# Dark Matter Candidates

# **Frank Daniel Steffen**





Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

# CRESST-GERDA-FCD-ZEUS Chat @ MPP April 24th, 2009

# Why is **Dark Matter** an exciting topic?

# Our present picture of the Universe



95% of the energy content of the Universe cannot reside in Standard Model particles

# There is striking

# evidence for

Dark Matter ...

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

#### $\Box$ Spiral Galaxies

\* Rotation Curves



The gravity of the visible matter in the Galaxy is not enough to explain the high orbital speeds of stars in the Galaxy. For example, the Sun is moving about 60 km/sec too fast. The part of the rotation curve contributed by the visible matter only is the bottom curve. The discrepancy between the two curves is evidence for a **dark matter hab**.



#### $\Box$ Spiral Galaxies

- \* Rotation Curves
- (Super-) Clusters of Galaxies Galaxy Velocities  $\leftrightarrow$  X-Rays \* \* Weak Gravitational Lensing \* Strong Gravitational Lensing PATH OF LIGHT AROUND DARK MATTER DISTANT OBSERVED SKY



- $\Box$  Spiral Galaxies
  - \* Rotation Curves
- $\Box$  (Super-) Clusters of Galaxies
  - \* Galaxy Velocities  $\leftrightarrow$  X-Rays
  - \* Weak Gravitational Lensing
  - \* Strong Gravitational Lensing

Large Scale Structure

\* Structure Formation







Dark Matter Candidates

#### Spiral Galaxies

- Rotation Curves
- (Super-) Clusters of Galaxies
  - Galaxy Velocities  $\leftrightarrow$  X-Rays
  - \* Weak Gravitational Lensing
  - Strong Gravitational Lensing
- Large Scale Structure
  - Structure Formation





# What is

# the identity of Dark Matter ?

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

# **Properties of Dark Matter**

• stable or lifetime well above

the age of our Universe

- electrically neutral
- clusters —
- "cold"
- dissipationless
- color neutral





#### The Standard Model

| GAUGE    | Gauge bosons                   | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|----------|--------------------------------|----------------------------------------------------------------------------|
| B-boson  | $A^{(1)}_{\mu} = B_{\mu}$      | $( {f 1} , {f 1})_0$                                                       |
| W-bosons | $A^{(2)a}_{\mu} = W^a_{\mu}$   | $({f 1},{f 3})_0$                                                          |
| gluon    | $A^{(3)a}_{\mu} = G^{a}_{\mu}$ | $({f 8},{f 1})_0$                                                          |

| MATTER                      | Fermions                                                          | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| leptons $I = 1, 2, 3$       | $L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$ | $( {f 1}, {f 2})_{-1}$                                                     |
|                             | $E^{cI} = e_R^{-cI}$                                              | $({f 1},{f 1})_{+2}$                                                       |
| quarks $I = 1, 2, 3$        | $Q^I = egin{pmatrix} u^I_L \ d^I_L \end{pmatrix}$                 | $\left({f 3},{f 2} ight)_{+rac{1}{3}}$                                    |
| $(\times 3 \text{ colors})$ | $U^{cI} = u_R^{cI}$                                               | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                                     |
|                             | $D^{cI} = d_R^{cI}$                                               | $(\overline{f 3},{f 1})_{+rac{2}{3}}$                                     |

| HIGGS | Higgs Boson                                             | $\left(\mathrm{SU}(3)_{\mathrm{C}},\mathrm{SU}(2)_{\mathrm{L}}\right)_{Y}$ |
|-------|---------------------------------------------------------|----------------------------------------------------------------------------|
| Higgs | $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                                       |

# Properties of Neutrino Dark Matter

- stable  $\rightarrow \tau_{\rm DM} \gtrsim$  age of our Universe
- clusters  $\leftarrow$  gravitation
- fast "hot"
- electrically neutral
- color neutral



