### Atmospheric Monitoring for Ground-Based Astroparticle Detectors





Martin Will Instituto de Astrofísica de Canarias (IAC)

### **Detection Principle**



### **Detection Principle**

**p**, γ

Development of Air Shower depends on density profile

$$\rho_{air} = \frac{m_{air}}{V} = \frac{p \cdot M_{air}}{R \ T}$$

### Interactions with Atmosphere

cause emission of photons (Fluorescence and Cherenkov)

### **Detection Principle**



#### Atmospheric Monitoring

### **Fluorescence Light**



Radiative transitions to lower states

 $\rightarrow$  Isotropic emission of UV fluorescence light

Non-radiative transition through collisions with (water) molecules
 → Vapor quenching

### **Fluorescence Yield**

$$\frac{dN_{\gamma}}{dX} = \frac{dE_{dep}^{tot}}{dX} \int FY(\lambda, p, T, e) \cdot \tau_{atm}(\lambda, p, T, e) \cdot \epsilon_{FD}(\lambda) d\lambda$$

Reduction of emitted light due to humidity up to 7 km a.s.l.

- Reconstructed energy without consideration of humidity too low
- Small change in shower maximum (dependent on zenith angle)





Martin Will

Atmospheric Monitoring

### Scattering



### **Molecular Atmosphere**

### Effect on produced light

- Shower development depends on density
- Number of Cherenkov photons, Cherenkov threshold
- Fluorescence Yield
- Transmission to detector

$$I_{det} \propto I_{emit} \cdot T_{mol} \cdot T_{aer}$$

Reconstructed energy scales with optical transmission

### **Molecular Atmosphere**



### **Weather Balloon**



### **Weather Station**

- Ground Measurements
  - ► Temperature
  - Pressure
  - Relative humidity
  - Wind speed and direction





### Atmospheric Monitoring

### **Global Data Assimilation System**



- Global measurements and numerical weather prediction
- GDAS data available
  - for whole earth
  - 1° grid (180° x 360°)
  - every 3 hours



Comparison with balloon data validates GDAS for Auger site

#### Atmospheric Monitoring

### **GDAS Advantages**



Improved systematic uncertainty compared to other models

Replacement for balloon launches

 $\rightarrow$  Save money for equipment and personnel

### **GDAS in La Palma**





- Agreement in pressure
- Sys. offset in temperature (~ 2°C ground effects)
- Humidity very dependent on location
- Cheap and reliable data source for CTA





- Aerosol enhancements close to ground and clouds
- Highly variable in altitude and time, scale of hours
- Transmission to detector

$$I_{det} \propto I_{emit} \cdot T_{mol} \cdot T_{aer}$$

Strong energy dependence on cloud height



### **Aerosol Transmission and Clouds**

$$I_{det} \propto I_{emit} \cdot T_{mol} \cdot T_{aer}$$

- Measuring instrument: LIDAR
- Light Detection and Ranging ("Light Radar")
- Different kind of LIDARs
  - Wavelength of scattered light (scatter center, scattering process)
  - Location of laser and detector (collocated or separated)
  - Each with advantages and disadvantages

# **Theory: Elastic LIDAR**



Aerosol backscattering unknown

- Size and number of aerosols unknown
- Need assumptions or scanning



# **Theory: Raman LIDAR**



- Nitrogen backscattering
  - Number density known
  - Low Raman cross section
  - Large amount of light needed



### **Raman LIDAR**

R&D system
 commissioned
 in SE Colorado







### **Raman LIDAR Data**





#### Atmospheric Monitoring

### **Theory: Bi-static LIDAR**





Nd:YAG 355 nm 5–10 mJ



#### Martin Will

## **Bi-static LIDAR (Receiver)**

- 4 vertical columns, 16 PMTs each
- 1° FoV per pixel (old HiRes-II camera)
- UV bandpass filter





- Main assumptions
  - Reference night clear of aerosols
  - Scattering out of beam is dominated by Rayleigh scattering
  - Atmosphere horizontally uniform between laser and FD





