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Why is

Dark Matter

an exciting topic?



95% of the energy content of the Universe
cannot reside in Standard Model particles 

73%

22%5%

Standard
Model 

particles

dark energy

dark matter

Ωγ = 0.005 %

photons

ΩB = 4 %
baryons

? baryon asymmetry ?

0.1 % ≤ Ων ≤1.5 %

neutrinos

? neutrino mass ?

dark energy
ΩDE = 73 %

? vacuum energy ?

dark matter
ΩDM = 22 %

? identity ?

Our present picture of the Universe
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There is striking

evidence for

Dark Matter ...
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Evidence for Dark Matter in the Universe

! Spiral Galaxies

* Rotation Curves

5
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Evidence for Dark Matter in the Universe

! Spiral Galaxies

* Rotation Curves

! (Super-) Clusters of Galaxies

* Galaxy Velocities ↔ X-Rays

* Weak Gravitational Lensing

* Strong Gravitational Lensing
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Evidence for Dark Matter in the Universe

! Spiral Galaxies

* Rotation Curves

! (Super-) Clusters of Galaxies

* Galaxy Velocities ↔ X-Rays

* Weak Gravitational Lensing

* Strong Gravitational Lensing

! Large Scale Structure

* Structure Formation
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Evidence for Dark Matter in the Universe

! Spiral Galaxies

* Rotation Curves

! (Super-) Clusters of Galaxies

* Galaxy Velocities ↔ X-Rays

* Weak Gravitational Lensing

* Strong Gravitational Lensing

! Large Scale Structure

* Structure Formation

! CMB Anisotropy: WMAP, ...

* Ωtot = 100%

* ΩM = 27%

* ΩB = 5%

3-year

+200-200

M
B

WMAP
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Ωγ = 0.005 %

dark matter
ΩDM = 22 %

critical densityΩtot=100 %

ΩM=26%
matter

ΩB=4 %
baryons
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What is

the identity of

 Dark Matter ?



• stable or lifetime well above 

the age of our Universe 

• electrically neutral

• clusters 

• “cold”

• dissipationless 

• color neutral

Properties of Dark Matter
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The Standard Model
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µ λ(2) a = fW a (1 ,3 )0
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´
Y

Higgs , higgsinos φ =
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@φ+
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A eHd =
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@
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Properties of Neutrino Dark Matter

• stable → τDM
>
∼ age of our Universe

• clusters ← gravitation

• fast – “hot”

• electrically neutral

• color neutral

• explain: non-observation in the lab

Neutrino Dark Matter = Hot Dark Matter

in conflict with Large Scale Structure

12

[ Yvonne Y. Y. Wong et al.]
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Supersymmetric Dark Matter Candidates

The lightest neutralino, the gravitino, and the axino

Frank Daniel Steffen1 a

Max-Planck-Institut für Physik, Föhringer Ring 6, D-80805 Munich, Germany

Abstract. In supersymmetric extensions of the Standard Model, the lightest neutralino, the grav-
itino, and the axino can appear as the lightest supersymmetric particle and as such provide a
compelling explanation of the non-baryonic dark matter in our Universe. For each of these dark
matter candidates, I review the present status of primordial production mechanisms, cosmological
constraints, and prospects of experimental identification.

PACS. 95.35.+d Dark matter – 12.60.Jv Supersymmetric models – 04.65.+e Supergravity

1 Introduction

Numerous astrophysical and cosmological considera-
tions point to the existence of non-baryonic dark mat-
ter in our Universe [1,2]. In fact, based on observa-
tions of supernovae, galaxy clusters, and the cosmic
microwave background (CMB), we believe today that
our Universe is flat with about 76%, 20%, and 4% of
the critical energy density ρc provided in the form of
dark energy, non-baryonic dark matter, and baryons,
respectively [3,4]. A nominal “3σ” range1 of the dark
matter density Ωdm = ρdm/ρc can be inferred from
measurements of the CMB anisotropies by the Wilkin-
son Microwave Anisotropy Probe (WMAP) satellite [3]

Ω3σ
dmh2 = 0.105+0.021

−0.030 (1)

with h = 0.73+0.04
−0.03 denoting the Hubble constant in

units of 100 kmMpc−1s−1.
Relying on the pieces of evidence, we think that

a particle physics candidate for dark matter has to
be electrically neutral, color neutral,2 and stable or
have a lifetime τdm that is not much smaller than the
age of the Universe today t0 ! 14 Gyr. Moreover, the
species providing the dominant contribution to Ωdm

have to be sufficiently slow to allow for structure for-
mation. For example, since the neutrinos of the Stan-
dard Model are too light,

∑
i mνi ! O(1 eV) [6], they

a Email: steffen@mppmu.mpg.de
1 Note that the nominal “3σ” range is derived assuming a

restrictive six-parameter “vanilla” model. A larger range is
possible—even with additional data from other cosmologi-
cal probes—if the fit is performed in the context of a more
general model that includes other physically motivated pa-
rameters such as a nonzero neutrino mass [5]. Thereby, the
range 0.094 < Ωdmh2 < 0.136 has been obtained in Ref. [5].

2 A colored dark matter candidate is disfavored by severe
limits from searches for anomalous heavy nuclei [4].

were too fast at early times. Accordingly, they are clas-
sified as hot dark matter which can constitute only a
minor fraction of Ωdm since otherwise structure forma-
tion cannot be understood [7]. Thus, the observation-
ally inferred dark matter density can be considered as
evidence for physics beyond the Standard Model.

Supersymmetric (SUSY) extensions of the Stan-
dard Model are an appealing concept because of their
remarkable properties, for example, with respect to
gauge coupling unification, the hierarchy problem, and
the embedding of gravity [8,9,10,11,12,13]. As super-
partners of the Standard Model particles, new parti-
cles appear including fields that are electrically neutral
and color neutral. Since they have not been detected
at particle accelerators, these sparticles must be heavy
or extremely weakly interacting.

Because of the non-observation of reactions that vi-
olate lepton number L or baryon number B, it is often
assumed—as also in this review—that SUSY theories
respect the multiplicative quantum number

R = (−1)3B+L+2S , (2)

known as R-parity, with S denoting the spin. Since
Standard Model particles and superpartners carry re-
spectively even (+1) and odd (-1) R-parity, its con-
servation implies that superpartners can only be pro-
duced or annihilated in pairs and that the lightest su-
persymmetric particle (LSP) cannot decay even if it is
heavier than most (or all) of the Standard Model parti-
cles.3 An electrically neutral and color neutral LSP can
thus be a compelling dark matter candidate. For the
lightest neutralino, the gravitino, and the axino, which
are well-motivated LSP candidates, this is shown be-
low. For each scenario, I will address implications for
cosmology and experimental prospects. Note that the

3 While R-parity conservation is assumed in this review,
its violation is a realistic option; see, e.g., [14,15,16,17,18].
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Dark Matter

Physics beyond

 the Standard Model



Supersymmetry
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The Minimal Supersymmetric Standard Model

GAUGE Gauge bosons Gauginos `
SU(3)c, SU(2)L

´
Y

B-boson, bino A(1) a
µ = Bµ δa1 λ(1) a = eB δa1 (1 ,1 )0

W-bosons, winos A(2) a
µ = W a

µ λ(2) a = fW a (1 ,3 )0

gluon, gluino A(3) a
µ = Ga

µ λ(3) a = ega (8 ,1 )0

MATTER Sfermions Fermions `
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u
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Every Particle 
of the 

Standard Model 
has a 

Superpartner 

Minimal 
Supersymmetric 

Extension 
of the 

Standard Model

Supersymmetry
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Conservation of R-Parity

• superpotential: WMSSM ← W∆L + W∆B

• non-observation of L & B violating processes (proton stability, ...)

• postulate conservation of R-Parity ← multiplicative quantum number

PR = (−1)3(B−L)+S =





+1 for SM, Hu, Hd

−1 for X̃ ← superpartners

The lightest supersymmetric particle (LSP) is stable!!!