[Yvonne Y.Y.Wong et al.]  $\sum_i m_{\nu_i} \lesssim \mathcal{O}(1 \text{ eV})$ 

# Neutrino Dark Matter = Hot Dark Matter in conflict with Large Scale Structure

# **Dark Matter**

# Physics beyond the Standard Model

# Supersymmetry

| GAUGE                           | Gauge bosons                                                                                          | Gauginos                                                                                           | $(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}})_{\mathrm{V}}$ |                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|
| B-boson, bino                   | $A^{(1)}_{\mu} = B_{\mu}$                                                                             | $\lambda^{(1)} = \widetilde{B}$                                                                    | $(1,1)_0$                                                                 | Minimal                  |
| W-bosons, winos                 | $A^{(2)a}_{\mu} = W^{a}_{\mu}$                                                                        | $\lambda^{(2)a} = \widetilde{W}^a$                                                                 | $({f 1},{f 3})_0$                                                         | Supersymmetric           |
| gluon, gluino                   | $A^{(3)a}_{\mu} = G^a_{\mu}$                                                                          | $\lambda^{(3)a} = \widetilde{g}^a$                                                                 | $({f 8},{f 1})_0$                                                         | Extension                |
| MATTER                          | Sfermions                                                                                             | Fermions                                                                                           | $\left(\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}} ight)_{Y}$ | of the<br>Standard Madal |
| sleptons, leptons $I = 1, 2, 2$ | $\widetilde{L}^{I} = \begin{pmatrix} \widetilde{\nu}_{L}^{I} \\ \widetilde{e}_{L}^{-I} \end{pmatrix}$ | $L^{I} = \begin{pmatrix} \nu_{L}^{I} \\ e_{L}^{-I} \end{pmatrix}$                                  | $( {f 1}, {f 2})_{-1}$                                                    | Standard Model           |
| I = 1, 2, 3                     | $\widetilde{E}^{*I} = \widetilde{e}_R^{-*I}$                                                          | $E^{cI} = e_R^{-cI}$                                                                               | $({f 1},{f 1})_{+2}$                                                      |                          |
| squarks, quarks $I = 1, 2, 3$   | $\widetilde{Q}^{I} = egin{pmatrix} \widetilde{u}_{L}^{I} \ \widetilde{d}_{L}^{I} \end{pmatrix}$       | $Q^I = \begin{pmatrix} u_L^I \\ d_L^I \end{pmatrix}$                                               | $({f 3},{f 2})_{+{1\over 3}}$                                             |                          |
| $(\times 3 \text{ colors})$     | $\widetilde{U}^{*I} = \widetilde{u}_R^{*I}$                                                           | $U^{cI} = u_R^{cI}$                                                                                | $(\overline{f 3},{f 1})_{-rac{4}{3}}$                                    | <b>Every Particle</b>    |
|                                 | $\widetilde{D}^{*I} = \widetilde{d}_R^{*I}$                                                           | $D^{cI} = d_R^{cI}$                                                                                | $({f \overline{3}},{f 1})_{+{2\over 3}}$                                  | of the                   |
| Higgs, higgsinos                | $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$                                                  | $\widetilde{H}_d = \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$           | $({f 1},{f 2})_{-1}$                                                      | Standard Model           |
|                                 | $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$                                                  | $\widetilde{H}_{u} = \begin{pmatrix} \widetilde{H}_{u}^{+} \\ \widetilde{H}_{u}^{0} \end{pmatrix}$ | $({f 1},{f 2})_{+1}$                                                      | nas a<br>Superpartner    |

## Conservation of R-Parity

- superpotential:  $W_{\text{MSSM}} \leftarrow W_{\Delta L} + W_{\Delta B}$
- non-observation of L & B violating processes (proton stability, ...)
- postulate conservation of R-Parity  $\leftarrow$  multiplicative quantum number



The lightest supersymmetric particle (LSP) is stable!!!

