
Kazuma	Ishio,	Max-Planck-Institut	für	Physik
27. März. 2017, DPG-Frühjahrstagung Münster T 23.6

“ I m p ro v e m e n t o f e n e rg y re c o n s t r u c t i o n
 b y u s i n g m a c h i n e l e a r n i n g a l g o r i t h m s
 i n M A G I C ”

Kazuma Ish io , Dav id Paneque
 Max-P lanck - Inst i tut für Phys ik
Ga l ina Maneva, Petar Temnikov
 Inst i tute for Nuc lear Research and Nuc lear Energy, Sof ia , Bu lgar ia
Abelardo Mora le jo
 Inst i tut de F is i ca d 'A l tes Energ ies (IFAE) ,
 The Barce lona Inst i tute of Sc ience and Technology, Be l laterra (Barce lona) , Spa in
Ju l ian S i tarek
 D iv i s ion of Astrophys ics , Un ivers i ty of Lodz, Lodz, Po land

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

U n i v e r s e i s b r i g h t i n G a m m a r a y s

2

https://svs.gsfc.nasa.gov/Sky map in energy range 50GeV - 2TeV by Fermi satellite

@ “vicinity”

Pulsars
and PWN

SuperNova
Remnants

@ distant galaxies

GRBsAGNs

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

A n o t h e r p o s s i b l e s o u r c e — “ D a r k M a t t e r ”

3

http://wwwmpa.mpa-garching.mpg.de/galform

http://wwwmpa.mpa-garching.mpg.de/galform

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

A n o t h e r p o s s i b l e s o u r c e — “ D a r k M a t t e r ”

4

log10(Energy)

Fl
ux

 o
r c

o
un

ts

Background

5

In the last part of this section, let us briefly describe
how we implemented IB from the various possible final
states of neutralino annihilations in DarkSUSY. The total
gamma-ray spectrum is given by

dNγ,tot

dx
=
∑

f

Bf

(
dNγ,sec

f

dx
+

dNγ,IB
f

dx
+

dNγ,line

f

dx

)

,

(10)
where Bf denotes the branching ratio into the annihi-
lation channel f . The last term in the above equation
gives the contribution from the direct annihilation into
photons, γγ or Zγ, which result in a sharp line feature
[27]. The first term encodes the contribution from sec-
ondary photons, produced in the further decay and frag-
mentation of the annihilation products, mainly through
the decay of neutral pions. This “standard” part of the
total gamma-ray yield from dark matter annihilations
shows a feature-less spectrum with a rather soft cutoff
at Eγ = mχ. In DarkSUSY, these contributions are in-
cluded by using the Monte Carlo code PYTHIA [28] to
simulate the decay of a hypothetical particle with mass
2mχ and user-specified branching ratios Bf . In this way,
also FSR associated to this decay is automatically in-
cluded (the main contribution here comes from photons
directly radiated off the external legs, but also photons
radiated from other particles in the decay cascade are
taken into account). On the other hand, IB from the
decay of such a hypothetical particle cannot in general
be expected to show the same characteristics as IB from
the actual annihilation of two neutralinos. In particular,
and as discussed in length at the beginning of this Sec-
tion, we expect important VIB contributions in the latter
case – while in the first case there are simply no virtual
particles that could radiate photons. We therefore calcu-
late analytically the IB associated to the decay (i.e. FSR
from the final legs) and subtract it from dNγ,sec

f /dx as

obtained with PYTHIA; for dNγ,IB
f /dx, we then take the

full IB contribution from the actual annihilation process
as described before. Hence, this procedure leaves us with
corrected PYTHIA results without FSR on the external
legs and our analytical calculation of IB (including FSR
and VIB) that we add to this. 1

Let us conclude this section by showing in Fig. 2 four

1 We would like to stress that this prescription is fully consistent
since both the original and the corrected IB versions are gauge-
invariant separately. Strictly speaking, however, we have only
corrected for photons originating directly from the external states
and not for those radiated from particles that appear later in the
decay cascade. On the other hand, one would of course expect
that modifying the energy distribution of the charged particles
corresponding to these external legs also affects the further de-
cay cascade. Note, however, that the resulting change in the
photon spectrum is a second order effect; more important, for
kinematical reasons it does not affect photons at energies close
to mχ – which, as we shall see, are the most relevant. Finally, we
observe that our subtraction procedure has only a minor effect
on the photon spectrum obtained by PYTHIA and no practical

PSfrag

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

1

0.001

0.01

0.1

0.2

BM1

.

0.01

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

1

0.1

0.2

BM2

.

0.01

0.1

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

0.001

1

10

0.2

BM3

.

0.01

0.1

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

0.001

1

0.2

BM4

.