SM1

SUSY

SM2R-ParitySM

SUSY1

SUSY2

R-Parity

15
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Gauge Couplings Gaugino Mass Parameters
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Dark Matter
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Why Supersymmetry?
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Supersymmetric Dark Matter Candidates

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... BBN + eτ decay analysis: m eG, MPl (?)

ea
“

p
fa

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

fa ! 109 GeV ... BBN + eτ decay analysis: mã, fa

17
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Dark Matter

  
Neutralino LSP
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Supersymmetric Dark Matter Candiates

LSP ID spin mass interaction

lightest neutralino eχ0
1

eB, fW, eH0
u, eH0

d
1
2 O(100 GeV) g, g’

∈ MSSM mixture M1, M2, µ, tan β weak

19
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Sparticle reach of CMS; various
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discussion of gravitino/axino dark matter in Sects. 3
and 4 will be more extensive than the one of neutralino
dark matter in Sect. 2, for which numerous excellent
reviews exist such as [19,12,20,21].

2 Neutralino Dark Matter

The lightest neutralino χ̃0
1 appears already in the min-

imal supersymmetric Standard Model (MSSM) as the
lightest mass eigenstate among the four neutralinos be-
ing mixtures of the bino B̃, the wino W̃ , and the neu-
tral higgsinos H̃0

u and H̃0
d . Accordingly, χ̃0

1 is a spin 1/2
fermion with weak interactions only. Its mass meχ0

1
de-

pends on the gaugino mass parameters M1 and M2, on
the ratio of the two MSSM Higgs doublet vacuum ex-
pectation values tanβ, and the higgsino mass param-
eter µ. Expecting meχ0

1
= O(100 GeV), χ̃0

1 is classified
as a weakly interacting massive particle (WIMP).

Motivated by theories of grand unification and su-
pergravity [22], one often assumes universal soft SUSY
breaking parameters at the scale of grand unification
MGUT; cf. [12,20] and references therein. For example,
in the framework of the constrained MSSM (CMSSM),
the gaugino masses, the scalar masses, and the trilin-
ear scalar interactions are assumed to take on the re-
spective universal values m1/2, m0, and A0 at MGUT.
Specifying m1/2, m0, A0, tanβ, and the sign of µ, the
low-energy mass spectrum is given by the renormal-
ization group running from MGUT downwards.

Assuming A0 = 0 for simplicity, the lightest Stan-
dard Model superpartner—or lightest ordinary super-
partner (LOSP)—is either the lightest neutralino χ̃0

1 or
the lighter stau τ̃1, whose mass is denoted by meτ1

. If
the LSP is assumed to be the LOSP, the parameter re-
gion in which meτ1

< meχ0
1

is usually not considered be-
cause of severe upper limits on the abundance of stable
charged particles [4]. However, in gravitino/axino LSP
scenarios, in which the LOSP is the next-to-lightest
supersymmetric particle (NLSP), the τ̃1 LOSP case
is viable and particularly promising for collider phe-
nomenology as will be discussed in Sects. 3 and 4.

In Fig. 1 (from [23]) the dotted (blue in the web ver-
sion) lines show contours of mLOSP in the (m1/2, m0)
plane for A0 = 0, µ > 0, tanβ = 10. Above (be-
low) the dashed line, meχ0

1
< meτ1

(meτ1
< meχ0

1
). The

medium gray and the light gray regions at small m1/2

are excluded respectively by the mass bounds m
eχ±
1

>
94 GeV and mH > 114.4 GeV from chargino and
Higgs searches at LEP [4]. It can be seen that meχ0

1
=

O(100 GeV) appears naturally within the CMSSM.

2.1 Primordial Origin

The χ̃0
1’s were in thermal equilibrium for primordial

temperatures of T > Tf ! meχ0
1
/20. At Tf the an-

nihilation rate of the (by then) non-relativistic χ̃0
1’s

becomes smaller than the Hubble rate so that they
decouple from the thermal plasma. Thus, for T ! Tf ,

Fig. 1. Contours of mLOSP (dotted blue lines) and Y dec
LOSP

(solid black lines) in the (m1/2, m0) plane for A0 = 0,
µ > 0, tan β = 10. Above (below) the dashed line,
meχ0

1
< meτ1

(meτ1
< meχ0

1
). The medium gray and the light

gray regions show the LEP bounds m
eχ±
1

> 94 GeV and

mH > 114.4 GeV, respectively [4]. The contours are ob-
tained with the spectrum generator SuSpect 2.34 [24] us-

ing mt = 172.5 GeV and mb(mb)MS = 4.23 GeV, and with
micrOMEGAs 1.37 [25,26]. From [23].

their yield Yeχ0
1
≡ neχ0

1
/s is given by Y dec

eχ0
1

≈ Y eq
eχ0
1

(Tf),

where n(eq)
eχ0
1

is the (equilibrium) number density of χ̃0
1’s

and s = 2π2 g∗S T 3/45 the entropy density. Depend-
ing on details of the χ̃0

1 decoupling, Y dec
eχ0
1

is very sen-

sitive to the mass spectrum and the couplings of the
superparticles. Indeed, convenient computer programs
such as DarkSUSY [27] or micrOMEGAs 1.37 [25,26] are
available which allow for a numerical calculation of the
LOSP decoupling and the resulting thermal relic abun-
dance in a given SUSY model.

The Y dec
LOSP contours shown by the solid black lines

in Fig. 1 illustrate that the χ̃0
1 LSP yield can easily

vary by more than an order of magnitude. Because of
this sensitivity, the associated thermal relic density

Ωeχ0
1
h2 = meχ0

1
Y dec

eχ0
1

s(T0)h2/ρc (3)

agrees with Ω3σ
dmh2 only in narrow regions in the pa-

rameter space; ρc/[s(T0)h2] = 3.6×10−9 GeV [4]. This
can be seen in Fig. 2 (from [28]) where the black strips
indicate the region with 0.087 ≤ Ωeχ0

1
h2 ≤ 0.138.

Remarkably, it is exactly the small width of the
Ωeχ0

1
= Ωdm regions which could help us to identify

χ̃0
1 dark matter. Once sparticles are produced at col-

liders, the data analysis will aim at determinig the
SUSY model realized in nature [29,30]. For the recon-
structed model, a precise calculation of Ωeχ0

1
is possible

assuming a standard thermal history of the Universe.
Because of the sensitivity of Ωeχ0

1
with respect to the

SUSY model, an agreement of the obtained Ωeχ0
1

with

[Pradler, FDS, ’07]

CMSSM mLSP
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χ̃0
1 LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold • indirect detection (EGRET, GLAST, ...)

weak freeze out neutralino pair annihilation

eχ0
1 eχ0

1 → SM1 SM2

• direct detection (CRESST, EDELWEISS, ...)

elastic neutralino scattering

eχ0
1 A → eχ0

1 A

• prod.@colliders (Tevatron, LHC, ILC, ...)

neutralino pair production
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discussion of gravitino/axino dark matter in Sects. 3
and 4 will be more extensive than the one of neutralino
dark matter in Sect. 2, for which numerous excellent
reviews exist such as [19,12,20,21].

2 Neutralino Dark Matter

The lightest neutralino χ̃0
1 appears already in the min-

imal supersymmetric Standard Model (MSSM) as the
lightest mass eigenstate among the four neutralinos be-
ing mixtures of the bino B̃, the wino W̃ , and the neu-
tral higgsinos H̃0

u and H̃0
d . Accordingly, χ̃0

1 is a spin 1/2
fermion with weak interactions only. Its mass meχ0

1
de-

pends on the gaugino mass parameters M1 and M2, on
the ratio of the two MSSM Higgs doublet vacuum ex-
pectation values tanβ, and the higgsino mass param-
eter µ. Expecting meχ0

1
= O(100 GeV), χ̃0

1 is classified
as a weakly interacting massive particle (WIMP).

Motivated by theories of grand unification and su-
pergravity [22], one often assumes universal soft SUSY
breaking parameters at the scale of grand unification
MGUT; cf. [12,20] and references therein. For example,
in the framework of the constrained MSSM (CMSSM),
the gaugino masses, the scalar masses, and the trilin-
ear scalar interactions are assumed to take on the re-
spective universal values m1/2, m0, and A0 at MGUT.
Specifying m1/2, m0, A0, tanβ, and the sign of µ, the
low-energy mass spectrum is given by the renormal-
ization group running from MGUT downwards.