# Why Supersymmetry?



| Supersymmetric Dark Matter Candidates |                                                                                  |                                      |                                                                                   |                                                                                                                                                   |  |  |
|---------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LSP                                   | interaction                                                                      | n production constraints experiments |                                                                                   |                                                                                                                                                   |  |  |
| $\widetilde{\chi}_1^0$                | g, g'                                                                            | WIMP                                 | $\leftarrow \text{cold}$                                                          | indirect detection (EGRET, GLAST,)                                                                                                                |  |  |
|                                       | weak $M_{ m W} \sim 100~{ m GeV}$                                                | freeze out                           |                                                                                   | direct detection (CRESST, EDELWEISS,)<br>prod.@colliders (Tevatron, LHC, ILC,)                                                                    |  |  |
| $\widetilde{G}$                       | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak                             | therm. prod.<br>NLSP decays          | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm} \end{array}$ | $\widetilde{	au}$ prod. at colliders (LHC, ILC,)<br>+ $\widetilde{	au}$ collection                                                                |  |  |
|                                       | $\mathrm{M}_{Pl} = 2.44 \times 10^{18}  \mathrm{GeV}$                            |                                      | BBN                                                                               | + $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?)                                                                            |  |  |
| ã                                     | $\left(rac{p}{f_a} ight)^n$<br>extremely weak<br>$f_a \gtrsim 10^9 \; { m GeV}$ | therm. prod.<br>NLSP decays<br>      | ← cold<br>← warm<br>BBN                                                           | $\widetilde{	au}$ prod. at colliders (LHC, ILC,)<br>+ $\widetilde{	au}$ collection<br>+ $\widetilde{	au}$ decay analysis: $m_{\tilde{a}}$ , $f_a$ |  |  |

# **Dark Matter**

# Neutralino LSP

#### Supersymmetric Dark Matter Candiates















Frank D. Steffen (Max-Planck-Institute of Physics, Munich)



| LSP                    | interaction | production     | constraints              | experiments                                                                               |
|------------------------|-------------|----------------|--------------------------|-------------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'       | WIMP           | $\leftarrow \text{cold}$ | • indirect detection (EGRET, GLAST,)                                                      |
|                        | weak        | freeze out     |                          | neutralino pair annihilation                                                              |
|                        | to 10       | noutrali       |                          | $\widetilde{\chi}_1^0  \widetilde{\chi}_1^0 \to \mathrm{SM}_1  \mathrm{SM}_2$             |
| pro                    |             |                | no                       | • direct detection (CRESST, EDELWEISS,)                                                   |
|                        |             | - Standa       | well.                    | elastic neutralino scattering                                                             |
|                        |             | Mode           |                          | $\widetilde{\chi}_1^0 \operatorname{A} \to \widetilde{\chi}_1^0 \operatorname{A}$         |
|                        |             | <b>particl</b> | es                       | • prod.@colliders (Tevatron, LHC, ILC,)                                                   |
| pro                    | ton i r     | neutralino     |                          | neutralino pair production                                                                |
|                        |             |                |                          | $\mathrm{p}\mathrm{p} ightarrow \widetilde{\chi}^0_1\widetilde{\chi}^0_1$ (Tevatron, LHC) |
| D0 `                   |             |                |                          | $e^+ e^-  ightarrow \widetilde{\chi}^0_1  \widetilde{\chi}^0_1 \dots  {}_{ m (ILC)}$      |
| C                      | <b>1</b> S  | LAS            |                          | •••                                                                                       |

