"Improvement of energy reconstruction by using machine learning algorithms in MAGIC"

Kazuma Ishio, David Paneque Max-Planck-Institut für Physik Galina Maneva, Petar Temnikov

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria Abelardo Moralejo

Institut de Fisica d'Altes Energies (IFAE),
The Barcelona Institute of Science and Technology, Bellaterra (Barcelona), Spain Julian Sitarek

Division of Astrophysics, University of Lodz, Lodz, Poland

Max-Planck-Institut für Physik
(Werner-Heisentherg-Institut)

Kazuma Ishio, Max-Planck-Institut für Physik
27. März. 2017, DPG-Frühjahrstagung Münster T 23.6

Universe is bright in Gamma rays

Sky map in energy range 50 GeV - 2 TeV by Fermi satellite https://svs.gsfc.nasa.gov/

Another possible source - "Dark Matter"

Kazuma Ishio, Max-Planck-Institut für Physik
27, März. 2017,DPG Münster

Another possible source - "Dark Matter"

Internal bremsstrahlung from produced charged particles in the annihilations could yield a detectable "bump".

Additional feature in a spectrum to be searched

$$
S=\frac{N_{s}}{\sqrt{N_{b}}}
$$

For DM search, energy resolution "matters"

Internal bremsstrahlung from produced charged particles in the annihilations could yield a detectable "bump".

If energy resolution becomes 4 times better, significance would be double!

$$
2 \times S=\frac{N_{s}}{\sqrt{N_{b}} \times 1 / 4}
$$

TeV gamma ray with MAGIC telescope

La Palma(29N, $18^{\circ} \mathrm{W}$), asl. 2200m Imaging Atmospheric Cherenkov Telescope (IACT)
2 telescopes with

- Dish diameter : 17m
- Camera FoV : 3.5deg
- Trigger Threshold of gamma ray : ~50 GeV
- Sensitivity : ~0.7\% Crab flux 0.2TeV

Kazuma Ishio, Max-Planck-Institut für Physik
27, März. 2017,DPG Münster

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?

How energy is estimated?

A high energy particle interacts with atmosphere, which initiates "air shower", consists of so many secondary particles traveling faster than speed of light in the air.

- 10^{4} times higher sensitivity than satellites!
-The higher the gamma ray's energy, the more the secondary particles, and hence the brighter the image of the shower (cherenkov light)

The higher the gammaray's energy, the brighter the shower image. But...location matters!
Darker when more distant. $\rightarrow>$ correction with geometrical information is needed

1.515
1.253

Kazuma Ishio, Max-Planck-Institut für Physik
27, März. 2017,DPG Münster

Parametrisation

For each event, a vector value is stored with many components.

- Brightness (light content) directly indicates initial energy. It needs to be corrected by the location parameters.
- Shape
useful for background rejection.
- Orientation and location important for correction.

Energy can be estimated from light content corrected by location parameter etc.
=> 15 components are used in the Look Up Table method

Performance should improve by adopting machine learning

Specifications of the ANN \& RF

Artificial Neural Network

- JETNET package
- node structure = 15-12-09-05-01
- Better performance when proper cuts on the simulation events for training are performed.

Random Forest

- coded from scratch.
- bootstrap bagging of events for training
- number of trees $=200$
- minimum node size $=5$
- number of trials $=3$
(to choose the most effective parameter to separate)
- Better performance when all the simulation events are used for training

Performance evaluation

Performance evaluataion

Improvement by machine learning

Both machine learning techniques perform very similarly

Better resolution above ~200GeV than the LUT
 (Current standard in MAGIC)

Sanity check (in RF strategy)

All the parameter should distribute similarly under the same estimated energy and incoming direction.

Summary and Conclusions

Gamma-ray astronomy is a novel discipline that addresses many scientific topics.
A good energy resolution can play important roles in many scientific studies (e.g. identification of bumps).

In IACT technique, the gamma-ray energy is derived from many image parameters. It is an excellent case for a room
to be improved by machine learning techniques.
We have developed strategies and tools for the application of machine learning techniques (ANN and RF) for the reconstruction of the gamma-ray energy in MAGIC data.

When compared with the LUTs (standard method used in MAGIC), both ANN and RF show a performance improvement above 0.2 TeV , with a factor ~ 2 improvement at multi-TeV energies.
In case of bump-like feature search, up to 40% higher significance can be expexted.

BACKUP

~200 emit even higher energy!

