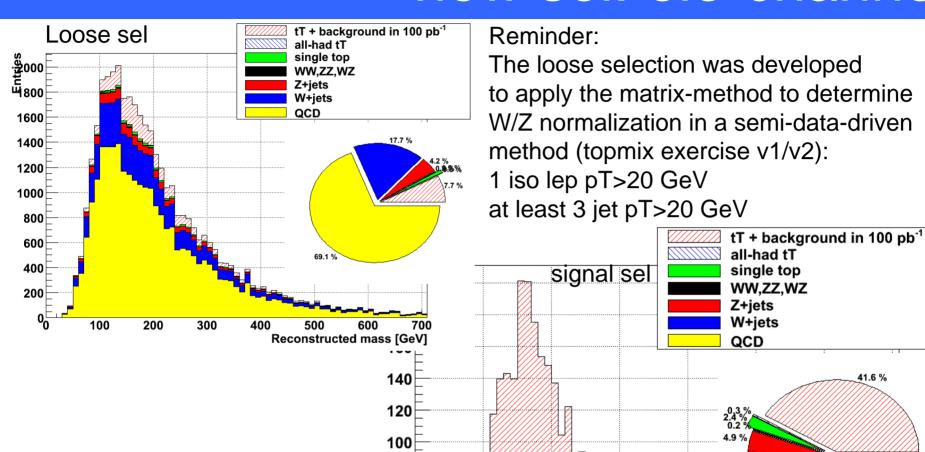


Update on the event selection for I+jets channel

reducing QCD contamination

Giorgio Cortiana



Event selection so far

- In our previous event selection lepton-jet overlap removal was wrong for muons, because it allowed muons from semi-lep decay to be kept, while rejecting the jet in which the muon was found. This faked our hadronic top reconstruction.
- The proposal was to revisit our jet-lepton overlap removal procedure as in the following:
 - Look for electrons above 20 GeV
 - Look for jets above 20 GeV
 - If a selected electron is found inside a jet, drop the jet from the list.
 - This could be improved by looking at the EM fraction of the jet (will be implemented in the future).
 - Look for mouns above 20 GeV
 - If a selected moun is found inside a jet, drop the muon from the list
 - The outcome should be:
 - List of good isolated electrons
 - List of good jets, including those with a muon from semi-leptonic decays
 - List of good isolated muons (not inside jets)
 - (*) isolated leptons could be defined using etcone40 instead of etcone20

new sel: ele-channel

80

60

40

20

100

200

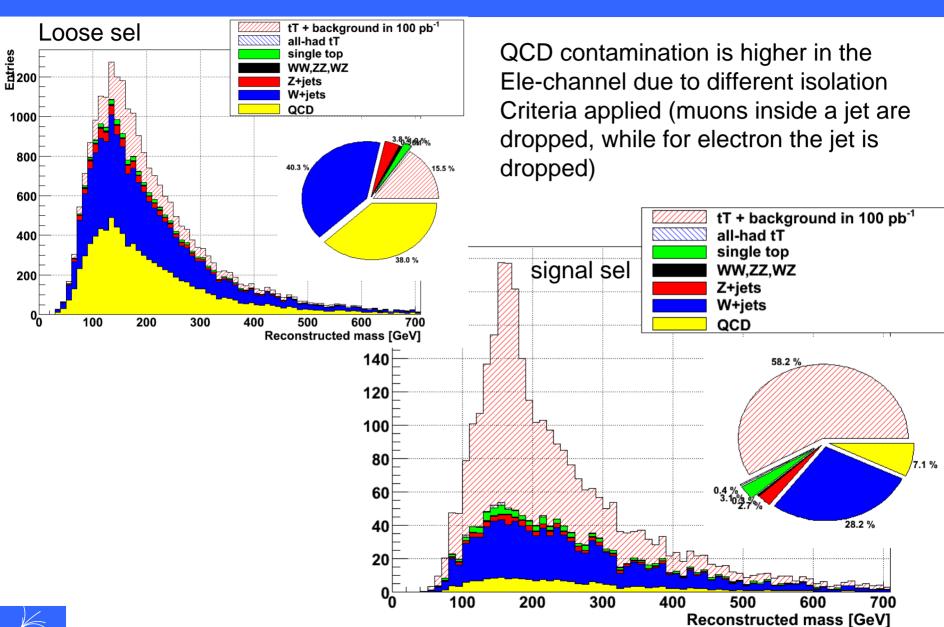
300

400

Note: the QCD normalization taken from J2-J6 samples but the shape is from W+jets