## **Neutralino DM Production at the LHC**



# **Collider Searches**



pp @ 14 Te



Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

# ... however, SUSY phenomenology might look very different ...

# **Dark Matter**

# **Gravitino LSP**

## Supersymmetric Dark Matter Candiates

|                                | LSP                              | ID                                                                              | spin                 | mass                                                                                               | interaction                                                                                        |
|--------------------------------|----------------------------------|---------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| lightest neutralino $\in MSSM$ | $\widetilde{\chi}_1^0$           | $\widetilde{B}, \widetilde{W}, \widetilde{H}_u^0, \widetilde{H}_d^0$<br>mixture | $\frac{1}{2}$        | $\mathcal{O}(100 \; { m GeV})$ $M_1, M_2, \mu, 	aneta$                                             | g, g'<br>weak                                                                                      |
| gravitino<br>* gravity         | $\widetilde{G}$                  | superpartner of<br>the graviton                                                 | $\frac{3}{2}$        | eV – TeV<br>SUSY breaking                                                                          | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak                                               |
|                                | gauge                            | -MSB gi                                                                         | ravity<br>gaugii     | $m_{\widetilde{G}} \sim \sum_{I} \frac{\langle F_I \rangle}{M_{\rm Pl}} + 2$<br>-MSB all<br>no-MSB | $\sum_{A} \frac{\langle D_A \rangle}{M_{Pl}} \sim \frac{M_{SUSY}^2}{M_{Pl}}$ nomaly-MSB mirage-MSB |
|                                | light<br>gravitino<br>I eV-I GeV |                                                                                 | weak<br>grav<br>0.01 | c-scale<br>vitino<br>- I TeV                                                                       | heavy<br>gravitino<br>I-100 TeV                                                                    |

#### LSP Dark Matter: Production, Constraints, Experiments

| LSP                    | interaction                  | production         | constraints       | experiments                                                                 |
|------------------------|------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'<br>weak                | WIMP<br>freeze out | $\leftarrow$ cold | indirect detection (EGRET, GLAST,)<br>direct detection (CRESST, EDELWEISS,) |
|                        | $M_{ m W} \sim 100~{ m GeV}$ |                    |                   | prod.@colliders (Tevatron, LHC, ILC,)                                       |







#### LSP Dark Matter: Production, Constraints, Experiments

| LSP                    | interaction                                       | production     | constraints              | experiments                                          |
|------------------------|---------------------------------------------------|----------------|--------------------------|------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'                                             | WIMP           | $\leftarrow \text{cold}$ | indirect detection (EGRET, GLAST,)                   |
|                        | weak                                              | freeze out     |                          | direct detection (cresst, edelweiss, $\dots$ )       |
|                        | $M_{\rm W} \sim 100~{\rm GeV}$                    |                |                          | prod.@colliders (Tevatron, LHC, ILC,)                |
|                        |                                                   |                |                          |                                                      |
| $\widetilde{G}$        | $\left(rac{p}{\mathrm{M}_{\mathrm{Pl}}} ight)^n$ | therm. prod.   | $\leftarrow \text{cold}$ |                                                      |
|                        | extremely weak                                    | NLSP decays    | $\leftarrow$ warm        | $\begin{bmatrix} -2 \\ -2 \\ -3 \\ -3 \end{bmatrix}$ |
| Ν                      | $I_{\rm Pl} = 2.44 \times 10^{18}  {\rm GeV}$     |                |                          | $\overrightarrow{\mathbb{X}}_{-4}$ T < 10 GeV        |
| NLS                    | SP Candidates                                     | • lightest neu | ıtralino                 |                                                      |
|                        |                                                   | • lighter stau |                          | -6 NLSP<br>freeze out                                |
|                        |                                                   | • lighter stop |                          | $-8 \frac{100}{1} \frac{100}{100} \frac{1000}{1000}$ |
|                        |                                                   | • lightest sne | utrino                   | $x^{-1} = m_{\chi}/T$ (time $\rightarrow$ )          |