Assuming A0 = 0 for simplicity, the lightest Stan-
dard Model superpartner—or lightest ordinary super-
partner (LOSP)—is either the lightest neutralino χ̃0

1 or
the lighter stau τ̃1, whose mass is denoted by meτ1

. If
the LSP is assumed to be the LOSP, the parameter re-
gion in which meτ1

< meχ0
1

is usually not considered be-
cause of severe upper limits on the abundance of stable
charged particles [4]. However, in gravitino/axino LSP
scenarios, in which the LOSP is the next-to-lightest
supersymmetric particle (NLSP), the τ̃1 LOSP case
is viable and particularly promising for collider phe-
nomenology as will be discussed in Sects. 3 and 4.

In Fig. 1 (from [23]) the dotted (blue in the web ver-
sion) lines show contours of mLOSP in the (m1/2, m0)
plane for A0 = 0, µ > 0, tanβ = 10. Above (be-
low) the dashed line, meχ0

1
< meτ1

(meτ1
< meχ0

1
). The

medium gray and the light gray regions at small m1/2

are excluded respectively by the mass bounds m
eχ±
1

>
94 GeV and mH > 114.4 GeV from chargino and
Higgs searches at LEP [4]. It can be seen that meχ0

1
=

O(100 GeV) appears naturally within the CMSSM.

2.1 Primordial Origin

The χ̃0
1’s were in thermal equilibrium for primordial

temperatures of T > Tf ! meχ0
1
/20. At Tf the an-

nihilation rate of the (by then) non-relativistic χ̃0
1’s

becomes smaller than the Hubble rate so that they
decouple from the thermal plasma. Thus, for T ! Tf ,

Fig. 1. Contours of mLOSP (dotted blue lines) and Y dec
LOSP

(solid black lines) in the (m1/2, m0) plane for A0 = 0,
µ > 0, tan β = 10. Above (below) the dashed line,
meχ0

1
< meτ1

(meτ1
< meχ0

1
). The medium gray and the light

gray regions show the LEP bounds m
eχ±
1

> 94 GeV and

mH > 114.4 GeV, respectively [4]. The contours are ob-
tained with the spectrum generator SuSpect 2.34 [24] us-

ing mt = 172.5 GeV and mb(mb)MS = 4.23 GeV, and with
micrOMEGAs 1.37 [25,26]. From [23].

their yield Yeχ0
1
≡ neχ0

1
/s is given by Y dec

eχ0
1

≈ Y eq
eχ0
1

(Tf),

where n(eq)
eχ0
1

is the (equilibrium) number density of χ̃0
1’s

and s = 2π2 g∗S T 3/45 the entropy density. Depend-
ing on details of the χ̃0

1 decoupling, Y dec
eχ0
1

is very sen-

sitive to the mass spectrum and the couplings of the
superparticles. Indeed, convenient computer programs
such as DarkSUSY [27] or micrOMEGAs 1.37 [25,26] are
available which allow for a numerical calculation of the
LOSP decoupling and the resulting thermal relic abun-
dance in a given SUSY model.

The Y dec
LOSP contours shown by the solid black lines

in Fig. 1 illustrate that the χ̃0
1 LSP yield can easily

vary by more than an order of magnitude. Because of
this sensitivity, the associated thermal relic density

Ωeχ0
1
h2 = meχ0

1
Y dec

eχ0
1

s(T0)h2/ρc (3)

agrees with Ω3σ
dmh2 only in narrow regions in the pa-

rameter space; ρc/[s(T0)h2] = 3.6×10−9 GeV [4]. This
can be seen in Fig. 2 (from [28]) where the black strips
indicate the region with 0.087 ≤ Ωeχ0

1
h2 ≤ 0.138.

Remarkably, it is exactly the small width of the
Ωeχ0

1
= Ωdm regions which could help us to identify

χ̃0
1 dark matter. Once sparticles are produced at col-

liders, the data analysis will aim at determinig the
SUSY model realized in nature [29,30]. For the recon-
structed model, a precise calculation of Ωeχ0

1
is possible

assuming a standard thermal history of the Universe.
Because of the sensitivity of Ωeχ0

1
with respect to the

SUSY model, an agreement of the obtained Ωeχ0
1

with
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discussion of gravitino/axino dark matter in Sects. 3
and 4 will be more extensive than the one of neutralino
dark matter in Sect. 2, for which numerous excellent
reviews exist such as [19,12,20,21].
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The Y dec
LOSP contours shown by the solid black lines

in Fig. 1 illustrate that the χ̃0
1 LSP yield can easily

vary by more than an order of magnitude. Because of
this sensitivity, the associated thermal relic density

Ωeχ0
1
h2 = meχ0

1
Y dec

eχ0
1

s(T0)h2/ρc (3)

agrees with Ω3σ
dmh2 only in narrow regions in the pa-

rameter space; ρc/[s(T0)h2] = 3.6×10−9 GeV [4]. This
can be seen in Fig. 2 (from [28]) where the black strips
indicate the region with 0.087 ≤ Ωeχ0

1
h2 ≤ 0.138.

Remarkably, it is exactly the small width of the
Ωeχ0

1
= Ωdm regions which could help us to identify

χ̃0
1 dark matter. Once sparticles are produced at col-

liders, the data analysis will aim at determinig the
SUSY model realized in nature [29,30]. For the recon-
structed model, a precise calculation of Ωeχ0

1
is possible

assuming a standard thermal history of the Universe.
Because of the sensitivity of Ωeχ0

1
with respect to the

SUSY model, an agreement of the obtained Ωeχ0
1

with
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discussion of gravitino/axino dark matter in Sects. 3
and 4 will be more extensive than the one of neutralino
dark matter in Sect. 2, for which numerous excellent
reviews exist such as [19,12,20,21].

2 Neutralino Dark Matter

The lightest neutralino χ̃0
1 appears already in the min-

imal supersymmetric Standard Model (MSSM) as the
lightest mass eigenstate among the four neutralinos be-
ing mixtures of the bino B̃, the wino W̃ , and the neu-
tral higgsinos H̃0

u and H̃0
d . Accordingly, χ̃0

1 is a spin 1/2
fermion with weak interactions only. Its mass meχ0

1
de-

pends on the gaugino mass parameters M1 and M2, on
the ratio of the two MSSM Higgs doublet vacuum ex-
pectation values tanβ, and the higgsino mass param-
eter µ. Expecting meχ0

1
= O(100 GeV), χ̃0

1 is classified
as a weakly interacting massive particle (WIMP).

Motivated by theories of grand unification and su-
pergravity [22], one often assumes universal soft SUSY
breaking parameters at the scale of grand unification
MGUT; cf. [12,20] and references therein. For example,
in the framework of the constrained MSSM (CMSSM),
the gaugino masses, the scalar masses, and the trilin-
ear scalar interactions are assumed to take on the re-
spective universal values m1/2, m0, and A0 at MGUT.
Specifying m1/2, m0, A0, tanβ, and the sign of µ, the
low-energy mass spectrum is given by the renormal-
ization group running from MGUT downwards.

Assuming A0 = 0 for simplicity, the lightest Stan-
dard Model superpartner—or lightest ordinary super-
partner (LOSP)—is either the lightest neutralino χ̃0

1 or
the lighter stau τ̃1, whose mass is denoted by meτ1

. If
the LSP is assumed to be the LOSP, the parameter re-
gion in which meτ1

< meχ0
1

is usually not considered be-
cause of severe upper limits on the abundance of stable
charged particles [4]. However, in gravitino/axino LSP
scenarios, in which the LOSP is the next-to-lightest
supersymmetric particle (NLSP), the τ̃1 LOSP case
is viable and particularly promising for collider phe-
nomenology as will be discussed in Sects. 3 and 4.