600

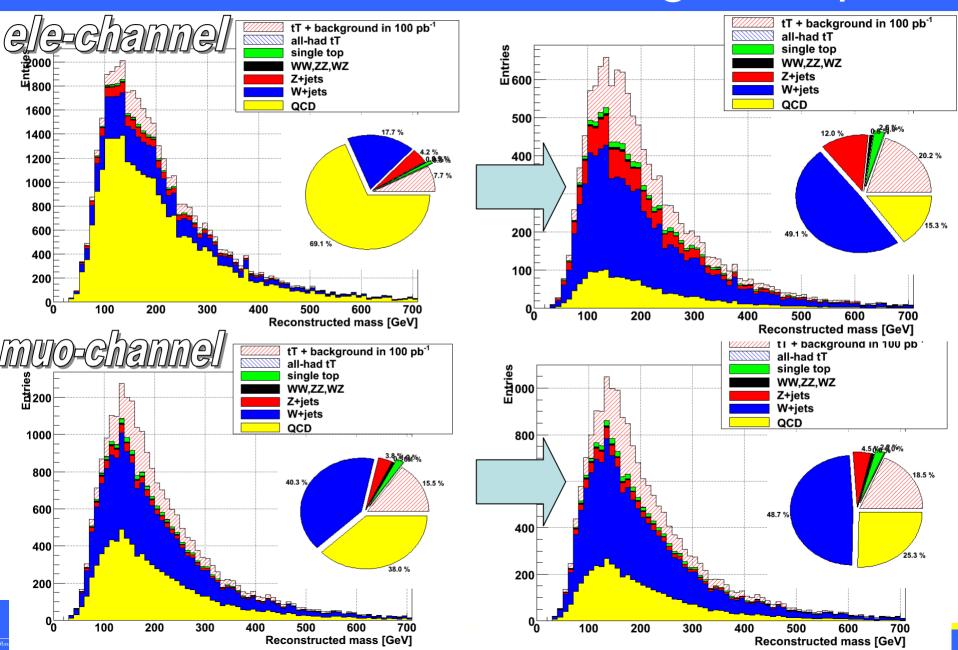
41.6 %

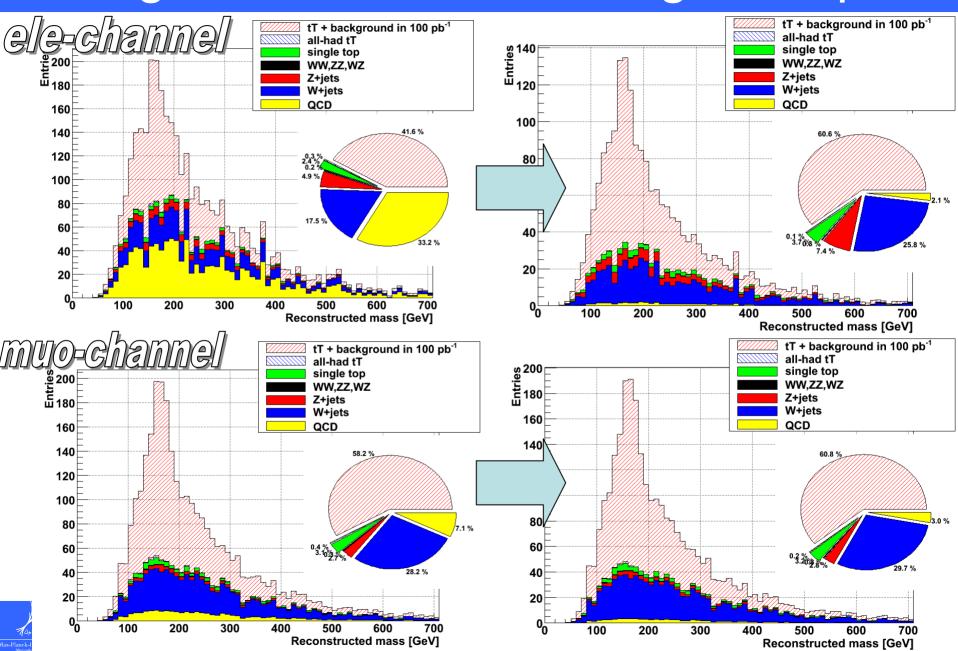

33.2 %

700

17.5 %

500


new sel: muo-channel


Selection results, with tighter lep iso

■ We can tighten the isolation requirement for leptons. Using a etcone40 <6 GeV (the default was etcone20<6 GEV)</p>