FIG. 2: From top to bottom, the gamma-ray spectra for the
benchmark models defined in Tab. I is shown. The contribu-
tions from IB and secondary photons is indicated separately
(in these figures, the line signal is not included).

Internal bremsstrahlung from
produced charged particles

 in the annihilations could yield a
detectable ”bump”.

Additional feature in a spectrum
 to be searched

Bringmann,2008

S =

Ns
√

Nb

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

F o r D M s e a r c h , e n e r g y r e s o l u t i o n “ m a t t e r s ”

5

log10(Energy)

Fl
ux

 o
r c

o
un

ts

Background

5

In the last part of this section, let us briefly describe
how we implemented IB from the various possible final
states of neutralino annihilations in DarkSUSY. The total
gamma-ray spectrum is given by

dNγ,tot

dx
=
∑

f

Bf

(
dNγ,sec

f

dx
+

dNγ,IB
f

dx
+

dNγ,line

f

dx

)

,

(10)
where Bf denotes the branching ratio into the annihi-
lation channel f . The last term in the above equation
gives the contribution from the direct annihilation into
photons, γγ or Zγ, which result in a sharp line feature
[27]. The first term encodes the contribution from sec-
ondary photons, produced in the further decay and frag-
mentation of the annihilation products, mainly through
the decay of neutral pions. This “standard” part of the
total gamma-ray yield from dark matter annihilations
shows a feature-less spectrum with a rather soft cutoff
at Eγ = mχ. In DarkSUSY, these contributions are in-
cluded by using the Monte Carlo code PYTHIA [28] to
simulate the decay of a hypothetical particle with mass
2mχ and user-specified branching ratios Bf . In this way,
also FSR associated to this decay is automatically in-
cluded (the main contribution here comes from photons
directly radiated off the external legs, but also photons
radiated from other particles in the decay cascade are
taken into account). On the other hand, IB from the
decay of such a hypothetical particle cannot in general
be expected to show the same characteristics as IB from
the actual annihilation of two neutralinos. In particular,
and as discussed in length at the beginning of this Sec-
tion, we expect important VIB contributions in the latter
case – while in the first case there are simply no virtual
particles that could radiate photons. We therefore calcu-
late analytically the IB associated to the decay (i.e. FSR
from the final legs) and subtract it from dNγ,sec

f /dx as

obtained with PYTHIA; for dNγ,IB
f /dx, we then take the

full IB contribution from the actual annihilation process
as described before. Hence, this procedure leaves us with
corrected PYTHIA results without FSR on the external
legs and our analytical calculation of IB (including FSR
and VIB) that we add to this. 1

Let us conclude this section by showing in Fig. 2 four

1 We would like to stress that this prescription is fully consistent
since both the original and the corrected IB versions are gauge-
invariant separately. Strictly speaking, however, we have only
corrected for photons originating directly from the external states
and not for those radiated from particles that appear later in the
decay cascade. On the other hand, one would of course expect
that modifying the energy distribution of the charged particles
corresponding to these external legs also affects the further de-
cay cascade. Note, however, that the resulting change in the
photon spectrum is a second order effect; more important, for
kinematical reasons it does not affect photons at energies close
to mχ – which, as we shall see, are the most relevant. Finally, we
observe that our subtraction procedure has only a minor effect
on the photon spectrum obtained by PYTHIA and no practical

PSfrag

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

1

0.001

0.01

0.1

0.2

BM1

.

0.01

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

1

0.1

0.2

BM2

.

0.01

0.1

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

0.001

1

10

0.2

BM3

.

0.01

0.1

x = Eγ/mχ

x
2
dN

γ
,t

o
t
/d

x

Total
Secondary gammas
Internal Bremsstrahlung

0.4 0.6 0.8 1

0.001

1

0.2

BM4

.

FIG. 2: From top to bottom, the gamma-ray spectra for the
benchmark models defined in Tab. I is shown. The contribu-
tions from IB and secondary photons is indicated separately
(in these figures, the line signal is not included).

S =

Ns
√

Nb ×1/4
2×

If energy resolution
 becomes 4 times better,

significance would be double!

Bringmann,2008

Internal bremsstrahlung from
produced charged particles

 in the annihilations could yield a
detectable ”bump”.

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

Te V g a m m a r a y w i t h M A G I C t e l e s c o p e

6

La Palma(29◦N, 18◦W), asl. 2200m
Imaging Atmospheric Cherenkov Telescope (IACT)
2 telescopes with
 - Dish diameter : 17m
 - Camera FoV : 3.5deg
 - Trigger Threshold
 of gamma ray : ~50 GeV
 - Sensitivity : ~0.7% Crab flux 0.2TeV

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

H o w e n e r g y i s e s t i m a t e d ?

7

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

-The higher the gamma ray’s energy,
the more the secondary particles,
 and hence the brighter the image of
the shower (cherenkov light)

A high energy particle interacts with
 atmosphere, which initiates
“air shower”, consists of so many
 secondary particles
 traveling faster than speed of light
 in the air.

Cherenkov radiation

- 104 times higher sensitivity
than satellites !

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

T h e h i g h e r t h e g a m m a r a y ’s e n e r g y,
 t h e b r i g h t e r t h e s h o w e r i m a g e . B u t … l o c a t i o n m a t t e r s !

8

FoV
FoV

Darker when more distant. —> correction with geometrical information is needed

Air shower

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

14/20
07. June 2016

How to identify a �-ray

Len
gthWidth

Distance

Centre of
GravityTrue

Direction

Reconstructed
Direction

Camera centre

Image of
Telescope 2

Displacement

Image of
Telescope 1

P a r a m e t r i s a t i o n

9

For each event,
 a vector value is stored
 with many components.
 - Brightness (light content)
directly indicates initial energy.
It needs to be corrected by the location
parameters.
 - Shape
useful for background rejection.
 - Orientation and location
important for correction.

Energy can be estimated from light content
corrected by location parameter etc.

=> 15 components are used in the Look Up Table method

Performance should improve by adopting machine learning

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

S p e c i f i c a t i o n s o f t h e A N N & R F

10

Artificial Neural Network
 - JETNET package
 - node structure = 15-12-09-05-01
 - Better performance when proper cuts on the simulation events for training
 are performed.

Random Forest
 - coded from scratch.
 - bootstrap bagging of events for training
 - number of trees = 200
 - minimum node size = 5
 - number of trials =3
 (to choose the most effective parameter to separate)
 - Better performance when all the simulation events are used for training

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

P e r f o r m a n c e e v a l u a t i o n

11

simulation data

Create estimator

estimator
(LUT/ ANN/ RF)

simulation data

Apply estimator

estimated energy

estimated energy
should be the same
as original energy

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

P e r f o r m a n c e e v a l u a t a i o n

12

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

2

4

6

8

10

[GeV] bin 1.65+/- 0.05BiasDistribution of 10

273

[GeV] bin 1.65+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

2

4

6

8

10

12

14

16

18

20

[GeV] bin 1.75+/- 0.05BiasDistribution of 10

792

[GeV] bin 1.75+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

5

10

15

20

25

30

35

40

45

[GeV] bin 1.84+/- 0.05BiasDistribution of 10

1777

[GeV] bin 1.84+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

10

20

30

40

50

60

70

80

[GeV] bin 1.94+/- 0.05BiasDistribution of 10

3209

[GeV] bin 1.94+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

20

40

60

80

100

120

[GeV] bin 2.03+/- 0.05BiasDistribution of 10

4823

[GeV] bin 2.03+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

20

40

60

80

100

120

140

160

180

[GeV] bin 2.13+/- 0.05BiasDistribution of 10

6599

[GeV] bin 2.13+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

50

100

150

200

250

[GeV] bin 2.22+/- 0.05BiasDistribution of 10

8099

[GeV] bin 2.22+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

50

100

150

200

250

300

[GeV] bin 2.32+/- 0.05BiasDistribution of 10

9380

[GeV] bin 2.32+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

50

100

150

200

250

300

350

[GeV] bin 2.42+/- 0.05BiasDistribution of 10

10309

[GeV] bin 2.42+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

50

100

150

200

250

300

350

400

[GeV] bin 2.51+/- 0.05BiasDistribution of 10

10964

[GeV] bin 2.51+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

50

100

150

200

250

300

350

400

450

[GeV] bin 2.61+/- 0.05BiasDistribution of 10

11406

[GeV] bin 2.61+/- 0.05BiasDistribution of 10

true
)/Etrue-E

est
(E

1− 0.5− 0 0.5 1 1.5 2

of

 e
ve

nt
s

0

100

200

300

400

500

[GeV] bin 2.70+/- 0.05BiasDistribution of 10

11503

[GeV] bin 2.70+/- 0.05BiasDistribution of 10

events

/GeV)
est

(E
10

log
1 1.5 2 2.5 3 3.5 4 4.5 5

/G
e

V
)

tr
u
e

(
E

1
0

lo
g

1

1.5

2

2.5

3

3.5

4

4.5

5

0

2000

4000

6000

8000

10000

12000

 Zd=[10-20]true to EestE
 0 MARS - Magic Analysis and Reconstruction Software - Thu Mar 16 18:31:39 2017 Page No. 1

log10Etrue/GeV

lo
g

10
Ee

st
/G

eV

4.2 Some Common Probability Distributions

Fig. 4.3. The Gaussian distribution for various G. The standard
deviation determines the width of the distribution

87

---=-----------------

Fig. 4.4. Relation between the standard deviation G and the full width
at half-maximum (FWHM)

instrumental errors are generally described by this probability distribution. Moreover,
even in cases where its application is not strictly correct, the Gaussian often provides a
good approximation to the true governing distribution.