In Fig. 1 (from [23]) the dotted (blue in the web ver-
sion) lines show contours of mLOSP in the (m1/2, m0)
plane for A0 = 0, µ > 0, tanβ = 10. Above (be-
low) the dashed line, meχ0

1
< meτ1

(meτ1
< meχ0

1
). The

medium gray and the light gray regions at small m1/2

are excluded respectively by the mass bounds m
eχ±
1

>
94 GeV and mH > 114.4 GeV from chargino and
Higgs searches at LEP [4]. It can be seen that meχ0

1
=

O(100 GeV) appears naturally within the CMSSM.

2.1 Primordial Origin

The χ̃0
1’s were in thermal equilibrium for primordial

temperatures of T > Tf ! meχ0
1
/20. At Tf the an-

nihilation rate of the (by then) non-relativistic χ̃0
1’s

becomes smaller than the Hubble rate so that they
decouple from the thermal plasma. Thus, for T ! Tf ,

Fig. 1. Contours of mLOSP (dotted blue lines) and Y dec
LOSP

(solid black lines) in the (m1/2, m0) plane for A0 = 0,
µ > 0, tan β = 10. Above (below) the dashed line,
meχ0

1
< meτ1

(meτ1
< meχ0

1
). The medium gray and the light

gray regions show the LEP bounds m
eχ±
1

> 94 GeV and

mH > 114.4 GeV, respectively [4]. The contours are ob-
tained with the spectrum generator SuSpect 2.34 [24] us-

ing mt = 172.5 GeV and mb(mb)MS = 4.23 GeV, and with
micrOMEGAs 1.37 [25,26]. From [23].

their yield Yeχ0
1
≡ neχ0

1
/s is given by Y dec

eχ0
1

≈ Y eq
eχ0
1

(Tf),

where n(eq)
eχ0
1

is the (equilibrium) number density of χ̃0
1’s

and s = 2π2 g∗S T 3/45 the entropy density. Depend-
ing on details of the χ̃0

1 decoupling, Y dec
eχ0
1

is very sen-

sitive to the mass spectrum and the couplings of the
superparticles. Indeed, convenient computer programs
such as DarkSUSY [27] or micrOMEGAs 1.37 [25,26] are
available which allow for a numerical calculation of the
LOSP decoupling and the resulting thermal relic abun-
dance in a given SUSY model.

The Y dec
LOSP contours shown by the solid black lines

in Fig. 1 illustrate that the χ̃0
1 LSP yield can easily

vary by more than an order of magnitude. Because of
this sensitivity, the associated thermal relic density

Ωeχ0
1
h2 = meχ0

1
Y dec

eχ0
1

s(T0)h2/ρc (3)

agrees with Ω3σ
dmh2 only in narrow regions in the pa-

rameter space; ρc/[s(T0)h2] = 3.6×10−9 GeV [4]. This
can be seen in Fig. 2 (from [28]) where the black strips
indicate the region with 0.087 ≤ Ωeχ0

1
h2 ≤ 0.138.

Remarkably, it is exactly the small width of the
Ωeχ0

1
= Ωdm regions which could help us to identify

χ̃0
1 dark matter. Once sparticles are produced at col-

liders, the data analysis will aim at determinig the
SUSY model realized in nature [29,30]. For the recon-
structed model, a precise calculation of Ωeχ0

1
is possible

assuming a standard thermal history of the Universe.
Because of the sensitivity of Ωeχ0

1
with respect to the

SUSY model, an agreement of the obtained Ωeχ0
1

with
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χ̃0
1 LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold • indirect detection (EGRET, GLAST, ...)

weak freeze out neutralino pair annihilation

eχ0
1 eχ0

1 → SM1 SM2

• direct detection (CRESST, EDELWEISS, ...)

elastic neutralino scattering

eχ0
1 A → eχ0

1 A

• prod.@colliders (Tevatron, LHC, ILC, ...)

neutralino pair production

p p → eχ0
1 eχ0

1 ... (Tevatron, LHC)

e+ e− → eχ0
1 eχ0

1 ... (ILC)

[Talk by Manuel Drees]

Ωeχ0
1

= ΩDM is possible!!!

(? natural ?)

GLAST
PAMELA

. . .

neutralino

neutralino

energetic
cosmic rays

INTEGRAL

MAGIC

EGRET
 AMS02

AMANDA

HESS

IceCube
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χ̃0
1 LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold • indirect detection (EGRET, GLAST, ...)

weak freeze out neutralino pair annihilation

eχ0
1 eχ0

1 → SM1 SM2

• direct detection (CRESST, EDELWEISS, ...)

elastic neutralino scattering

eχ0
1 A → eχ0

1 A

• prod.@colliders (Tevatron, LHC, ILC, ...)

neutralino pair production

p p → eχ0
1 eχ0

1 ... (Tevatron, LHC)

e+ e− → eχ0
1 eχ0

1 ... (ILC)

[Talk by Manuel Drees]

Ωeχ0
1

= ΩDM is possible!!!

(? natural ?)

neutralino

nucleus

heat

recoil

CDMS II

. . .
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χ̃0
1 LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold • indirect detection (EGRET, GLAST, ...)

weak freeze out neutralino pair annihilation

eχ0
1 eχ0

1 → SM1 SM2

• direct detection (CRESST, EDELWEISS, ...)

elastic neutralino scattering

eχ0
1 A → eχ0

1 A

• prod.@colliders (Tevatron, LHC, ILC, ...)

neutralino pair production

p p → eχ0
1 eχ0

1 ... (Tevatron, LHC)

e+ e− → eχ0
1 eχ0

1 ... (ILC)

[Talk by Manuel Drees]

Ωeχ0
1

= ΩDM is possible!!!

(? natural ?)

[f][e]

proton

proton

neutralino

neutralino

Standard
Model

particles

CMS . . .

D0
CDF
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Neutralino Dark Matter Production @ CMS

[from M. Tytgat’s Talk, SUSY 2007]

ET
missing=360 GeV

The LHC Status of the LHC Experiments Besides the Standard Model Top SUSY matters Engineering the Discovery Plan Wisdom from the Past

Canonical Dark Matter Searches Using Missing
Energy

Michael Tytgat, yesterday
Emiss

T =360 GeV, ET (1)=330 GeV, ET (2)=140 GeV, ET (3)=60 GeV

LHC can discover such events fast. Their cross section is huge :
10,000 to 1,000,000 events per year...

ET
(1)=330 GeV
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(2)=140 GeV
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Neutralino LSP Pair

The LHC Status of the LHC Experiments Besides the Standard Model Top SUSY matters Engineering the Discovery Plan Wisdom from the Past

CMS status

CMS

Teilchenphysik - ubi es, cui prodes, quo vadis         DPG  Frühjahrstagung  Heidelberg  6. März 2007                                      S.Bethke    MPI für Physik, München 

!

LHC Tunnel (12/2005)
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LHC

pp @ 14 TeV

27 km

Teilchenphysik - ubi es, cui prodes, quo vadis         DPG  Frühjahrstagung  Heidelberg  6. März 2007                                      S.Bethke    MPI für Physik, München 
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CMS

CMS

proton

proton

neutralino

neutralino

Standard
Model

particles

The signal: 
jets + leptons + large ETmiss

D0CDF

Tevatron
pp @ 2 TeV

Collider Searches
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χ̃0
1 LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold • indirect detection (EGRET, GLAST, ...)

weak freeze out neutralino pair annihilation

eχ0
1 eχ0

1 → SM1 SM2

• direct detection (CRESST, EDELWEISS, ...)

elastic neutralino scattering

eχ0
1 A → eχ0

1 A

• prod.@colliders (Tevatron, LHC, ILC, ...)

neutralino pair production

p p → eχ0
1 eχ0

1 ... (Tevatron, LHC)

e+ e− → eχ0
1 eχ0

1 ... (ILC)

[Talk by Manuel Drees]

Ωeχ0
1

= ΩDM is possible!!!

(? natural ?)

Neutralino

Neutralino

energetische
kosmische
Strahlung

[a] [b]

[c]

[f][e]

Neutralino

Atomkern

Wärme

Rückstoß

Proton

Proton

Neutralino

Neutralino

Standard-
modell-
teilchen

MAGIC

ATLAS

[d]

CRESST

promising experimental prospects
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... however, SUSY

phenomenology

might look very 

different ...
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Dark Matter

  
Gravitino LSP
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Supersymmetric Dark Matter Candiates

LSP ID spin mass interaction

lightest neutralino eχ0
1

eB, fW, eH0
u, eH0

d
1
2 O(100 GeV) g, g’

∈ MSSM mixture M1, M2, µ, tan β weak

gravitino eG superpartner of 3
2 eV − TeV

“
p

MPl

”n

∗ gravity the graviton SUSY breaking extremely weak

31

gauge-MSB gravity-MSB
gaugino-MSB

anomaly-MSB

light 
gravitino

1 eV-1 GeV

weak-scale 
gravitino

0.01-1 TeV

heavy 
gravitino
1-100 TeV

mirage-MSB
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays
[... ; Bolz, Brandenburg, Buchmüller, ’01]

[Pradler, FDS, ’06]
[Rychkov, Strumia, ’07] (gauge dep.)

Thermal Gravitino Production in SUSY QCD
• A: ga + gb → g̃c + eG

+

g
a

g
b

g
c

a

g
c

+

g
a

g
b

g
c

a

g
a +

g
a

g
b

g
c

a

g
b

g
a

g
b

g
c

a

• B: ga + g̃b → gc + eG (crossing of A)

• C: q̃i + ga → q̃j + eG qi

g
a

qj

a

g
a

• D: ga + qi → q̃j + eG (crossing of C)

• E: ¯̃
iq + qj → ga + eG (crossing of C)

• F: g̃a + g̃b → g̃c + eG

+

g
a

g
b

g
c

a

g
c

+

g
a

g
b

g
c

a

g
a

g
a

g
b

g
c

a

g
b

• G: qi + g̃a → qj + eG qi

g
a

qj

a

g
a

• H: q̃i + g̃a → q̃j + eG qi

g
a

qj

a

g
a

• I: qi + q̄j → g̃a + eG (crossing of G)

• J: q̃i + ¯̃
jq → g̃a + eG (crossing of H)

LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays

...

Very Early Hot Universe

T ~ 107 GeV

32
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Thermal G̃ Production τ̃ NLSP → G̃ + τ
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[...; Bolz, Brandenburg, Buchmüller, ’01]

[Pradler, FDS, ’06]

[... ; Borgani, Masiero, Yamaguchi, ’96; ...]

[... ; Covi, Kim, Roszkowski, ’99; ...]
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[Pradler, FDS, ’07]
see also [Moroi, Murayama, Yamguchi, ’93, 

Asaka, Hamaguchi, Suzuki, ’00, Roszkowski et al.,  ’05,
Cerdeno et al., ’06, FDS ’06, Rychkov, Strumia, ‘07]

see also [Borgani, Masiero, Yamguchi, ’96,
Asaka, Hamaguchi, Suzuki, ’00, Ellis et al.,  ’04,

Feng, Su, Takayama, ’04]

[FDS ’06]

see also [Moroi, Murayama, Yamguchi, ‘93]
[Cerdeno et al., ’06, Rychkov, Stumia, ‘07]

Thermal Leptogenesis
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays

Gravitino Dark Matter from NLSP Decays

NLSP Freeze out −→ Thermal NLSP Abundance: YNLSP =
(
nequil

NLSP/s
)

TF

NLSP Decay: NLSP −→ G̃ + X

ΩNTP
eG h2 =

m eG YNLSP h2

ρc/s(T0)

=
( m eG

100 GeV

) (
YNLSP

3.7 × 10−11

)

=

(
m eG

mNLSP

)
ΩNLSPh2

[Covi, Kim, Roszkowski, ’99]

NLSP = Stau τ̃ :−→ ΩNTP
eG h2 $ 0.002

( meτ

100 GeV

)( m eG
100 GeV

)

NLSP $ Bino B̃:−→ ΩNTP
eG h2 ∼ 0.1

( m eB
100 GeV

) ( m eG
100 GeV

)
(model dep.)

[Covi, Kim, Roszkowski, ’99]

freeze out
m/Tf ~ 20

eq.

NLSP

T < 10 GeV
NLSP → LSP + SM

NLSP Candidates • lightest neutralino

• lighter stau

• lighter stop

• lightest sneutrino
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays

Gravitino Dark Matter from NLSP Decays

NLSP Freeze out −→ Thermal NLSP Abundance: YNLSP =
(
nequil

NLSP/s
)

TF

NLSP Decay: NLSP −→ G̃ + X

ΩNTP
eG h2 =

m eG YNLSP h2

ρc/s(T0)

=
( m eG

100 GeV

) (
YNLSP

3.7 × 10−11

)

=

(
m eG

mNLSP

)
ΩNLSPh2

[Covi, Kim, Roszkowski, ’99]

NLSP = Stau τ̃ :−→ ΩNTP
eG h2 $ 0.002

( meτ

100 GeV

)( m eG
100 GeV

)

NLSP $ Bino B̃:−→ ΩNTP
eG h2 ∼ 0.1

( m eB
100 GeV

) ( m eG
100 GeV

)
(model dep.)

[Covi, Kim, Roszkowski, ’99]

freeze out
m/Tf ~ 20

eq.

NLSP

T < 10 GeV
NLSP → LSP + SM

electrically
charged

NLSP Candidates • lightest neutralino

• lighter stau

• lighter stop

• lightest sneutrino
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discussion of gravitino/axino dark matter in Sects. 3
and 4 will be more extensive than the one of neutralino
dark matter in Sect. 2, for which numerous excellent
reviews exist such as [19,12,20,21].

2 Neutralino Dark Matter

The lightest neutralino χ̃0
1 appears already in the min-

imal supersymmetric Standard Model (MSSM) as the
lightest mass eigenstate among the four neutralinos be-
ing mixtures of the bino B̃, the wino W̃ , and the neu-
tral higgsinos H̃0

u and H̃0
d . Accordingly, χ̃0

1 is a spin 1/2
fermion with weak interactions only. Its mass meχ0

1
de-

pends on the gaugino mass parameters M1 and M2, on
the ratio of the two MSSM Higgs doublet vacuum ex-
pectation values tanβ, and the higgsino mass param-
eter µ. Expecting meχ0

1
= O(100 GeV), χ̃0

1 is classified
as a weakly interacting massive particle (WIMP).

Motivated by theories of grand unification and su-
pergravity [22], one often assumes universal soft SUSY
breaking parameters at the scale of grand unification
MGUT; cf. [12,20] and references therein. For example,
in the framework of the constrained MSSM (CMSSM),
the gaugino masses, the scalar masses, and the trilin-
ear scalar interactions are assumed to take on the re-
spective universal values m1/2, m0, and A0 at MGUT.
Specifying m1/2, m0, A0, tanβ, and the sign of µ, the
low-energy mass spectrum is given by the renormal-
ization group running from MGUT downwards.

Assuming A0 = 0 for simplicity, the lightest Stan-
dard Model superpartner—or lightest ordinary super-
partner (LOSP)—is either the lightest neutralino χ̃0

1 or
the lighter stau τ̃1, whose mass is denoted by meτ1

. If
the LSP is assumed to be the LOSP, the parameter re-
gion in which meτ1

< meχ0
1

is usually not considered be-
cause of severe upper limits on the abundance of stable
charged particles [4]. However, in gravitino/axino LSP
scenarios, in which the LOSP is the next-to-lightest
supersymmetric particle (NLSP), the τ̃1 LOSP case
is viable and particularly promising for collider phe-
nomenology as will be discussed in Sects. 3 and 4.

In Fig. 1 (from [23]) the dotted (blue in the web ver-
sion) lines show contours of mLOSP in the (m1/2, m0)
plane for A0 = 0, µ > 0, tanβ = 10. Above (be-
low) the dashed line, meχ0

1
< meτ1

(meτ1
< meχ0

1
). The

medium gray and the light gray regions at small m1/2

are excluded respectively by the mass bounds m
eχ±
1

>
94 GeV and mH > 114.4 GeV from chargino and
Higgs searches at LEP [4]. It can be seen that meχ0

1
=

O(100 GeV) appears naturally within the CMSSM.

2.1 Primordial Origin

The χ̃0
1’s were in thermal equilibrium for primordial

temperatures of T > Tf ! meχ0
1
/20. At Tf the an-

nihilation rate of the (by then) non-relativistic χ̃0
1’s

becomes smaller than the Hubble rate so that they
decouple from the thermal plasma. Thus, for T ! Tf ,

Fig. 1. Contours of mLOSP (dotted blue lines) and Y dec
LOSP

(solid black lines) in the (m1/2, m0) plane for A0 = 0,
µ > 0, tan β = 10. Above (below) the dashed line,
meχ0

1
< meτ1

(meτ1
< meχ0

1
). The medium gray and the light

gray regions show the LEP bounds m
eχ±
1

> 94 GeV and

mH > 114.4 GeV, respectively [4]. The contours are ob-
tained with the spectrum generator SuSpect 2.34 [24] us-

ing mt = 172.5 GeV and mb(mb)MS = 4.23 GeV, and with
micrOMEGAs 1.37 [25,26]. From [23].

their yield Yeχ0
1
≡ neχ0

1
/s is given by Y dec

eχ0
1

≈ Y eq
eχ0
1

(Tf),

where n(eq)
eχ0
1

is the (equilibrium) number density of χ̃0
1’s

and s = 2π2 g∗S T 3/45 the entropy density. Depend-
ing on details of the χ̃0

1 decoupling, Y dec
eχ0
1

is very sen-

sitive to the mass spectrum and the couplings of the
superparticles. Indeed, convenient computer programs
such as DarkSUSY [27] or micrOMEGAs 1.37 [25,26] are
available which allow for a numerical calculation of the
LOSP decoupling and the resulting thermal relic abun-
dance in a given SUSY model.

The Y dec
LOSP contours shown by the solid black lines

in Fig. 1 illustrate that the χ̃0
1 LSP yield can easily

vary by more than an order of magnitude. Because of
this sensitivity, the associated thermal relic density

Ωeχ0
1
h2 = meχ0

1
Y dec

eχ0
1

s(T0)h2/ρc (3)

agrees with Ω3σ
dmh2 only in narrow regions in the pa-

rameter space; ρc/[s(T0)h2] = 3.6×10−9 GeV [4]. This
can be seen in Fig. 2 (from [28]) where the black strips
indicate the region with 0.087 ≤ Ωeχ0

1
h2 ≤ 0.138.

Remarkably, it is exactly the small width of the
Ωeχ0

1
= Ωdm regions which could help us to identify

χ̃0
1 dark matter. Once sparticles are produced at col-

liders, the data analysis will aim at determinig the
SUSY model realized in nature [29,30]. For the recon-
structed model, a precise calculation of Ωeχ0

1
is possible

assuming a standard thermal history of the Universe.
Because of the sensitivity of Ωeχ0

1
with respect to the

SUSY model, an agreement of the obtained Ωeχ0
1

with

Stau NLSP

Neutralino NLSP
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Thermal G̃ Production τ̃ NLSP → G̃ + τ
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[Pradler, FDS, ‘07]
see also [Moroi, Murayama, Yamguchi, ’93, 

Asaka, Hamaguchi, Suzuki, ’00, Roszkowski et al.,  ’05,
Cerdeno et al., ’06, FDS ’06, Rychkov, Strumia, ‘07]

see also [Borgani, Masiero, Yamguchi, ’96,
Asaka, Hamaguchi, Suzuki, ’00, Ellis et al.,  ’04,

Feng, Su, Takayama, ’04]

[FDS ’06]

see also [Moroi, Murayama, Yamguchi, ‘93]
[Cerdeno et al., ’06, Rychkov, Stumia, ‘07]
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays

Ω eG = ΩDM

is possible!!!

Thermal G̃ Production τ̃ NLSP → G̃ + τ
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[Pradler, FDS, ’06]
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[... ; Covi, Kim, Roszkowski, ’99; ...]
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays

xlong-lived NLSP

NLSP → G̃ + SM
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Can we probe
Gravitino DM

in experiments?
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Signatures of Gravitinos in Experiments

– Direct Detection of G̃

– Direct Production of G̃

* Decays of charged NLSP’s at the LHC and the ILC

[... ; Buchmüller et al., ’04; Hamaguchi et al., ’04; Feng, Smith, ’05; Martyn, ’06; ...]x
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Thermal G̃ Production τ̃ NLSP → G̃ + τ
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[... ; Covi, Kim, Roszkowski, ’99; ...]

long-lived NLSP
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Tevatron

7/28/2007 Yuri Gershtein, SUSY07 8

Charged Massive “Stable” Particles
No excess, set limits

GMSB line (Snowmass slope D)

M=2!, N5=3, tan"=15, sign µ > 0

AMSB Gauginos

M1=3M2, M3=500, µ=10 TeV

tan " = 15, M(squark) = 800 GeV
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proton proton

stau

stau

particle detectorLHC
2009

Gravitino DM @ LHC Stau NLSP

Very different from the large ETmiss signal of Neutralino DM

The signal: 
jets + leptons

 

 + 2 “stable” 
charged particles
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[from P. Zalewski’s Talk, SUSY 2007]
Piotr Zalewski, SUSY07, Karlsruhe, 2007/07/28 Search for GMSB NLSPs at LHC p. 3/21

CMS: τ̃1 NLSP: long-lived charged

!"#$%&'(%&))* +,%-$./0.(%1213)*(%405#65"78 9'

!"#$%&'(%!)*)%+),-%...

!"#$#%"&'()*)'+,",-,(+".

/,')*(0"1,+2"34"5"6678"9:78";7"<,=

>34"5"6;7"<,=

!"#

“Stable” Charged Massive Particle @ LHC

Long-Lived Stau NLSP
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Signatures of Gravitinos in Experiments

– Direct Detection of G̃

– Direct Production of G̃

* Decays of charged NLSP’s at the LHC and the ILC

[... ; Buchmüller et al., ’04; Hamaguchi et al., ’04; Feng, Smith, ’05; Martyn, ’06; ...]x

proton proton

stau

stau

particle detectorLHC
2009

stau

stau

additional
detector
material

ILC

electron positron

 gravitino
tau

particle detector20??

tau
photon

gravitino

“stable” charged sparticles long-lived charged sparticles* *
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... + eτ decay analysis: m eG, MPl (?), ...

BBN

CMB

γ rays
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Does your theory

allow for 

successful BBN?
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Thermal G̃ Production τ̃ NLSP → G̃ + τ
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long-lived NLSP
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Big-Bang Nucleosynthesis and Cosmological Constraints
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Figure 20.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard
model of big-bang nucleosynthesis. Boxes indicate the observed light element
abundances (smaller boxes: 2σ statistical errors; larger boxes: ±2σ statistical and
systematic errors). The narrow vertical band indicates the CMB measure of the
cosmic baryon density. See full-color version on color pages at end of book.

20.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He, and 7Li, which are
essentially determined by t ∼ 180 s. Abundances are however observed at much later

July 14, 2006 10:37

[Particle Data Book 2006]
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Figure 20.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard
model of big-bang nucleosynthesis. Boxes indicate the observed light element
abundances (smaller boxes: 2σ statistical errors; larger boxes: ±2σ statistical and
systematic errors). The narrow vertical band indicates the CMB measure of the
cosmic baryon density. See full-color version on color pages at end of book.

20.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He, and 7Li, which are
essentially determined by t ∼ 180 s. Abundances are however observed at much later

July 14, 2006 10:37

[Particle Data Book 2006]

SBBNDeriving this formula I used the relations (19) with κ ! 1.11, and (28); the obtained equation
was solved by iterations assuming that 10−1 < η10 < 10.

After deuterium abundance reaches the value given by (34) everything proceeds very fast.
In fact, if η10 = 1 then according to (28) the equilibrium concentration XD should increase from
10−4 to 10−2 when the temperature drops from 0.08 MeV to 0.07 MeV . This increase of XD

means that the reaction rates converting the deuterium to more heavy elements, which are pro-
portional to X2

D, at T ∼ 0.07 MeV become 104 times bigger than the rate of the expansion. It is
clear that this system is far from the equilibrium and the deuterium supplied by pn−reactions “is
converted” very fast to more heavy elements. This doesn’t allow the deuterium concentration to
increase to the values bigger than 10−2. The details of the nonequilibrium processes are described
by a complicated system of kinetic equations which can be solved only numerically. In Fig.2 the
results of numerical calculations for the time evolution of the element abundances in the universe
with ΩBh2

75 ! 5 × 10−2 are shown [5].

Below I present the calculations which explain the time behavior of these abundances and
derive the formulae for the final freeze-out abundances of light elements up to 7Be. This includes
4He, deuterium (D) , helium-3 (3He) , tritium (T ) , Lithium-7 (7Li) and Beryllium (7Be) . The
other light elements as, for instance, 8Li, 8B etc. are produced in very small amounts and will
be ignored.

The most important nuclear reactions involving the light elements are schematically de-
picted in Fig.1, which I recommend to keep in front of the eyes reading the rest of the paper.
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He T
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  4

7  
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figure 1

In this Figure to every element corresponds its own ”reservoir” . All these ”reservoirs”
are connected by ”one-way-pipes”. Every ”pipe” corresponds to an appropriate nuclear reaction.
I write only the initial elements involved in the reaction, since the outcome can be easy inferred

10

the concentration XD ! 10−2 is reached very fast after t(i), namely, when the temperature drops
from 0.08 MeV to 0.07 MeV (for η10 = 1) , that is, with

∆t ! 2t(i)
∆T

T (i)
! 50 sec (39)

time delay after t(i). When this concentration is reached the two-body DD−deuterium destruction
become more efficient than the pn−deuterium production and XD begins to decrease10 (see Fig.2).

figure 2

The concentration of the free neutrons during this period strongly decreases and they go
first to the ”deuterium reservoir” and then proceed further ”through the pipes” forming heavy
elements. For most neutrons the “final destination” is the ”4He−reservoir”.

Why it is so can be understood even without analyzing the rates of the intermediate
reactions. Actually, if 4He would be in the equilibrium with the other light elements it would
be dominating at low temperatures because of its high binding energy (28.3 MeV ) , which is
four times bigger than the binding energies of the intermediate elements, 3He (7.72 MeV ) and
T (6.92 MeV ). The system which is away from equilibrium always tends there in a quickest
possible way. Therefore, most of the free neutrons will be capture into 4He−nuclei because its
equilibrium demand is the highest.

The reactions proceed in the following way. First, the deuterium is converted into 3He
and T in reactions (29). After that tritium interacts with deuterium and produce the helium-4

10The deuterium photo-destruction can be completely neglected after that. It is clear if we note that if there
would be only photo-destruction processes alone then the deuterium concentration would continue to increase.

12

[Burles et al., ’99]

[V. Mukhanov, ’04]
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Figure 20.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard
model of big-bang nucleosynthesis. Boxes indicate the observed light element
abundances (smaller boxes: 2σ statistical errors; larger boxes: ±2σ statistical and
systematic errors). The narrow vertical band indicates the CMB measure of the
cosmic baryon density. See full-color version on color pages at end of book.

20.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He, and 7Li, which are
essentially determined by t ∼ 180 s. Abundances are however observed at much later

July 14, 2006 10:37

[Particle Data Book 2006]
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Figure 20.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard
model of big-bang nucleosynthesis. Boxes indicate the observed light element
abundances (smaller boxes: 2σ statistical errors; larger boxes: ±2σ statistical and
systematic errors). The narrow vertical band indicates the CMB measure of the
cosmic baryon density. See full-color version on color pages at end of book.

20.2. Light Element Abundances

BBN theory predicts the universal abundances of D, 3He, 4He, and 7Li, which are
essentially determined by t ∼ 180 s. Abundances are however observed at much later

July 14, 2006 10:37

[Particle Data Book 2006]
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Catalyzed BBN   [Pospelov, ’06]
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CBBN of 9Be: [Pospelov, ’07; Pospelov, Pradler, FDS, ’08]  

[Cyburt et al., ‘06;  FDS, ’06; Pradler, FDS, ’07;
Hamaguchi et al., ’07; Kawasaki, Kohri, Moroi, ’07;  
Takayama, ’07;  Jedamzik, ’07;  Pradler, FDS, ’08]
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[Pospelov, Pradler, FDS, ’08]  

Current Status of (C)BBN Constaints

Constraints from the catalysis of 9Be

The long-lived stau as thermal relic, IMPRS seminar Josef Pradler, MPI für Physik

• 9Be and 6Li constraints “on
top”: both are catalyzed at

T ! 8 keV

• Qualitative difference:
9Be can be considered to be
more robust observationally

This plot assumes

Yeτ1
! 7×10−14

( meτ1

100 GeV

)

→ generic?

disfavored
by

cosmological
constraints

see also [FDS, hep-ph/0611027]
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Why are the

cosmological 
constraints

so important?



  Frank D. Steffen   (Max-Planck-Institute of Physics, Munich) Dark Matter Candidates 52

proton proton

stau

stau

particle detectorLHC
2009

  Frank D. Steffen   (Max-Planck-Institute of Physics, Munich) Dark Matter in Cosmology and at Colliders

[FDS, hep-ph/0611027] x

Cosmological Constraints — ΩDM & BBN

−→ Talk by Josef Pradler (Kosmologie II, T 408.3, Do 17:21)

disfavored
by

cosmological
constraints
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’

Cosmological Constraints

Gravitino DM @ LHC Stau NLSP

[FDS, ’06, FDS, hep-ph/0611027]

[Pradler, FDS, arXiv:0710.4548]

Very different from the large ETmiss signal of Neutralino DM

The signal: 
jets + leptons

 

 + 2 “stable” 
charged particles

di
sf

av
or

ed

allowed

[Pospelov, Pradler, FDS, arXiv:0807.4287]
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Dark Matter

  
Axino LSP
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Supersymmetric Dark Matter Candiates

LSP ID mass interaction

lightest neutralino eχ0
1

eB, fW, eH0
u, eH0

d O(100 GeV) g, g’

∈ MSSM mixture M1,M2, µ, tanβ weak

MW ∼ 100 GeV

gravitino eG superpartner of eV − TeV
“

p
MPl

”n

∗ gravity the graviton SUSY breaking extremely weak

* local SUSY MPl = 2.44 × 1018 GeV

axino ea superpartner of ???
“

p
fa

”n

∗ strong CP the axion model extremely weak

fa ! 109 GeV
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... BBN + eτ decay analysis: m eG, MPl (?)

ea
“

p
fa

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

fa ! 109 GeV ... BBN + eτ decay analysis: mã, fa
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Thermal G̃ Production τ̃ NLSP → G̃ + τ
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[...; Bolz, Brandenburg, Buchmüller, ’01]

[Pradler, FDS, ’06]

[... ; Borgani, Masiero, Yamaguchi, ’96; ...]

[... ; Covi, Kim, Roszkowski, ’99; ...]

Upper Bounds on TR from Thermal Production of ã/G̃’s
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Gravitino Dark Matter: Constraints

CDM←(mã, TR)≈(100 keV, 106 GeV)

HDM←(mã, TR)≈(100 eV , 109 GeV)

CDM←(m eG, TR)≈(10 MeV , 106 GeV)

CDM←(m eG, TR)≈(100 GeV, 109 GeV)

[ ... ; Brandenburg, FDS, ’04] [ ... ; Pradler, FDS, hep-ph/0612291]

a a

a
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[Brandenburg, FDS, ‘04]
see also [Covi et al., ’01] 

identical to the 
gravitino case
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LSP Dark Matter: Production, Constraints, Experiments

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... BBN + eτ decay analysis: m eG, MPl (?)

ea
“

p
fa

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

fa ! 109 GeV ... BBN + eτ decay analysis: mã, fa
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proton proton

stau

stau

particle detectorLHC
2009

stau

stau

additional
detector
material
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electron positron

axino
tau

particle detector20??

tau
photon

axino
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Can one distinguish between

ã LSP and G̃ LSP

x experimentally? x
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[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, ’05]

Can one distinguish between the ã/G̃ LSP Scenarios?

