Munich Muon Spectrometer Calibration and Alignment Centre

Oliver Kortner

Max-Planck-Insitut für Physik

ATLAS-Besprechung am 18.06.2007 am MPI

The regular calibration tasks

- Weekly synchronization of all drift-tube channels.
- Daily determination of the *r*-*t* relationship of each chamber.
- Daily determination of the spatial resolution of each chamber.

Calibration data-stream and calibration centres

- Calibration data stream: level-2 muons in region of interests at a rate of 2 kHz.
- Calibration data stream allows for quasi-online calibration of the muon spectrometer (1 day delay).
- Calibration centres: computing clusters of 100 CPUs each in Michigan, Munich, and Rome receiving the data stream and performing the calibration.

Status of the MDT calibration

- The calibration framework and the calibration algorithms are ready.
- A prototype version for the extraction of muon calibration stream at the end of the level-2 trigger is available.
- The automatic processing of the stream at all calibration centres is being tested within the calibration data challange.
- The streaming of the single-muon data from CERN to all calibration centres should take place in June.

Problem at MPI: Tier-2 not yet ATLAS compliant, not yet in the list of ATLAS tiers.

 \rightarrow Problem at MPI main reason for delay of streaming test.

• Start of conditions and muon calibration Oracle database replication planned for September.

MDT chamber calibration with the first pp data

r-t accuracy after time synchronization and autocalibration

Assumptions:

- L= 10^{31} cm⁻² s⁻¹
- Calibration stream at a rate of 100 Hz, i.e. 0.25 Hz/chamber.

Conclusions:

- Reasonable *r*-*t* accuracy already after 1 days of data taking.
- 30 µm *r*-*t* accuracy close to TDR requirement after 1 week of data taking!
- TDR requirement of 20 μm unreachable due to missing statistics for a tube-by-tube synchronization.

Alignment of the muon spectrometer

End caps

- Calibrated optical alignment system.
- $\rightarrow\,$ Absolute alignment accuracy ${\sim}100~\mu{\rm m}.$

Barrel

- Absolute optical alignment $\sim 100~\mu{\rm m}$ in most areas of the barrel.
- Absolute optical alignment $>500 \ \mu m$ in some areas where platform positions are not known with sufficient accuracy.
- Relative alignment of large barrel towers with optical sensors.
- Missing optical precision measurements for small chambers.
- Role of muon tracks:
 - Absolute alignment of large towers.
 - Alignment of small towers with respect to large towers with overlap tracks.

Status of the alignment with tracks

- Alignment with tracks based on the calibration stream. Stream extraction for overlap region still missing!
- Algorithms for the alignment with straight and curved tracks have been developed.

Remarks on the baseline scenario for the initial alignment

- Baseline scenario: Run with no toroid field \rightarrow absolute alignment from straight tracks.
- Strategy for the baseline scenario at L=10³¹ cm⁻² s⁻¹ Alignment on the calibration stream
 - No p_t^{μ} cut possible in the level-1/2 muon trigger in absence of the field.
 - \rightarrow Calibration stream dominated by low- p_T muons ($\sim 1 \text{ GeV/c}$ as for cosmics), but with a rate of $\sim 1 \text{ kHz}$.
 - $\rightarrow\,$ Alignment accuracy 100 μm for 1 day of data taking with the stream at a rate of ${\sim}1$ kHz.
 - Alignment with high-level data
 - Use the momentum measurement from the inner detector to select 20 GeV muons.
 - Alignment accuracy ${\sim}100~\mu\text{m}$ for 5 days of data taking.

Complementary approaches. \rightarrow Cross check of the alignment parameters.

Stand-alone momentum resolution with first data

• $p_T^{\mu} \lesssim 100~GeV/c:$ Momentum resolution close to ideal.

• $\mathbf{p}_T^\mu > 100 \; GeV/c$: Significant deterioration of the momentum resolution.

Manpower

Alignment data challenge

- Halted. Waiting for the appropriate data stream.
- Team: S. Kotov supported by O. Kortner.

Calibration data challenge

- CDC is done by the experts for the calibration framework and calibration algorithms.
- Team: O. Kortner (MPI), F. Rauscher (LMU).

Calibration of commissioning data

- The calibration centres share the production of calibration constants for the commissioning data starting with the M3 data.
- Team:
 - O. Kortner (coordination).
 - F. Rauscher (trigger-time calibration and event time calculation).
 - J. v. Loeben (MDT chamber calibration, expert for *r*-*t* calibration).
 - S. Kaiser (MDT chamber calibration, expert for efficiency and fake-rate determination).
 - G. Dedes, Th. Ehrich (MDT chamber calibration).

Manpower requirements after the LHC start-up

Coordination: • 1 person for the overall coordination of the calibration and alignment centre.

- 1 contact person at LMU.
- 1 contact person for the calibration part.
- 1 contact person for the alignment part.

Operation: • Team of shifters: 4 persons.

• 1 person for the calibration database, data transfer, data storage, and job submission infrastructure.

A refined table will be made after the calibration data challenge based on the experience of the CDC.