The Gaussian is a continuous, symmetric distribution whose density is given by

P(x) = 1 exp (_ (x- .
20

(4.19)

The two parameters fl and 0 2 can be shown to correspond to the mean and variance of
the distribution by applying (4.8) and (4.9).

The shape of the Gaussian is shown in Fig. 4.3. which illustrates this distribution
for various o. The significance of 0 as a measure of the distribution width is clearly
seen. As can be calculated from (4.19), the standard deviation corresponds to the half
width of the peak at about 60070 of the full height. In some applications, however, the
full width at half maximum (FWHM) is often used instead. This is somewhat larger
than 0 and can easily be shown to be

FWHM = 20 V2ln 2 = 2.350. (4.20)

This is illustrated in Fig. 4.4. In such cases, care should be taken to be clear about
which parameter is being used. Another width parameter which is also seen in the liter-
ature is the full-width at one-tenth maximum (FWTM).

The integral distribution for the Gaussian density, unfortunately, cannot be cal-
culated analytically so that one must resort to numerical integration. Tables of integral
values are readily found as well. These are tabulated in terms of a reduced Gaussian
distribution with fl = 0 and 0 2 = 1. All Gaussian distributions may be transformed to
this reduced form by making the variable transformation

x-fl
Z=--, (4.21)

o

where fl and 0 are the mean and standard deviation of the original distribution. It is a
trivial matter then to verify that Z is distributed as a reduced Gaussian.

Gaussian fit to each distribution of
 Eest - Etrue in energy ranges

Bias := μ
Resolution := σ

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

I m p r o v e m e n t b y m a c h i n e l e a r n i n g

13

Comparison of resolutions of Eest

log(True energy/GeV)
2 2.5 3 3.5 4

tru

e
)/E

tru
e

 -
E

es
t

(E

∆

0

0.1

0.2

0.3

0.4

0.5

0.6

LUT
RF
ANN

Comparison of resolutions of Eest

Better resolution
above ~200GeV

than the LUT
(Current standard

 in MAGIC)

Both machine learning
techniques perform

very similarly

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

S a n i t y c h e c k (i n R F s t r a t e g y)

14

/GeV)
est

(E
10

log
1 1.5 2 2.5 3 3.5 4 4.5 5

Le
ng

th

0

50

100

150

200

250

300

0

200

400

600

800

1000

1200

1400

1600

Length_M1 MC Zd=[10-20]

/GeV)
est

(E
10

log
1 1.5 2 2.5 3 3.5 4 4.5 5

Le
ng

th

0

50

100

150

200

250

300

0

500

1000

1500

2000

2500

3000

Length_M1 On-Off Zd=[10-20]

/GeV)
est

(E
10

log
1 1.5 2 2.5 3 3.5 4 4.5 5

Le
ng

th

0

50

100

150

200

250

300

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

MC - Rescaled(On-Off)

1 1.5 2 2.5 3 3.5 4 4.5 50

50

100

150

200

250

300

MC
On-Off

GausFit to distributions

 3 MARS - Magic Analysis and Reconstruction Software - Thu Mar 23 01:22:44 2017 Page No. 4 An example of the comparison：MaxHeight (Zd =[10,20]deg)

real data (On - Off)MC

subtraction indicates
similar distribution

All the parameter should distribute similarly
 under the same estimated energy and incoming direction.

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

S u m m a r y a n d C o n c l u s i o n s

15

Gamma-ray astronomy is a novel discipline that addresses
 many scientific topics.
A good energy resolution can play important roles
 in many scientific studies (e.g. identification of bumps).

In IACT technique, the gamma-ray energy is derived from
 many image parameters. It is an excellent case for a room
to be improved by machine learning techniques.

We have developed strategies and tools for
 the application of machine learning techniques (ANN and RF)
 for the reconstruction of the gamma-ray energy in MAGIC data.

When compared with the LUTs (standard method used in MAGIC),
both ANN and RF show a performance improvement above 0.2 TeV,
 with a factor ~2 improvement at multi-TeV energies.
In case of bump-like feature search, up to 40% higher significance
can be expexted.

B A C K U P

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

~ 2 0 0 e m i t e v e n h i g h e r e n e r g y !

17

The sources which are detected by
 IACT : “Imaging Atmospheric Cherenkov Telescopes”

which are x104 more sensitive than satellites!

http://tevcat.uchicago.edu/
Unidentified

Active Galactic Nuclei

Starburst Galaxy

Extragalactic sources

Pulsar Wind Nebula

Compact object
(Pulsars,binaries etc.)