• Lifetime of the NLSP ←− Assumption: τ̃R = NLSP & χ̃0 ≈ B̃

ã = LSP

τ ã LSP
eτ ←− meτ , m eB, mã, fa

O(0.01 sec) ! τ ã LSP
eτ ! O(10 h)

↑ ↑

fa ∼ 109 GeV fa ∼ 1012 GeV

G̃ = LSP

τ
eG LSP

eτ ←− meτ , m eB, m eG

O(10−8 sec) ! τ
eG LSP

eτ ! O(15 y)

↑ ↑

m eG ∼ 1 keV m eG ∼ 50 GeV

Very Short/Very Long Lived NLSP → G̃ LSP Scenario
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stau

stau

additional
detector
material

ILC

electron positron

axino/gravitino

tau

particle detector20??

tau
photon

axino/gravitino

3-Body Decays
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The 3-Body Decays τ̃R → τ + γ + ã/G̃ x

ã = LSP: τ̃R → τ + γ + ã G̃

τ̃R
γ

τ

τ

τ̃R
τ̃R

γ

τ

τ̃R
γ

τ

τ̃R

τ

γ

˜B

ã

ã

ã

ã

γ, Z

τ̃R ˜B

d2Γ(τ̃R → τ γ ã)

dxγ d cos θ
= ...

G̃ = LSP: τ̃R → τ + γ + G̃

τ̃R
γ

τ

τ

τ̃R
τ̃R

γ

τ

τ̃R
γ

τ

τ̃R

τ

γ

˜B

˜G

˜G

˜G

˜G

d2Γ(τ̃R → τ γ G̃)

dxγ d cos θ
= ...

photon

axino/gravitino

tau
θ xγ
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Differential Distribution of the Visible Decay Products

 axino signature

[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, ’05]

ã LSP → Peccei–Quinn Scale fa & Axino Mass mã

! Assumption: τ̃R NLSP & χ̃0 " B̃

• 2-Body Decay τ̃R → τ +ã γ, Z

ã

τ

τ

˜B

ã

τ

˜B γ, Z

τ̃R

τ̃R τ̃R

• NLSP Lifetime τeτ ≈ 1
Γ(eτR→τ ã)

Γ(τ̃R→τ ã) " ξ2 (25 sec)−1C2
aYY

(
1−

m2
ea

m2
eτ

)( meτ

100 GeV

)(1011 GeV

fa

)2( mB̃

100 GeV

)2

• Peccei–Quinn Scale fa ←− NLSP Lifetime τeτ ≈ 1/Γ(τ̃R → τ ã)

f2
a "

( τeτ

25 sec

)
ξ2 C2

aYY

(
1 −

m2
ea

m2
eτ

) ( meτ

100 GeV

) ( mB̃

100 GeV

)2 (
1011 GeV

)2

• Axino Mass mã =
√

m2
eτ + m2

τ − 2meτEτ ←− Kinematics

hadronic (KSVZ) axion model
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[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, ’05]

ã LSP → Peccei–Quinn Scale fa & Axino Mass mã

! Assumption: τ̃R NLSP & χ̃0 " B̃

• 2-Body Decay τ̃R → τ +ã γ, Z
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• Axino Mass mã =
√

m2
eτ + m2

τ − 2meτEτ ←− Kinematics

hadronic (KSVZ) axion model
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[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, ’05]

ã LSP → Peccei–Quinn Scale fa & Axino Mass mã
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√

m2
eτ + m2

τ − 2meτEτ ←− Kinematics

hadronic (KSVZ) axion model
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[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, ’05]

ã LSP → Peccei–Quinn Scale fa & Axino Mass mã
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ã
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[Raffelt, ’06]
Bounds on the Peccei-Quinn Scale

Astrophysical Axion Bounds 15
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Fig. 3. Summary of astrophysical
and cosmological axion limits as dis-
cussed in the text. The black sensitiv-
ity bars indicate the search ranges of
the CAST solar axion search and the
ADMX search for galactic dark matter
axions. Light-grey exclusion bars are
very model dependent

The requirement that the neutrino signal of SN 1987A was not excessively
shortened by axion losses pushes the limits down to ma ! 10 meV. However,
this limit involves many uncertainties that are difficult to quantify so that
it is somewhat schematic. The CAST search for solar axions [46] covers new
territory in the parameter plane of ma and gaγγ , but a signal would represent
a conflict with the SN 1987A limit. While this limit certainly suggests that
axions more plausibly have masses relevant for cold dark matter, a single
argument, measurement or observation is never conclusive.

In the DFSZ model, the limits from white-dwarf cooling based on the
axion-electron interaction and those from SN 1987A from the axion-nucleon
interaction are quite similar. Therefore, axion emission could still play an
important role as an energy-loss channel of both SNe and white dwarfs and
for other evolved stars, e.g. asymptotic giant stars.

In summary, axions provide a show-case example for the fascinating inter-
play between astrophysics, cosmology and particle physics to solve some of
the deepest mysteries at the interface between inner space and outer space.

Astrophysical Axion Bounds

Bounds from Axion Searches

Is the value of 
the Peccei-Quinn scale

inferred from axino 
searches consistent

with astrophysical axion 
bounds and results from

axion searches?

Cosmological Axion Bounds
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[Raffelt, ’06]
Bounds on the Peccei-Quinn Scale

Astrophysical Axion Bounds 15
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Fig. 3. Summary of astrophysical
and cosmological axion limits as dis-
cussed in the text. The black sensitiv-
ity bars indicate the search ranges of
the CAST solar axion search and the
ADMX search for galactic dark matter
axions. Light-grey exclusion bars are
very model dependent

The requirement that the neutrino signal of SN 1987A was not excessively
shortened by axion losses pushes the limits down to ma ! 10 meV. However,
this limit involves many uncertainties that are difficult to quantify so that
it is somewhat schematic. The CAST search for solar axions [46] covers new
territory in the parameter plane of ma and gaγγ , but a signal would represent
a conflict with the SN 1987A limit. While this limit certainly suggests that
axions more plausibly have masses relevant for cold dark matter, a single
argument, measurement or observation is never conclusive.

In the DFSZ model, the limits from white-dwarf cooling based on the
axion-electron interaction and those from SN 1987A from the axion-nucleon
interaction are quite similar. Therefore, axion emission could still play an
important role as an energy-loss channel of both SNe and white dwarfs and
for other evolved stars, e.g. asymptotic giant stars.

In summary, axions provide a show-case example for the fascinating inter-
play between astrophysics, cosmology and particle physics to solve some of
the deepest mysteries at the interface between inner space and outer space.

Astrophysical Axion Bounds

Bounds from Axion Searches

Is the value of 
the Peccei-Quinn scale

inferred from axino 
searches consistent

with astrophysical axion 
bounds and results from

axion searches?

Agreement between
Axion & Axino Searches

Strong Hint for the
Axino LSP

Cosmological Axion Bounds



  Frank D. Steffen   (Max-Planck-Institute of Physics, Munich) Dark Matter Candidates

Supersymmetric Dark Matter Candidates

LSP interaction production constraints experiments

eχ0
1 g, g’ WIMP ← cold indirect detection (EGRET, GLAST, ...)

weak freeze out direct detection (CRESST, EDELWEISS, ...)

MW ∼ 100 GeV prod.@colliders (Tevatron, LHC, ILC, ...)

eG
“

p
MPl

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

MPl = 2.44 × 1018 GeV ... BBN + eτ decay analysis: m eG, MPl (?)

ea
“

p
fa

”n
therm. prod. ← cold eτ prod. at colliders (LHC, ILC, ...)

extremely weak NLSP decays ← warm + eτ collection

fa ! 109 GeV ... BBN + eτ decay analysis: mã, fa
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