Source types
Extragalactic sources

- Active Galactic Nuclei
- Starburst Galaxy

Galactic sources

- Pulsar Wind Nebula
- Super Nova Remnant
- Compact object
(Pulsars,binaries etc.)
- Star forming region

Globular cluster

- Unidentified

The sources which are detected by
IACT : "Imaging Atmospheric Cherenkov Telescopes" which are $\mathbf{x 1 0 4}$ more sensitive than satellites!

Artificial Neural Network (ANN)

The output of j th node in I th layer is the activation function o

$$
a_{j}^{l}=\sigma\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right)
$$

o : "Activation function" such as Sigmoid function

Weight w_{jk}

(Strength of connection)
Input \mathbf{a}_{k}^{1-1}
(output of k th node in l-1 th layer)
bias b_{j}

The network can become almost any kind of nonlinear function

Random Forest (RF)

A decision Tree classifies events by energy classes.

Depth $1=2$ regions \& predictions

The distributions are separated at minimum of the covariance σ^{2}.

$$
\sigma^{2}(E)=\frac{1}{N_{L}+N_{R}}\left(N_{L} \sigma_{L}^{2}(E)+N_{R} \sigma_{R}^{2}(E)\right)
$$

Ei (the energy in class i) is determined as average of Ni events in final nodes

A forest is created by growing different trees,
-> Average of estimators follows true value well!

$$
E_{\text {est }}=\frac{\sum_{i=0}^{n-1} E_{i} \cdot N_{i}}{\sum_{i=0}^{n-1} N_{i}}
$$

Comparison of biases of Eest

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?
Cherenkov flash

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?
Light pool with diameter~250m

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?
The shower can be seen if a telescope is within its lightpool.

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?
The shower shape can be seen as a elipse

What is "Imaging Atmospheric Cherenkov Telescope (IACT)" ?

When a shower is seen from different positions

What's ANN?

Back propagation(1)

At i-th node in l-th layer, output is

$$
a_{j}^{l}=\sigma\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right) \quad z_{j}^{l}=\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}
$$

Where a^{l} is output of activation function σ, m is weight ta the input a^{l-1}, and b is bias.

Cast function C is

$$
C=\frac{1}{2 n} \sum_{x}\left\|y(x)-a^{L}(x)\right\|^{2}
$$

Where y is true value, n is the number of train data x, and L is the number of layers.
$\partial C / \partial w_{j k}^{l}$ and $\partial C / \partial b_{j}^{l}$
are our interest, but let us define

$$
\delta_{j}^{l} \equiv \frac{\partial C}{\partial z_{j}^{l}}
$$

Back propagation(2)

$$
\delta_{j}^{l}=\sum_{k} w_{k j}^{l+1} \delta_{k}^{l+1} \sigma^{\prime}\left(z_{j j}^{l}\right)
$$

From the infarmatians in $l+1$-th layer, we can obtain the error in l-th layer. (Back propagation)

In a very simple case(like composed of 4 layers, each has just one node)

$$
\frac{\partial C}{\partial b_{1}}=\sigma^{\prime}\left(z_{1}\right) \times w_{2} \times \sigma^{\prime}\left(z_{2}\right) \times w_{3} \times \sigma^{\prime}\left(z_{3}\right) \times w_{4} \times \sigma^{\prime}\left(z_{4}\right) \times \frac{\partial C}{\partial a_{4}}
$$

1. Input x : Set the corresponding activation a^{1} for the input layer.
2. Feedforward: For each $l=2,3, \ldots, L$ compute $z^{l}=w^{l} a^{l-1}+b^{l}$ and $a^{l}=\sigma\left(z^{l}\right)$.
3. Output error δ^{L} : Compute the vector $\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)$.
4. Backpropagate the error: For each $l=L-1, L-2, \ldots, 2$ compute $\delta^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right)$.
5. Output: The gradient of the cost function is given by

$$
\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l} \text { and } \frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l} .
$$

And move w and b in different direction to gradient

Official Performance

My study features Zd = 05-50 deg

Figure 10: Energy resolution (solid lines) and bias (dashed lines) obtained from the MC simulations of γ-rays. Events are weighted in order to represent a spectrum with a slope of -2.6 . Red: low zenith angle, blue: medium zenith angle. For comparison, pre-upgrade values from Aleksić et al. (2012a) are shown in gray lines.

[^0]

[^0]: Arxiv 1409.5594 The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula

