

Test and Optimization of the ATLAS (s)MDT chamber readout electronics for high counting rates

Korbinian Schmidt-Sommerfeld

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6 80805 München

A Toroidal LHC Apparatus

LHC upgrade: $\mathcal{L}_{HL} = 7 \cdot \mathcal{L}_{nomial}$

MDT chambers

- *Ar/CO*₂ (93/7)
- $p_{abs} = 3 bar$
- Gas gain $G = 2 \cdot 10^4$

3

New sMDT Chambers

=> Same efficiency at 8 times higher hit rate.

MDT Resolution under Irradiation

Gain drop:

- Follows radial signal dependence
- Eff. Voltage drop $\delta V \sim r_{max}^3$

Space charge fluctuations:

- Distorted r(t)-relation
- Relevant for r > 5mm

sMDT Resolution under Irradiation

- Improved resolution of sMDT
- Further possibilities by pile up reduction (BaseLine Restauration)

Rate dependence of the muon efficiency

Setup at CERN's new γ -irradiation facility

sMDT resolution using the standard MDT RO electronics (ASD chip)

kos@mpp.mpg.de

Average Resolution Dependency on the Irradiation Rate 0.25 spatial resolution [mm] max. 0.2 ate Even at FI 30 kHz/cm^2 : Deadtime 0.15 220 ns Only linear resolution 0.1 deterioration. max. Average 0 rate n NSW 0 5 15 30 20 10 25 γ conversion rate [kHz/cm²]

Signal Deterioration at High Rates

- Electronics with bipolar pulse shaping
- Pulse $\sim 100 \text{ ns}$
- Undershoot ~ 400 ns due to bipolar pulse shaping
- Decreased spatial resolution in case of pile up
- Reducing the undershoot with active baseline restauration

Baseline Restauration (BLR)

=> Avoiding pile up effects even at short dead times.

kos@mpp.mpg.de

Readout chain

Resembling Multichannel boards to readout a whole chamber:

Comparison of the resolution with two different electronics

Better resolution due to higher PreAmp bandwidth.

Conclusion

- MDT rate capability increased by ~1 order of magnitude by reducing the tube diameter to 15 mm
- Tested up to 28 kHz/cm² (i.e. far beyond HL-HLC)
- Improved electronics needed exploit their full potential
- Promising results from multichannel prototype

Efficiency

Dependency on the Irradiation Rate

Drift tube resolution

Drift tube resolution under γ -irradiadtion

BLR Performance

- Improved resolution with discrete electronics due to shorter peaking time.
- Further improvement by active BLR.
- Measurements in agreement with simulation.

High Rates Effects: Muon Masking and Space Charge

- Masking of Muon during dead time (tube and electronics)
- => Efficiency loss
- Ion drift $\tau_{MDT} \sim 3 \text{ ms}$
- Permanent space charge above $\sim 100 \frac{\text{Hz}}{\text{cm}^2}$ => Modified \vec{E}

sMDT Efficiency under Irradiation

Efficiency improvements possible by dead time reduction.

Background Rates

Most hits from γ and n (uncorrelated with μ^{\pm}).

Exceeding of MDT rate capability in some regions at HL-LHC.

Radiation Background

Cavern background from excited detector nuclei

-> Main source of hits in muon system

Resolution w/o irradiation

Spatial resolution deteriorates at small drift radii.

Time slewing corrections

- Time of threshold crossing depends on pulse height
- Can be corrected by measuring pulse height

Space charge

- e⁻/ion pairs created in avalanches
- Drift time $\tau_{ion} \sim 3 \text{ ms}$
- Permanent space charge above $\sim 100 \frac{\text{Hz}}{\text{cm}^2}$
- Reduced \vec{E}
- \Rightarrow Gain drop
- \Rightarrow Drift velocity fluctuations

Pulse Shaping

- e⁻/ions induce voltage
- Avalanche in wire vicinity
- Negligible e⁻-contribution
- $V(t) \sim \ln\left(1 + \frac{t}{t_0}\right)$
- Shortening pulse by differentiating RC circuit

Drift velocity

Uni- vs. Bipolar Shaping

Bipolar shaping preventing a baseline shift.

Reasons for low resolution

– Signal damping– Higher threshold