Frank D. Steffen (Max-Planck-Institute of Physics, Munich)
| LSP                    | interaction                                       | production     | constraints              | experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|---------------------------------------------------|----------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'                                             | WIMP           | $\leftarrow \text{cold}$ | indirect detection (EGRET, GLAST,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | weak                                              | freeze out     |                          | direct detection (cresst, edelweiss, $\dots$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | $M_{ m W} \sim 100~{ m GeV}$                      |                |                          | prod.@colliders (Tevatron, LHC, ILC,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                                                   |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\widetilde{G}$        | $\left(rac{p}{\mathrm{M}_{\mathrm{Pl}}} ight)^n$ | therm. prod.   | $\leftarrow \text{cold}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | extremely weak                                    | ( NLSP decays  | $\leftarrow$ warm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ν                      | $M_{\rm Pl} = 2.44 \times 10^{18}  {\rm GeV}$     |                |                          | $ \begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ |
| NL                     | SP Candidates                                     | • lightest neu | Itralino                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| e                      | lectrically<br>charged                            | • lighter stau |                          | -6 NLSP<br>freeze out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                                                   | • lighter stop |                          | $-8 \frac{1}{10} \frac{100}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                                   | • lightest sne | utrino                   | $x^{-1} = m_{\chi}^{/T}$ (time $\rightarrow$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |





Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

| LSP                    | interaction                    | production | constraints              | experiments                                    |
|------------------------|--------------------------------|------------|--------------------------|------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'                          | WIMP       | $\leftarrow \text{cold}$ | indirect detection (EGRET, GLAST,)             |
|                        | weak                           | freeze out |                          | direct detection (cresst, edelweiss, $\dots$ ) |
|                        | $M_{\rm W} \sim 100~{\rm GeV}$ |            |                          | prod.@colliders (Tevatron, LHC, ILC,)          |



| LSP                    | interaction                                          | production                  | constraints                                                                       | experiments                                                                                                          |
|------------------------|------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | ${ m g,\ g'} { m weak} { m M_W} \sim 100 { m ~GeV}$  | WIMP<br>freeze out          | $\leftarrow$ cold                                                                 | indirect detection (EGRET, GLAST,)<br>direct detection (CRESST, EDELWEISS,)<br>prod.@colliders (Tevatron, LHC, ILC,) |
| Ĝ                      | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak | therm. prod.<br>NLSP decays | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm} \end{array}$ | Can we probe<br>Gravitino DM<br>in experiments?                                                                      |
|                        |                                                      |                             | BBN                                                                               |                                                                                                                      |
|                        |                                                      |                             | CMB                                                                               |                                                                                                                      |
|                        |                                                      |                             | $\gamma ~{ m rays}$                                                               |                                                                                                                      |

#### Signatures of Gravitinos in Experiments

- Direct Detection of  $\widetilde{G}$
- Direct Production of  $\widetilde{G}$





#### Very different from the large E<sub>T</sub><sup>miss</sup> signal of Neutralino DM

### "Stable" Charged Massive Particle @ LHC



#### Signatures of Gravitinos in Experiments

- Direct Detection of  $\widetilde{G}$
- Direct Production of  $\widetilde{G}$



[...; Buchmüller et al., '04; Hamaguchi et al., '04; Feng, Smith, '05; Martyn, '06; ...]

| LSF                    | • interaction                                          | production   | constraints              | experiments                                                             |
|------------------------|--------------------------------------------------------|--------------|--------------------------|-------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | $\widetilde{\chi}_1^0$ g, g' WIMP                      |              | $\leftarrow \text{cold}$ | indirect detection (EGRET, GLAST,)                                      |
|                        | weak                                                   | freeze out   |                          | direct detection (cresst, edelweiss, $\dots$ )                          |
|                        | $M_{\rm W} \sim 100~{\rm GeV}$                         |              |                          | prod.@colliders (Tevatron, LHC, ILC,)                                   |
|                        |                                                        |              |                          |                                                                         |
| $\widetilde{G}$        | $\left(\frac{p}{M_{\rm Pl}}\right)^n$                  | therm. prod. | $\leftarrow \text{cold}$ | $\tilde{\tau}$ prod. at colliders (LHC, ILC,)                           |
|                        | extremely weak                                         | NLSP decays  | $\leftarrow$ warm        | $+ \tau$ collection                                                     |
|                        | $\mathrm{M}_{Pl} = 2.44 \times 10^{18} \ \mathrm{GeV}$ |              |                          | + $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?), |
|                        |                                                        |              | BBN                      |                                                                         |
|                        |                                                        |              | CMB                      |                                                                         |
|                        |                                                        |              | $\gamma  { m rays}$      |                                                                         |

