to support theor. and exp. research at other institutions

theory: support of quantum mechanics

Born, Hund, Jordan at Göttingen

some highlights

- confirmation of GRT *Eddington 1919*

- introduction of the cosmological constant *Einstein 1917*

\[R_{\mu\nu} - g_{\mu\nu} R + \Lambda g_{\mu\nu} = -\kappa T_{\mu\nu} \]

- Nobelprize 1922 for Einstein

- Compton scattering experiment confirms light quanta

 Compton 1922 at Washington University St. Louis

- formulation of Bose–Einstein statistics *Einstein 1925-1926*
Difficult Times
1933: end of first time segment \textit{Einstein emigrated to US}

institute strongly affected

new director: \textbf{Peter Debye 1935 - 1940}

both theoretical and experimental credits

investigations on molecular structures

nuclear reactions in stars \textit{[Weizsäcker]}

Nobelprize 1936
Peter Debye Leipzig Univ. 1927-1935

★ Debye model of specific heat (1912)
generalization of Einstein model
continuous spectrum up to $\omega_{\text{max}} \sim 1/a$

$$\langle E \rangle = U = \int_0^{\omega_{\text{max}}} d\omega \frac{g(\omega) \hbar \omega}{e^{\hbar \omega / kT} - 1}$$

★ Debye-Scherrer method (1916/17)
structure analysis by X-ray diffraction
1933: end of first time segment

Einstein emigrated to US
institute strongly affected

new director: Peter Debye 1935 - 1940
both theoretical and experimental credits
investigations on molecular structures
nuclear reactions in stars [Weizsäcker]
Nobelprize 1936

new building Berlin Dahlem 1937
official opening in May 1938

• 1939 under Army Ordnance direction
 Uranium research
• Debye on leave → Cornell University
• 1942 institute returned to KWG
• director: Werner Heisenberg

★ S-matrix theory [Heisenberg]
★ nuclear and astrophysics studies, first work on planetary system [Weizsäcker]
★ main topic: nuclear reactor research

terminated 1945 by US and Soviet army
Theoretical physics during the era of the KWI

- the development of quantum mechanics (1924-1928)
 Born, Heisenberg, Hund, Pauli, Jordan (mainly Göttingen)
 Schrödinger (Vienna) Dirac (Cambridge)

- the emergence of quantum field theory (since 1928)
 quantum electrodynamics
 Heisenberg (Leipzig) Pauli (Hamburg, Zurich) Dirac (Cambridge)

- weak interaction: β-decay
 – neutrino postulate (1930) Pauli (Zurich)
 – Fermi model (1934): current–current interaction Fermi (Rome)

- strong interaction: nuclei and nuclear forces
 – Isospin (1932) Heisenberg (Leipzig)
 – Yukawa model (1935): meson exchange Yukawa (Kyoto)
 – nuclear binding energy (1935) Weizsäcker (Leipzig)
Carl Friedrich von Weizsäcker

student of Heisenberg at Leipzig (PhD 1933)
equivalent-photon method (1934)
(Weizsäcker-Williams method)
masses and binding energy of nuclei (1935)
liquid drop model (Weizsäcker formula)

- 1936 KWI für Physik (Debye) as expert for nuclear theory
carbon cycle for energy production in stars (1938)
$$4H \rightarrow (C, N, O) \rightarrow He + 2e^+ + 2\nu_e$$ [Bethe–Weizsäcker cycle]

- 1942 - 1944 Professor at Strasbourg

- 1944 back to KWI

- 1946 MPI für Physik, Head of Theory Division until 1957

- 1957 Professor of Philosophy, Univ. Hamburg
The Renaissance
1946 Heisenberg, Weizsäcker and others returned from internment at Farm Hall, UK

1946 rebuilding of former KWI Institute at Göttingen as (official name 1948) Max Planck Institut für Physik

Director: Werner Heisenberg

Division “Experimental Physics” Head: Karl Wirtz
Division “Theoretical Physics” Head: C.F. von Weizsäcker
besides elementary particles:
common interest in cosmic rays and cosmic plasma physics

1947 new division “Astrophysics” Head: Ludwig Biermann
solar wind 1951

increasing number of visiting scientists
• theoretical studies on astrophysics *Weizsäcker*
 • development of planetary system (started in 1943)
 • gas dynamics, turbulent processes, theory of turbulences
 ⇒ evolution of planets, structure of galaxies
 • fundamental equations of plasma physics

 TRIGGERED ASTROPHYSICS AND PLASMAPHYSICS

 students: Reimar Lüst ⇒ Extraterrestrial Physics
 Arnulf Schlüter ⇒ Plasma Physics

• foundations of quantum mechanics *Weizsäcker*
 students: Georg Süßmann → LMU
 Peter Mittelstaedt → Univ. Köln

• theory of elementary particles and quantum field theory
 Heisenberg
The need for quantum field theory

- quantum mechanics insufficient
 - non relativistic
 - no description of photons
 - no spontaneous emission of light

relativistic quantum mechanics \(\text{Dirac 1928} \)

\[
(i \gamma^\mu \partial_\mu - m) \psi = 0 \quad \text{Dirac equation}
\]

\[
i \partial_\mu \rightarrow i \partial_\mu - eA_\mu \quad \text{minimal substitution}
\]

- Lorentz invariant, contains spin and magnetic moment
- fine structure of \(H \) atom
- correct prediction of positron
- negative energy states, Dirac sea
- not a one-particle equation (pair production)
The rise of quantum field theory – and the problems

- quantization of electromagnetic field and matter
 \textit{Dirac, Heisenberg, Jordan, Pauli, around 1928}
 - relativistic invariant, unifies quantum theory and relativity
 - quantum electrodynamics, processes with photons
 - higher-order predictions \textit{Schwinger 1948}
 - anomalous magnetic moment, Lamb shift
 - big push for perturbative treatment \textit{Feynman 1949}

- theoretical problems: infinities in perturbation theory
 - mathematically not defined expressions
 - practical solutions by “renormalization”
 - lack of clean mathematical basis

- in the 1950s: “golden age of quantum field theory”
 - towards a rigorous mathematical formulation
Example of loop integral:

\[q \rightarrow \infty : \quad \sim \int_{\infty}^{\infty} \frac{q^3}{q^4} = \int_{\infty}^{\infty} \frac{dq}{q} \rightarrow \infty \]

\[\Rightarrow \text{integral diverges for large } q \]

\[\Rightarrow \text{theory in this form not physically meaningful} \]
Lehmann: from Jena *(assistant with Hund)*

Symanzik: student at Göttingen *(Heisenberg)*, PhD in 1954

Zimmermann: from Freiburg after PhD 1952 in mathematics
LSZ formulation of quantum field theory on a solid mathematical basis
definition of asymptotic fields and S-matrix elements
LSZ reduction formulae for calculation of S-matrix elements
 by now standard content of text books on QFT
basis of pertubative calculations at any order
express matrix elements by correlation functions of local field operators *(Green functions)*

$$\tau(x_1, \ldots x_n) = \langle 0 | T \phi(x_1) \ldots \phi(x_n) | 0 \rangle$$

avoiding the infinities:
formulation of QFT in terms of finite, renormalized, Green functions
general relation to S-matrix elements
Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder.

H. Lehmann
Max-Planck-Institut für Physik, Göttingen, Deutschland

(ricciuto il 22 Gennaio 1954)

Summary. — It is attempted to derive some general properties of the propagation functions for coupled fields (ϕ, S_f) without the use of power series expansions and to show their connection with the renormalization constants for field operators and masses. Assuming that the coupled functions exist, it appears possible to discuss their behavior near the light-cone (or for large momenta) and to obtain some information about the singularities of these functions when continued analytically. Attempts at the treatment of unrenormalizable theories are criticised or the basis of these results. Formulæ are given for the mentioned renormalization constants which contain inequalities for the constants Z_f and Z_{ϕ}. Finally it is pointed out that the methods introduced are advantageous also for computations by means of power series expansion. As an example the lowest order correction to the S_f-function in pseudoscalar meson theory is calculated without the appearance of infinite terms during the calculation.

particle propagator

$$D(p^2) = \frac{Z}{p^2 - m^2} + \int_{s_0}^{\infty} ds \frac{\sigma(s)}{p^2 - s}$$

pole at mass-squared

\[\sqrt{Z} \text{Wf} \]

\[\sqrt{Z} \text{Wf} \]

\[\sqrt{Z} \text{Wf} \]

\[\sqrt{Z} \text{Wf} \]

\[\tau_{\text{amp}} \]

\[\ldots \]
The Era in Munich
Getting started in Munich

- 1958 institute moved from Göttingen to Munich
- covered now two institutes: for physics and for astrophysics
- former astrophysics division upgraded to an institute