Atmospheric Monitoring

### **Bi-static LIDAR Data**



Martin Will

Atmospheric Monitoring

### **Comparison Raman / Bi-static**



### Raman / Bi-static LIDAR at Auger





# **CTA Raman LIDAR**



- Upgrade of Colorado system
  - Continue measurements
  - Characterize site
- Integrate into CTA
  - Move to La Palma 2017
  - Later to southern site
- Minimize impact on CTA measurements





Martin Will

Atmospheric Monitoring

# FRAM (Fotometric Robotic telescope for Atmospheric Monitoring)

### Passive measurement

- Stellar photometry
- 15°×15° FoV, several 100 stars
- Integral extinction
- 10 years experience from Auger

### FRAM for CTA

- Prototype deployment in La Palma
- Aerosol maps in fixed FoV
- Altitude scans for aerosol profiles
- 11 inch MPI telescope for MAGIC
  - Similar characteristics, spectrograph
  - Transmission from spectrum differences of stars
  - Deployed in La Palma before FRAM





### **CTA AllSky Camera**

AllSky camera on MAGIC counting house roof

- Czech construction (also used at Auger)
- 3 different filters (plus no filter)
- ► 60 seconds exposure





### **Cloud Detection**

Star detection with image filter



#### Atmospheric Monitoring

### **Cloud Detection**

Star detection with image filter



#### Atmospheric Monitoring

- Identify single clusters in cloud maps
- Compare position of clusters between images
- Difference is direction movement of clouds



- Identify single clusters in cloud maps
- Compare position of clusters between images
- Difference is direction movement of clouds



- Identify single clusters in cloud maps
- Compare position of clusters between images
- Difference is direction movement of clouds



- Identify single clusters in cloud maps
- Compare position of clusters between images
- Difference is direction movement of clouds
- Potential problems
  - Clouds can change shape
  - Clouds can split or merge
  - Clouds can disappear
- Further improvement
  - Wind speed from GDAS
  - Cloud properties from LIDAR



### **CTA Air Shower Simulations**

Systematic uncertainties in CTA must not exceed 10%

- MAGIC: 11% due to atmosphere
- Auger: 6–7% due to atmosphere (14% total)
- Simulated response functions
  - Need input from atmospheric measurement instruments
  - Fast for online analysis
  - Reliable and precise for offline analysis
- Instrumentation at Northern CTA site
  - Weather stations, wind sensors, rain sensors, …
  - Dust counters, electric field mill, …
  - LIDARs, FRAM, ...

### **Summary**

Atmospheric parameters influence air shower detection

- Density profile influences development
- Cherenkov and fluorescence light production
- Transmission depends on molecular and aerosol scattering

Measurement of atmospheric parameters

- Balloons, weather stations, model data for profiles
- LIDARs and passive photometry for transmission
- Cloud detection using AllSky cameras

### Apply lessons learned for CTA

- Combination of instruments to keep sys. uncertainties at 10%
- New models and unexplored sources for atmospheric data

### **GDAS Data Comparison**



Atmospheric Monitoring

### **Other Data Sources**

| 20:01<br>UT         | Temp.<br>°C | Hum.<br>% | Wspd<br>km/h | Wdir<br>dir. | Press.  | See.* |  |  |  |
|---------------------|-------------|-----------|--------------|--------------|---------|-------|--|--|--|
| LT                  | 17.1        | 9         | 5.3          | NW           | 779.0   |       |  |  |  |
| MT                  | 16.9        | 9         | 6.1          | NW           | 778.3   |       |  |  |  |
| INT                 | 16.1        | 9         | 10.4         | WNW          | 779.6   |       |  |  |  |
| JKT                 | 16.4        | 9         | 9.4          | WNW          | 776.8   |       |  |  |  |
| SWASP               | 16.6        | 9         | 5.0          | NNW          | 761.6   |       |  |  |  |
| WHT                 | 16.4        | 7         | 0.0          | WNW          | 779.9   | n.a.  |  |  |  |
| NOT                 | 14.2        | 3         | 9.3          | W            | 774.4   |       |  |  |  |
| TNG                 | 16.7        | 8         | 6.4          | N            | 776.6   | 0.6   |  |  |  |
| GTC                 | 17.2        | 7         | 2.2          | ENE          | 782.4   |       |  |  |  |
| IAC                 | I           | PWV (     | (mm):        | 7.0          | MORADAS | 0.9   |  |  |  |
| MAGIC               | 15.8        | 11        | 4.0          | SE           | 790.7   |       |  |  |  |
| : WHT, TNG, MORADAS |             |           |              |              |         |       |  |  |  |