| LSP                    | interaction                                                    | production                  | constraints                                                                         | experiments                                                                                                          |
|------------------------|----------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | ${ m g,~g'}$ weak $M_{ m W}\sim 100~{ m GeV}$                  | WIMP<br>freeze out          | $\leftarrow$ cold                                                                   | indirect detection (EGRET, GLAST,)<br>direct detection (CRESST, EDELWEISS,)<br>prod.@colliders (Tevatron, LHC, ILC,) |
| Ĝ                      | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak           | therm. prod.<br>NLSP decays | $ \begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm} \end{array} $ | $\widetilde{\tau}$ prod. at colliders (LHC, ILC,)<br>+ $\widetilde{\tau}$ collection                                 |
|                        | $\mathrm{M}_{\mathrm{Pl}} = 2.44 \times 10^{18}  \mathrm{GeV}$ |                             | BBN<br>CMB                                                                          | + $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?),                                              |

# **Does your theory** allow for successful **BBN**?







Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

#### **Big-Bang Nucleosynthesis**



#### **Big-Bang Nucleosynthesis**





#### Catalyzed BBN [Pospelov, '06]



[Cyburt et al., '06; FDS, '06; Pradler, FDS, '07; Hamaguchi et al., '07; Kawasaki, Kohri, Moroi, '07; Takayama, '07; Jedamzik, '07; Pradler, FDS, '08]

CBBN of 9Be: [Pospelov, '07; Pospelov, Pradler, FDS, '08]

#### [Pospelov, Pradler, FDS, '08]

#### **Current Status of (C)BBN Constaints**



#### Frank D. Steffen (Max-Planck-Institute of Physics, Munich)

## Why are the cosmological constraints so important?

#### Gravitino DM @ LHC - Stau NLSP





#### Very different from the large E<sub>T</sub><sup>miss</sup> signal of Neutralino DM

## **Dark Matter**



#### Supersymmetric Dark Matter Candiates

|                     | LSP                    | ID                                                                   | mass                      | interaction                                       |
|---------------------|------------------------|----------------------------------------------------------------------|---------------------------|---------------------------------------------------|
| lightest neutralino | $\widetilde{\chi}_1^0$ | $\widetilde{B}, \widetilde{W}, \widetilde{H}^0_u, \widetilde{H}^0_d$ | ${\cal O}(100~{ m GeV})$  | g, g'                                             |
| $\in MSSM$          |                        | mixture                                                              | $M_1, M_2, \mu, \tan eta$ | weak                                              |
|                     |                        |                                                                      |                           | $M_{\rm W} \sim 100 {\rm ~GeV}$                   |
|                     |                        |                                                                      |                           |                                                   |
| gravitino           | $\widetilde{G}$        | superpartner of                                                      | eV - TeV                  | $\left(rac{p}{\mathrm{M}_{\mathrm{Pl}}} ight)^n$ |
| * gravity           |                        | the graviton                                                         | SUSY breaking             | extremely weak                                    |
| * local SUSY        |                        |                                                                      | Ν                         | $I_{\rm Pl} = 2.44 \times 10^{18}  {\rm GeV}$     |
| avino               | ã                      | superpartner of                                                      | 777                       | $\left(\underline{p}\right)^n$                    |
| axiiio              | a                      | the arrian                                                           | model                     | $\left(\overline{f_a}\right)$                     |
| * Strong CP         |                        | the axion                                                            | model                     | extremely weak $( > 10^9 \text{ G V})$            |
|                     |                        |                                                                      |                           | $f_a \gtrsim 10^\circ { m GeV}$                   |
|                     |                        |                                                                      |                           |                                                   |