Director: L. Biermann
MPI für Physik

experimental particle physics
theory of particles and nuclei
quantum field theory

MPI für Astrophysik

structure and evolution of stars
cosmic rays
plasma physics

1960 Plasmaphysik → Garching
Director Theory: Arnulf Schlüter

1963 Extraterrestrische Physik → Garching
Director: Reimar Lüst

1979 Astrophysik → Garching
theory now without Weizsäcker

1963 Hans Peter Dürr
 Head of Theory Division

- rigorous formulation of quantum field theory
 - CPT theorem *Gert Lüders* 1954/1958
 - spin-statistic theorem *Gert Lüders (with B. Zumino)* 1958
 - Reeh-Schlieder theorem *Helmut Reeh, Siegfried Schlieder* 1961
- non-linear spinor theory *Heisenberg et al.*
Heisenberg’s final goal towards a unified theory of elementary particles \textit{theory of everything “Weltformel”}

non-linear spinor theory

Lorentz invariant

isospin symmetry $SU(2)$

proton/ neutron as basic isospin doublet

other particle masses as solution of eigenvalue problem

published in 1959

[\textit{with H.P. Dürr, H. Mitter, H. Reeh, S. Schlieder}]

\textit{big interest from media and society}
Max Planck’s 100th birthday celebration
Heisenberg’s final goal towards a unified theory of elementary particles *theory of everything “Weltformel”*

- non-linear spinor theory
- Lorentz invariant
- isospin symmetry $SU(2)$
- proton/ neutron as basic isospin doublet
- other particle masses as solution of eigenvalue problem
- published in 1959

problems:

- indefinite metric. negative probabilities
- symmetry not large enough $\rightarrow SU(3) \times SU(2) \times U(1)$
- proton and neutron are composed of quarks
the rise of quarks and QCD

- quarks as constituents of hadrons

 Gell-Mann 1964, Zweig 1964

- parton model for deep-inelastic electron–nucleon scattering

 Feynman 1969

- deep-inelastic scattering experiments and scaling behaviour

 SLAC 1967-1973

- colour $SU(3)$ and quark dynamics, basis of QCD

 Fritzsch, Gell-Mann 1972, Fritzsch, Gell-Mann, Leutwyler 1973

- asymptotic freedom of QCD

 Gross, Wilczek 1973, Politzer 1973
electron–positron annihilation into hadrons via quark pairs
the transition period

- 1970 retirement of Heisenberg
- Hans Peter Dürr as interim director
- 1971 installation of a directorial board
 chair: Leon van Hove (until 1974)
- appointment of new theory directors → new era

1973: Leo Stodolsky
1974: Wolfhart Zimmermann
new directors in theory

- high energy behaviour of scattering cross sections *Leo Stodolsky*

- astroparticle physics, neutrinos and cosmology

 Leo Stodolsky, Georg Raffelt

- weakly interacting particles via scattering off nuclei

 measuring recoil energy by superconduction grains

 Drukier, Stodolsky 1983

 triggered direct search for WIMPS/dark matter with cryogenic detectors ⇒ CRESST experiment

- mixing of photons with low mass particles (axions)

 Stodolsky, Raffelt 1987

 ⇒ topical MADMAX experiment for axion search
Principles and applications of a neutral-current detector
for neutrino physics and astronomy

A. Drukier and L. Stodolsky
Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik,
Munich, Federal Republic of Germany
(Received 21 November 1983)

We study detection of MeV-range neutrinos through elastic scattering on nuclei and identification of the recoil energy. The very large value of the neutral-current cross section due to coherence indicates a detector would be relatively light and suggests the possibility of a true "neutrino observatory." The recoil energy which must be detected is very small (103 eV), however. We examine a realization in terms of the superconducting-grain idea, which appears, in principle, to be feasible through extension and extrapolation of currently known techniques. Such a detector could permit determination of the neutrino energy spectrum and should be insensitive to neutrino oscillations since it detects all neutrino types. Various applications and tests are discussed, including spallation sources, reactors, supernovas, and solar and terrestrial neutrinos. A preliminary estimate of the most difficult backgrounds is attempted.