Super Nova Remnant

Star forming region
Globular cluster

Galactic sources

Source types

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

A r t i f i c i a l N e u r a l N e t w o r k (A N N)

18

for one of the perceptrons?

The architecture of neural networks
In the next section I'll introduce a neural network that can do a
pretty good job classifying handwritten digits. In preparation for
that, it helps to explain some terminology that lets us name
different parts of a network. Suppose we have the network:

As mentioned earlier, the leftmost layer in this network is called the
input layer, and the neurons within the layer are called input
neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle
layer is called a hidden layer, since the neurons in this layer are
neither inputs nor outputs. The term "hidden" perhaps sounds a
little mysterious - the first time I heard the term I thought it must
have some deep philosophical or mathematical significance - but it
really means nothing more than "not an input or an output". The
network above has just a single hidden layer, but some networks
have multiple hidden layers. For example, the following four-layer
network has two hidden layers:

Somewhat confusingly, and for historical reasons, such multiple
layer networks are sometimes called multilayer perceptrons or
MLPs, despite being made up of sigmoid neurons, not perceptrons.

σ : “Activation function”
such as Sigmoid function

And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the

Weight wjk
(Strength of connection)

The output of j th node in l th layer
is the activation function σ

Input ak
(output of k th node in l-1 th layer)

l-1

 bias bj

The network can become almost any kind of nonlinear function

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

R a n d o m F o r e s t (R F)

19
https://www.quora.com/How-does-random-forest-work-for-regression-1

Ankit Sharma

A decision Tree classifies events
 by energy classes.

102 CHAPTER 5. THE RANDOM FOREST METHOD

Eest =
qn≠1

i=0

Ei ·Niqn≠1

i=0

Ni
(5.22)

In the application of RF each tree returns an estimated energy and the overall mean
is calculated as the final estimated energy.

• Splitting rule based on the continuous quantity
It is possible to completely avoid the use of classes by introducing a splitting rule,
which does not rely on class populations.
The idea of the Gini-index (with its interpretation as binomial variance of the
classes) as split rule is a purification of the class populations, i.e. a separation
of the classes, in the subsamples after the split process. Similarly, when using the
variance in energy as split criterion, the subsamples are purified with respect to
their energy distribution.

‡2(E) = 1
N ≠ 1

Nÿ

i=1

(Ei ≠ E)2 = 1
N ≠ 1 ·

CA
Nÿ

i=1

E2

i

B

≠N · E2

D

(5.23)

In analogy to the Gini-index of the split, the ‘variance’ of the split is calculated by
adding the ‘subsample energy variances’ taking into account the node populations
as weights:

‡2(E) = 1
NL +NR

(NL‡2

L(E) +NR‡2

R(E)) (5.24)

5.5.1 Performance of the RF energy estimation
In the following the results of the RF energy estimation are presented using the Crab
Nebula-like gamma Monte Carlo sample, which was already described in section 5.4. But
now the energy range of 10GeV < E < 30TeV is taken since there is no need for adopting
to a proton MC. The following quality cuts were imposed on this sample:

• Static dist cut: dist > 0.3¶

• Leakage cut: leakage < 0.1

These cuts remove events, which provide only a weak basis for an energy estima-
tion, since the size-energy and dist-impact parameter dependences become wide-spread
if exceeding the cut limits (see below for further explanations).

Let Etrue and Rtrue denote the true (Monte Carlo) energy and the true impact pa-
rameter respectively. Figures 5.21 and 5.22 show the dependences log

10

(size)-log
10

(Etrue)
and dist-Rtrue. The strong energy-size dependence is the basis for any energy estimation.
Yet, since the distribution of the Cherenkov photons inside the Cherenkov light pool is
not completely constant and changing with the distance between telescope and shower
axes (the impact parameter), an estimation of the impact parameter provides important

A forest is created by growing different trees,
-> Average of estimators follows true value well!

102 CHAPTER 5. THE RANDOM FOREST METHOD

Eest =
qn≠1

i=0

Ei ·Niqn≠1

i=0

Ni
(5.22)

In the application of RF each tree returns an estimated energy and the overall mean
is calculated as the final estimated energy.

• Splitting rule based on the continuous quantity
It is possible to completely avoid the use of classes by introducing a splitting rule,
which does not rely on class populations.
The idea of the Gini-index (with its interpretation as binomial variance of the
classes) as split rule is a purification of the class populations, i.e. a separation
of the classes, in the subsamples after the split process. Similarly, when using the
variance in energy as split criterion, the subsamples are purified with respect to
their energy distribution.