| LSP                    | interaction                                                                                              | production                      | constraints                                                                                     | experiments                                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | ${ m g,\ g'} { m weak} { m M_W} \sim 100 { m ~GeV}$                                                      | WIMP<br>freeze out              | $\leftarrow$ cold                                                                               | indirect detection (EGRET, GLAST,)<br>direct detection (CRESST, EDELWEISS,)<br>prod.@colliders (Tevatron, LHC, ILC,)                                   |
| Ĝ                      | $\left(\frac{p}{M_{\rm Pl}}\right)^n$<br>extremely weak<br>$M_{\rm Pl} = 2.44 \times 10^{18}  {\rm GeV}$ | therm. prod.<br>NLSP decays<br> | $\leftarrow \text{ cold}$ $\leftarrow \text{ warm}$ BBN                                         | $\tilde{\tau}$ prod. at colliders (LHC, ILC,)<br>+ $\tilde{\tau}$ collection<br>+ $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?) |
| ã                      | $\left(\frac{p}{f_a}\right)^n$<br>extremely weak<br>$f_a \gtrsim 10^9 \text{ GeV}$                       | therm. prod.<br>NLSP decays<br> | $\begin{array}{l} \leftarrow \text{ cold} \\ \leftarrow \text{ warm} \\ \text{BBN} \end{array}$ | $\widetilde{\tau}$ prod. at colliders (LHC, ILC,)<br>+ $\widetilde{\tau}$ collection<br>+ $\widetilde{\tau}$ decay analysis: $m_{\tilde{a}}, f_a$      |



| LSP                                       | interaction                           | production   | constraints              | experiments                                                            |
|-------------------------------------------|---------------------------------------|--------------|--------------------------|------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$                    | g, g' WIMP                            |              | $\leftarrow \text{cold}$ | indirect detection (EGRET, GLAST,)                                     |
|                                           | weak                                  | freeze out   |                          | direct detection (CRESST, EDELWEISS, $\dots$ )                         |
|                                           | $M_{ m W} \sim 100~{ m GeV}$          |              |                          | prod.@colliders (Tevatron, LHC, ILC,)                                  |
|                                           |                                       |              |                          |                                                                        |
| $\widetilde{G}$                           | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ | therm. prod. | $\leftarrow \text{cold}$ | $\widetilde{	au}$ prod. at colliders (LHC, ILC,)                       |
|                                           | extremely weak                        | NLSP decays  | $\leftarrow$ warm        | + $\tilde{\tau}$ collection                                            |
| $M_{\rm Pl}=2.44\times 10^{18}~{\rm GeV}$ |                                       |              | BBN                      | + $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?) |
|                                           |                                       |              |                          |                                                                        |
| $\widetilde{a}$                           | $\left(\frac{p}{f_a}\right)^n$        | therm. prod. | $\leftarrow \text{cold}$ | $\widetilde{\tau}$ prod. at colliders (LHC, ILC,)                      |
|                                           | extremely weak                        | NLSP decays  | $\leftarrow \text{warm}$ | $+ \tilde{\tau}$ collection                                            |
|                                           | $f_a \gtrsim 10^9 { m GeV}$           |              | BBN                      | $+ \tilde{\tau}$ decay analysis: $m_{\tilde{a}}, f_a$                  |



### Can one distinguish between

## $\tilde{a}$ LSP and $\widetilde{G}$ LSP

## experimentally?

[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, '05]

Can one distinguish between the  $\tilde{a}/G$  LSP Scenarios?