- Other ORM telescopes
  - Weather station data
  - Seeing
  - Dust concentration



- Dust measurement at TNG
  - Automatic particle counter Lasair II 310B
  - Particle concentration from laser scattering
  - Size sensitivity
    0.3, 0.5, 1.0, 3.0, 5.0, 10.0 µm
  - 2h cumulative density in µg/m<sup>3</sup>



### **Satellite Data and Forecasts**

### Data available for La Palma site

- Weather forecasts
- Cloud satellite images
- Aerosol optical depth forecast

### EUMETSAT Cloud Image



EUMETSAT Top Height 2016-09-08 07:30:00 UT

# SKIRON AOD Forecast Aerosol Optical Depth at 550 nm Sat 10.09.16 at 18 UC

### Roque de los Muchachos Mountain Forecast

|                       | <b>6</b> 22   | 0     |       | 0     | 0     |       | 0     | 0     |       | 0     | 0     | 483           | 0     | 0     |       | <b>C</b>      | 0     | 999<br>1977   |
|-----------------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|-------|-------|---------------|-------|---------------|
| Wind<br>(km/h)        | 5             | 0     | 0     | 6     | 10,   | 0     | 0     | 0     | ₫     | ₽     | 5     | ወ             | ወ     | 0     | ₽     | 20            | 20    | 20            |
| Summary               | rain<br>shwrs | clear | rain<br>shwrs | clear | clear | clear | rain<br>shwrs | clear | rain<br>shwrs |
| Snow (cm)             | -             | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -             | -     | -     | -     | -             | -     | -             |
| Rain (mm)             | 2             | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | 1             | -     | -     | -     | 1             | -     | 1             |
| High °C               | 16            | 16    | 16    | 15    | 14    | 14    | 13    | 12    | 12    | 11    | 11    | 11            | 10    | 11    | 11    | 12            | 12    | 12            |
| Low °C                | 16            | 16    | 15    | 15    | 14    | 13    | 12    | 12    | 10    | 11    | 10    | 10            | 10    | 11    | 11    | 11            | 12    | 11            |
| Chill °C              | 16            | 16    | 15    | 14    | 13    | 14    | 12    | 11    | 10    | 9     | 10    | 10            | 9     | 10    | 9     | 10            | 10    | 10            |
| Freezing<br>level (m) | 4800          | 4900  | 4850  | 4750  | 4800  | 4700  | 4650  | 4650  | 4600  | 4500  | 4450  | 4450          | 4400  | 4450  | 4450  | 4550          | 4650  | 4700          |

### Atmospheric Monitoring

### **Star Detection**

- Blob detection with image filter
  - Applied to each pixel
  - Summing up all neighbor pixels
  - Filter mask as weight matrix
  - Returned value is filter response
- Chosen filter: Laplacian of Gaussian (LoG)
  - Reduce noise by smoothing with Gaussian
  - Laplacian filter: adjustable blob size, rotation invariant, fast computing speed, insensitive to linear brightness gradients
- Apply kernel for each star in catalog
  - Avoid hot pixels
  - Chose magnitude limit
- Take into account exposure, atm. absorption, lens distortions





# **Energy Threshold**



### **Raman LIDAR**