‡2(E) = 1
N ≠ 1

Nÿ

i=1

(Ei ≠ E)2 = 1
N ≠ 1 ·

CA
Nÿ

i=1

E2

i

B

≠N · E2

D

(5.23)

In analogy to the Gini-index of the split, the ‘variance’ of the split is calculated by
adding the ‘subsample energy variances’ taking into account the node populations
as weights:

‡2(E) = 1
NL +NR

(NL‡2

L(E) +NR‡2

R(E)) (5.24)

5.5.1 Performance of the RF energy estimation
In the following the results of the RF energy estimation are presented using the Crab
Nebula-like gamma Monte Carlo sample, which was already described in section 5.4. But
now the energy range of 10GeV < E < 30TeV is taken since there is no need for adopting
to a proton MC. The following quality cuts were imposed on this sample:

• Static dist cut: dist > 0.3¶

• Leakage cut: leakage < 0.1

These cuts remove events, which provide only a weak basis for an energy estima-
tion, since the size-energy and dist-impact parameter dependences become wide-spread
if exceeding the cut limits (see below for further explanations).

Let Etrue and Rtrue denote the true (Monte Carlo) energy and the true impact pa-
rameter respectively. Figures 5.21 and 5.22 show the dependences log

10

(size)-log
10

(Etrue)
and dist-Rtrue. The strong energy-size dependence is the basis for any energy estimation.
Yet, since the distribution of the Cherenkov photons inside the Cherenkov light pool is
not completely constant and changing with the distance between telescope and shower
axes (the impact parameter), an estimation of the impact parameter provides important

Search best cut Search
best cut

Search
best cut

The distributions are separated at minimum of the covarianceσ2.

Ei (the energy in class i) is determined as
average of Ni events in final nodes

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster 20

Comparison of biases of Eest

log(True energy/GeV)
2 2.5 3 3.5 4

tru

e
)/E

tru
e

 -
E

es
t

(E

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

1.2

LUT
RF
ANN

Comparison of biases of Eest

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

C h e r e n k o v f l a s h

21

~1m : a flash of ~3ns

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

L i g h t p o o l w i t h d i a m e t e r ~ 2 5 0 m

22

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

T h e s h o w e r c a n b e s e e n i f a t e l e s c o p e i s w i t h i n i t s l i g h t p o o l .

23

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

T h e s h o w e r s h a p e c a n b e s e e n a s a e l i p s e

24

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

Kazuma Ishio, Max-Planck-Institut für Physik 27, März. 2017,DPG Münster

W h e n a s h o w e r i s s e e n f r o m d i f f e r e n t p o s i t i o n s

25

What is “Imaging Atmospheric Cherenkov Telescope (IACT)” ?

What’s ANN?

26

Input ak

Weight wjk
(Strength of connection)

Activation function σ
 with bias bj

Output signal aj

And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the

l-1

l

l-1 th layer
l th layer

beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the

Back propagation(1)

27

At	j-th	node	in	l-th	layer,	output	is

And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the

And we use for the activation of the neuron in the layer.
The following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization
briefly in the last chapter, but to recap, the idea is that we want to
apply a function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the

l-1 l

… …
…k

j

1

2

1

2

… …

Cost	function	C	is

Where	y	is	true	value,	n	is	the	number	of		
train	data	x,	and	L	is	the	number	of	layers.

beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

Where	al	is	output	of	activation	function	σ,		
w	is	weight	to	the	input	al-1,	and	b	is	bias.

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic
sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the

output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the
presentation of backpropagation a little more algebraically

*This is only the case for small changes , of
course. We'll assume that the demon is
constrained to make such small changes.

why we're not regarding the cost also as a function of . Remember,

though, that the input training example is fixed, and so the output

 is also a fixed parameter. In particular, it's not something we can

modify by changing the weights and biases in any way, i.e., it's not

something which the neural network learns. And so it makes sense

to regard as a function of the output activations alone, with

merely a parameter that helps define that function.

The Hadamard product,

The backpropagation algorithm is based on common linear

algebraic operations - things like vector addition, multiplying a

vector by a matrix, and so on. But one of the operations is a little

less commonly used. In particular, suppose and are two vectors

of the same dimension. Then we use to denote the

elementwise product of the two vectors. Thus the components of

 are just . As an example,

This kind of elementwise multiplication is sometimes called the

Hadamard product or Schur product. We'll refer to it as the

Hadamard product. Good matrix libraries usually provide fast

implementations of the Hadamard product, and that comes in

handy when implementing backpropagation.

The four fundamental equations

behind backpropagation

Backpropagation is about understanding how changing the weights

and biases in a network changes the cost function. Ultimately, this

means computing the partial derivatives and . But to

compute those, we first introduce an intermediate quantity, ,

which we call the error in the neuron in the layer.