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
(Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses 1\times106 GeV; particles with spin-dependent interactions of typical weak strength and masses 1\times102 GeV; or strongly interacting particles of masses 1\times1013 GeV.
new directors in theory

mathematically rigorous formulation of quantum field theory

Zimmermann

systematic treatment of renormalization

BPHZ renormalization \textit{Bogoliubov, Parasiuk, Hepp, Zimmermann}

“forest formula” \textit{Zimmermann}

basis of applications in higher-order calculations for QCD and electroweak precision tests

Wolfhart Zimmermann Memorial Symposium

Zimmermann’s Forest, Infrared Divergences & the 5 Loop β function in QCD

Franz Herzog (Nikhef)
new directors in theory

mathematically rigorous formulation of quantum field theory
Zimmermann

systematic treatment of renormalization
BPHZ renormalization
Bogoliubov, Parasiuk, Hepp, Zimmermann

“forest formula”
Zimmermann

basis of applications in higher-order calculations for QCD and electroweak precision tests

reduction of couplings
Zimmermann

less free parameters in renormalizable theories

prediction of Higgs boson mass in SM

right Higgs mass range predicted in supersymmetric SM
new directors in theory

- mathematically rigorous formulation of quantum field theory
 Zimmermann

- systematic treatment of renormalization
 BPHZ renormalization *Bogoliubov, Parasiuk, Hepp, Zimmermann*
 “forest formula” *Zimmermann*
 basis of applications in higher-order calculations for
 QCD and electroweak precision tests

- renormalization of gauge theories *Breitenlohner, Maison, Sibold*

- quantum field theory on the lattice *Weisz*
 numerical studies of non-perturbative aspects of
 non-Abelian gauge theories
particle physics phenomenology

- rich activity from late 1970’s on parallel to exp discoveries: *quarks, gluons, W^\pm, Z bosons, ...*
- electroweak precision tests LEP, SLC, TEVATRON
- weak interactions of hadrons, flavour physics, CP-violation
- precision calculations for e^+e^- annihilation, ew precision observables
- substantial turnover of scientists during 1980 - 2000

Andrzej Buras 1982 -1988
Jean-Marc Gerard 1985 -1989
Johann Kühn 1984- 1990
Wolfgang Hollik 1990 - 1993
Bern Kniehl 1994 - 1999
before the top quark was discovered (< 1995): indirect mass determination \(\Rightarrow \) \(m_t = 178 \pm 8^{+17}_{-20} \) GeV

top discovery: Tevatron 1995 \(m_t = 180 \pm 12 \) GeV
bounds on Higgs mass from direct and indirect searches
appointment of new director

Julius Wess 1990

1974 supersymmetry in relativistic QFT
⇒ supersymmetric standard model
(research topic of phenomenology group)
minimal supersymmetric standard model

- stabilization of the electroweak scale
- gauge coupling unification
- new sources of CP violation
- dark matter candidate (lightest SUSY particle, LSP)
- physical Higgs bosons: h^0, H^0, A^0, H^\pm
- lightest Higgs boson $h^0 < 130$ GeV
appointment of new director

Julius Wess 1990

1974 supersymmetry in relativistic QFT
⇒ supersymmetric standard model
(research topic of phenomenology group)

- non-commutative geometry
 space–time variables do not commute at small distances
 attempt towards microscopic theory of gravitation
- phenomenological predictions, like $Z \rightarrow \gamma \gamma$

Digital Object Identifier (DOI) 10.1140/epjc/s2003-01207-1

The $Z \rightarrow \gamma \gamma$, gg decays
in the non-commutative standard model

W. Behr1,a, N.G. Deshpande2,b, G. Duplici5,c, P. Schupp4,d, J. Trampetić5,e, J. Wess7,8
The New Millenium
retirement of theory directors

appointment of new directors

Wolfgang Hollik 2002: Phenomenology
precision tests of SM and beyond (supersymmetry)

Dieter Lüst 2003: String Theory
towards unification of SM with gravity

Georgi Dvali 2009: Particle Cosmology
relating microscopic and macroscopic structure of gravity

aiming finally at a unified description of the fundamental interactions
unification of forces?
how connect SM to gravity?
missing CP-violation for baryon asymmetry of the universe?
nature of dark matter and dark energy?
The Future
The Future

not part of history

Thank You!