• Lifetime of the NLSP  $\leftarrow$  Assumption:  $\widetilde{\tau}_R = \text{NLSP} \& \widetilde{\chi}^0 \approx \widetilde{B}$ 

$$\begin{split} \tilde{a} &= \mathrm{LSP} \\ \tau_{\tilde{\tau}}^{\tilde{a}} \, ^{\mathrm{LSP}} \longleftarrow m_{\tilde{\tau}}, m_{\tilde{B}}, m_{\tilde{a}}, f_{a} \\ \mathcal{O}(0.01 \, \, \mathrm{sec}) &\lesssim \tau_{\tilde{\tau}}^{\tilde{a}} \, ^{\mathrm{LSP}} \lesssim \mathcal{O}(10 \, \mathrm{h}) \\ \uparrow & & \uparrow \\ f_{a} \sim 10^{9} \, \mathrm{GeV} \quad f_{a} \sim 10^{12} \, \mathrm{GeV} \end{split} \qquad \begin{split} \widetilde{G} \, \overset{\mathrm{LSP}}{\tau} &\longleftarrow m_{\tilde{\tau}}, m_{\tilde{B}}, m_{\tilde{G}} \\ \mathcal{O}(10^{-8} \, \, \mathrm{sec}) &\lesssim \tau_{\tilde{\tau}}^{\tilde{G}} \, ^{\mathrm{LSP}} \lesssim \mathcal{O}(15 \, \mathrm{y}) \\ \uparrow & & \uparrow \\ m_{\tilde{G}} \sim 1 \, \mathrm{keV} \quad m_{\tilde{G}} \sim 50 \, \mathrm{GeV} \end{split}$$

Very Short/Very Long Lived NLSP  $\rightarrow \widetilde{G}$  LSP Scenario



#### The 3-Body Decays





![](_page_68_Figure_1.jpeg)

Differential Distribution of the Visible Decay Products

![](_page_69_Figure_0.jpeg)

![](_page_70_Figure_0.jpeg)

[Brandenburg, Covi, Hamaguchi, Roszkowski, FDS, '05]

![](_page_71_Figure_1.jpeg)
## [Raffelt, '06] Bounds on the Peccei-Quinn Scale



Bounds from Axion Searches Cosmological Axion Bounds Astrophysical Axion Bounds

> Is the value of the Peccei-Quinn scale inferred from axino searches consistent with astrophysical axion bounds and results from axion searches?

## [Raffelt, '06] **Bounds on the Peccei-Quinn Scale**



**Axino LSP** 

## Supersymmetric Dark Matter Candidates

| LSP                    | interaction                                          | production                  | constraints                                          | experiments                                                                          |
|------------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|
| $\widetilde{\chi}_1^0$ | g, g'                                                | WIMP                        | $\leftarrow \text{cold}$                             | indirect detection (EGRET, GLAST,)                                                   |
|                        | weak                                                 | freeze out                  |                                                      | direct detection (CRESST, EDELWEISS,)                                                |
|                        | $M_{\rm W} \sim 100~{\rm GeV}$                       |                             |                                                      | prod.@colliders (Tevatron, LHC, ILC,)                                                |
|                        |                                                      |                             |                                                      |                                                                                      |
| $\widetilde{G}$        | $\left(\frac{p}{M_{\rm Pl}}\right)^n$ extremely weak | therm. prod.<br>NLSP decays | $\leftarrow \text{cold}$<br>$\leftarrow \text{warm}$ | $\widetilde{\tau}$ prod. at colliders (LHC, ILC,)<br>+ $\widetilde{\tau}$ collection |
|                        | $M_{\rm Pl} = 2.44 \times 10^{18}  {\rm GeV}$        |                             | BBN                                                  | + $\tilde{\tau}$ decay analysis: $m_{\tilde{G}}$ , M <sub>Pl</sub> (?)               |
| ã                      | $\left(\frac{p}{f_a}\right)^n$                       | therm. prod.                | $\leftarrow \text{cold}$                             | $\widetilde{	au}$ prod. at colliders (LHC, ILC,)                                     |
|                        | extremely weak                                       | NLSP decays                 | $\leftarrow$ warm                                    | + $\tilde{\tau}$ collection                                                          |
|                        | $f_a \gtrsim 10^9 { m GeV}$                          |                             | BBN                                                  | $+ \tilde{\tau}$ decay analysis: $m_{\tilde{a}}, f_a$                                |