Backpropagation will give us a procedure to compute the error ,

and then will relate to and .

To understand how the error is defined, imagine there is a demon

in our neural network:

are	our	interest,	but	let	us	define

Back propagation(2)

28

four are consequences of the chain rule from multivariable calculus.

If you're comfortable with the chain rule, then I strongly encourage

you to attempt the derivation yourself before reading on.

Let's begin with Equation (BP1), which gives an expression for the

output error, . To prove this equation, recall that by definition

Applying the chain rule, we can re-express the partial derivative

above in terms of partial derivatives with respect to the output

activations,

where the sum is over all neurons in the output layer. Of course,

the output activation of the neuron depends only on the input

weight for the neuron when . And so vanishes

when . As a result we can simplify the previous equation to

Recalling that the second term on the right can be

written as , and the equation becomes

which is just (BP1), in component form.

Next, we'll prove (BP2), which gives an equation for the error in

terms of the error in the next layer, . To do this, we want to

rewrite in terms of . We can do this using

the chain rule,

where in the last line we have interchanged the two terms on the

right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm
The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input : Set the corresponding activation for the input
layer.

2. Feedforward: For each compute
and .

right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm
The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input : Set the corresponding activation for the input
layer.

2. Feedforward: For each compute
and .

right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm
The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input : Set the corresponding activation for the input
layer.

2. Feedforward: For each compute
and .

From	the	informations	in	l+1-th	layer,	
we	can	obtain	the	error	in	l-th	layer.	
(Back	propagation)

trained, they will still find it extremely difficult to identify the input

image, simply because they don't have enough information. And so

it can't possibly be the case that not much learning needs to be done

in the first layer. If we're going to train deep networks, we need to

figure out how to address the vanishing gradient problem.

What's causing the vanishing gradient
problem? Unstable gradients in deep
neural nets
To get insight into why the vanishing gradient problem occurs, let's

consider the simplest deep neural network: one with just a single

neuron in each layer. Here's a network with three hidden layers:

Here, are the weights, are the biases, and is

some cost function. Just to remind you how this works, the output

 from the th neuron is , where is the usual sigmoid

activation function, and is the weighted input to the

neuron. I've drawn the cost at the end to emphasize that the cost

is a function of the network's output, : if the actual output from

the network is close to the desired output, then the cost will be low,

while if it's far away, the cost will be high.

We're going to study the gradient associated to the first

hidden neuron. We'll figure out an expression for , and by

studying that expression we'll understand why the vanishing

gradient problem occurs.

I'll start by simply showing you the expression for . It looks

forbidding, but it's actually got a simple structure, which I'll

describe in a moment. Here's the expression (ignore the network,

for now, and note that is just the derivative of the function):

The structure in the expression is as follows: there is a term in

the product for each neuron in the network; a weight term for

In a very simple case(like composed of 4 layers, each has just one node)

29

right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm
The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input : Set the corresponding activation for the input
layer.

2. Feedforward: For each compute
and .

3. Output error : Compute the vector .

4. Backpropagate the error: For each

compute .

5. Output: The gradient of the cost function is given by

 and .

Examining the algorithm you can see why it's called

backpropagation. We compute the error vectors backward,

starting from the final layer. It may seem peculiar that we're going

through the network backward. But if you think about the proof of

backpropagation, the backward movement is a consequence of the

fact that the cost is a function of outputs from the network. To

understand how the cost varies with earlier weights and biases we

need to repeatedly apply the chain rule, working backward through

the layers to obtain usable expressions.

Exercises

Backpropagation with a single modified neuron

Suppose we modify a single neuron in a feedforward network

so that the output from the neuron is given by ,

where is some function other than the sigmoid. How should

we modify the backpropagation algorithm in this case?

Backpropagation with linear neurons Suppose we

replace the usual non-linear function with

throughout the network. Rewrite the backpropagation

algorithm for this case.

As I've described it above, the backpropagation algorithm computes

the gradient of the cost function for a single training example,

. In practice, it's common to combine backpropagation with

a learning algorithm such as stochastic gradient descent, in which

we compute the gradient for many training examples. In particular,

given a mini-batch of training examples, the following algorithm

applies a gradient descent learning step based on that mini-batch:

1. Input a set of training examples

2. For each training example : Set the corresponding input

activation , and perform the following steps:

And move w and b in different direction to gradient

21. 11. 2016, MAGIC Collaboration Meeting DortmundKazuma Ishio

Official Performance

30

 / GeVtrueE
60 100 200 300 1000 2000 10000 20000

En
er

gy
 b

ia
s

an
d

re
so

lu
tio

n

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
)°Bias (2010, < 30 Resolution

)°Bias (2013, < 30 Resolution

) °-45°Bias (2013, 30 Resolution

Figure 10: Energy resolution (solid lines) and bias (dashed lines) obtained
from the MC simulations of γ−rays. Events are weighted in order to repre-
sent a spectrum with a slope of −2.6. Red: low zenith angle, blue: medium
zenith angle. For comparison, pre-upgrade values from Aleksić et al. (2012a)
are shown in gray lines.