Loose sel results, with tighter lep iso

Signal sel results, with tighter lep iso

Signal sel results, with tighter lep iso

ele-channel

Expected events in 100 pb⁻¹

Looser
iso

Process	DPD filter	Trigger	N_{lep}	HEC veto	$N_{jet}^{p_T 20} \ge 3$	$N_{jet}^{p_T 20} \ge 4$	$N_{jet}^{p_T40} \ge 3$		$N_{jet}^{p_T40} \ge 3$
ttbar ACER MC	16461±0	5842± 27	3339± 23	287 0 ± 22	2497± 20	1726± 17	1219± 15		1477± 16
Wenu	117139±0	8813 0 ±195	7 0 388±226	62869±232	5698± 62	1292± 31	472± 17		567± 19
Wmunu	57 0 88± 0	9 0 2± 21	11±3	1 0 ± 3	3± 2	0 ± 2	0 ± 2		0 ± 2
Wtaunu	31 0 42± 0	4836± 48	3375± 41	2992± 39	332± 13	79± 7	42±5	•	46± 6
Wbb	779± 0	257± 3	181± 2	157± 2	56± 1	21± 1	1 0 ± 1		12± 1
Zee	2861 0±0	25548± 27	12751± 46	112 0 5± 45	1353±9	332± 4	134± 2		157±3
Zmumu	5567±0	112± 3	0 ± 1	0 ± 1	0 ± 1	0 ± 1	0 ± 1		0 ± 1
Ztautau	5797±0	1316± 15	865± 13	773 ± 13	126± 3	35± 1	15± 1		17± 1
dibos	1755± 0	78 0 ± 6	545± 6	487± 6	98±3	2 0 ± 1	6± 1		7± 1
single top	3072±0	1074± 10	759± 9	667± 9	323±7	13 0 ± 4	76±3		87± 4
all had top	14927± 0	567± 11	3±1	3± 1	3 ± 1	3± 1	2±1		11±2
QCD	315487136± 0	2919 00 3±1783	121483±13 0	105050±130	1893± 93	83±8 0	42± 64		1187±13 0

Expected events in 100 pb⁻¹

Process	DPD filter	Trigger	N_{lep}	HEC veto	$N_{jet}^{p_T 20} \ge 3$	$N_{jet}^{p_T 20} \ge 4$	$N_{jet}^{p_T40} \ge 3$		$N_{jet}^{p_T40} \ge 3$
ttbar ACER MC	16461±0	6 0 99± 28	4516± 25	39 0 6± 24	3502± 23	2455± 20	1771± 18] •	1797± 18
Wenu	117139±0	81± 14	3±5	2 ± 4	1± 4	0±4	0± 4		0±4
Wmunu	57088±0	33858± 84	30340± 84	27 0 61± 84	859 0 ± 59	2 0 57± 32	798± 21		8 0 5± 21
Wtaunu	31 0 42± 0	191 0 ± 28	1671± 26	1487 ± 25	536± 17	127± 9	52± 6	_	52±6
Wbb	779± 0	216± 2	181± 2	159 ± 2	92± 2	35 ± 1	17± 1		17± 1
Zee	2861 0±0	5± 1	0±0	0 ± 0	0± 0	0 ± 0	0± 0	-	0±0
Zmumu	5567±0	4366± 14	2056± 15	1838 ± 14	675±8	17 0 ± 4	63±3		63±3
Ztautau	5797±0	545±6	472± 6	417±6	185± 3	49±2	2 0 ± 1	•	2 0 ± 1
dibos	1755± 0	456± 6	358± 5	318 ± 5	121± 3	29 ± 2	1 0 ± 1		1 0 ± 1
single top	3072±0	967± 1 0	797± 1 0	691±9	424±8	173± 5	93±4		95±4
all had top	14927± 0	498± 11	11±2	9±2	9± 2	9±2	7± 1	_	12±2
QCD	315487136± 0	124 0 779±1742	112384±169	92333±157	48 0 1±144	1937±1 0 4	86± 8 0		222±113

Ttlc....