15%. For higher energies it degrades due to an increasing frac-
tion of truncated images, and showers with high impact param-
eters as well as worse statistics in the training sample. Note that
the energy resolution can be easily improved in the multi-TeV
range with additional quality cuts (e.g. in the maximum recon-
structed impact), however at the price of lowering the collection
area. At low energies the energy resolution is degraded, due to
worse precision in the image reconstruction (in particular the
impact parameters), and higher internal relative fluctuations of
the shower. Above a few hundred GeV the absolute value of
the bias is below a few percent. At low energies (! 100GeV)
the estimated energy bias rapidly increases due to the threshold
effect. For observations at higher zenith angles the energy res-
olution is similar. Since an event of the same energy observed
at higher zenith angle will produce a smaller image, the energy
resolution at the lowest energies is slightly worse. On the other
hand, at multi-TeV energies, the showers observed at low zenith
angle are often partially truncated at the edge of the camera, and
may even saturate some of the pixels (if they produce signals of
" 750 phe in single pixels). Therefore the energy resolution
is slightly better for higher zenith angle observations. As the
energy threshold shifts with increasing zenith angle, the energy
bias at energies below 100 GeV is much stronger for higher
zenith angle observations.
The distribution (Eest − Etrue)/Etrue is well described by a

Gaussian function in the central region, but not at the edges,
where one can appreciate non-Gaussian tails. The energy reso-
lution, determined as the sigma of the Gaussian fit, is not very
sensitive to these tails. For comparison purposes, we also com-
puted the RMS of the distribution (in the range 0 < Eest <
2.5 · Etrue), which will naturally be sensitive to the tails of the
(Eest − Etrue)/Etrue. The RMS values are reported in Tables
A.2 and A.3 for the low and medium zenith angles respectively.
While the sigma of the Gaussian fit is in the range 15%-25%,
the RMS values lie in the range 20%-30%.

slope
2 2.5 3 3.5 4

bi
as

 (m
ea

n
of

 G
au

ss
)

0

0.05

0.1

0.15

0.2

=0.1 TeVestE

=1 TeVestE

=10 TeVestE

Figure 11: Energy bias as a function of the spectral slope for different estimated
energies: 0.1TeV (dotted line), 1 TeV (solid), 10 TeV (dashed). Zenith angle
below 30◦ .

When the data are binned according to estimated energy of
individual events (note that, in contrary to MC simulations, in
the data only the estimated energy is known) the value of the
bias will change depending on the spectral shape of the source.
With steeper spectra more events will migrate from lower ener-
gies resulting in an overestimation of the energy. Note that this
effect does not occur in the case of binning the events according
to their true energy (as in Fig. 10). In Fig. 11 we show such a
bias as a function of spectral slope for a few values of estimated
energy. Note that the bias is corrected in the spectral analysis
by means of an unfolding procedure (Albert et al., 2007).
The energy resolution cannot be checked with the data in

a straight-forward way and one has to rely on the values ob-
tained from MC simulations. Nevertheless, we can use the
fact of having two, nearly independent estimations of the en-
ergy, Eest,1 and Eest,2 from each of the telescopes to perform
a consistency check. We define relative energy difference as
RED = (Eest,1 − Eest,2)/Eest. If the Eest,1 and Eest,2 estima-
tors were completely independent the energy resolution would
be ≈ RMS (RED)/

√
2. In Fig. 12 we show a dependency of

RMS (RED) on the reconstructed energy. The curve obtained
from the data is consistent with the one of MC simulations
within a few percent accuracy. The first point (between 45 and
75GeV) shows a sudden drop in RMS (RED) compared to the
other points, consistently in the data and MC simulations. Note
that this point is below the analysis threshold, therefore it is
mostly composed of peculiar events in which the shower pro-
duces more Cherenkov light than average for this energy. This
results in a strong correlation of Eest,1 and Eest,2 allowing for
a relatively low value of inter-telescope difference in estimated
energy, and still a rather poor energy resolution.

4.5. Spectrum of the Crab Nebula
In Fig. 13 we show the spectrum of the Crab Nebula obtained

with the total (low + medium zenith angle) sample. For clarity,
the spectrum is presented in the form of spectral energy dis-
tribution, i.e. E2dN/dE. In order to minimize the systematic

8

Arxiv 1409.5594 The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula

My study features
Zd = 05 - 50 deg

31

Energy

Fl
ux

 o
r c

o
un

ts

Background

