

Datenbasierte Untergrundabschätzung für die Suche nach top-Squarks im vollhadronischen Zerfallskanal mit dem ATLAS-Detektor

Nicolas Köhler

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

27. März 2017

Signalregionoptimierung für

 $m_{ ilde{t}} \gg m_{ ilde{\chi}_1^0}$ (P. Mogg, T 8.3)

& gemischte Zerfälle

(C. Lüdtke, T 8.4)

 \rightarrow Untergründe hängen stark von SR ab:

Z+Jets, $t\bar{t} + Z$ W+Jets, $t\bar{t}$ Wt, W+Jets

- QCD Untergrundabschätzung (C. Lüdtke, T 8.4)
- Jetzt: Z+Jets, $t\bar{t} + V$, $t\bar{t}$, t-Quark Produktion und W+Jets

Datenbasierte Untergrundabschätzung

Definiere Kontrollregionen (CRs):

- SM Untergrund anreichern
- Statistisch unabhängig von Signalregionen (SR)
- Kinematisch ähnlich zu Signalregionen

Kontrollregion für tt Produktion:

Datenbasierte Untergrundabschätzung

Definiere Kontrollregionen (CRs):

- SM Untergrund anreichern
- Statistisch unabhängig von Signalregionen (SR)
- Kinematisch ähnlich zu Signalregionen

 Minimiert Unsicherheiten von Untergrund in SR

Kontrollregion für tt Produktion:

→ Verwende Daten/MC-Verhältnis, um MC in SR zu skalieren

Z+Jets Kontrollregion

- Z+Jets Produktion trägt durch Z ightarrow
 u
 u bei
- Verwende 2ℓ Region
- \rightarrow Erreicht hohe Reinheit in Z+Jets
 - $\label{eq:lasses} \bullet \geq 4 \mbox{ Jets und} \geq 2 \mbox{ b-Jets wie in Signalregion}$
- → Keine Extrapolation in Anzahl der Jets nötig
 - $86 \,{\rm GeV} < m_{\ell\ell} < 96 \,{\rm GeV}$
 - Entferne Leptonen aus E^{miss}-Berechnung
- $ightarrow {\it E}_{
 m T}^{
 m miss'}$ >100 GeV (da Z
 ightarrow
 u
 u)

Z+Jets Kontrollregion

tī+γ

Data

Separate Kontrollregion für verschiedene Signalregionen

Schnitt auf Masse von R = 1.2 Jet

 $\begin{array}{c} \text{SRD} \\ \tilde{t} \to b + \tilde{\chi}_1^{\pm} \end{array}$

Stat

Schnitte auf $m_{\rm T}^{\rm min}$ / $m_{\rm T}^{\rm max}$

300

Z+iets

Diboson

W+iets

Single Top

MC Sys ⊕ Sta

400

500 $m_T(b_{min}, E_T^{miss})$ [GeV]

$t\bar{t} + Z$ Kontrollregion

- $t\bar{t} + Z$ trägt durch $Z \rightarrow \nu\nu$ bei Kontrollregion mit $Z \rightarrow \ell\ell$ Zerfällen:
 - Kleines Verzweigungsverhältnis
 - Hoher Beitrag von Z+Jets und $t\bar{t}$
- $ightarrow \, {\rm Verwende} \, t \overline{t} + \gamma \, {\rm Region}$
 - Genau 1 Photon mit $p_T > 150 \text{ GeV}$ ($Z \rightarrow \nu \nu$ -Zerfall / Ähnlichkeit zu $t\bar{t} + Z$)
 - Genau 1 Lepton (Trigger)
 - $\label{eq:lasses} \bullet \geq 4 \text{ Jets und} \geq 2 \text{ b-Jets wie in} \\ \text{Signalregion}$
- → Keine Extrapolation in Anzahl der Jets nötig

Begrenzte Statistik

ightarrow Dieselbe Kontrollregion für alle SRs

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- $ightarrow \,\, {
 m Genau}$ 1 Lepton mit ${
 m
 ho_T} > 20 \, {
 m GeV}$
- \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
- 2 b-Jets
- Masse von R=1.2 Jet > 70 GeV
- *E*^{miss} > 250 GeV
- 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
- + Winkel zwischen b-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - 2 b-Jets
 - Masse von *R*=1.2 Jet > 70 GeV
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \,\mathrm{GeV}$
 - 30 GeV< *m*_T(*E*^{miss}_T, ℓ) <100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - 2 b-Jets
 - Masse von *R*=1.2 Jet > 70 GeV
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \,\mathrm{GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - ≥ 2 *b*-Jets
 - Masse von *R*=1.2 Jet > 70 GeV
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \,\mathrm{GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- \rightarrow Genau 1 Lepton mit $p_{\rm T} > 20 \,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \,\mathrm{GeV}$
 - 30 GeV< *m*_T(*E*^{miss}, *ℓ*) <100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $\bullet \ {\it E}_{\rm T}^{\rm miss} > 250 \, {\rm GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

27.03.2017

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - ≥ 2 *b*-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $\bullet \ {\it E}_{\rm T}^{\rm miss} > 250 \, {\rm GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - + Winkel zwischen *b*-Jets und Lepton

tī/Wt/W+Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - \geq 4 Jets (R = 0.4) mit $p_T > (80, 80, 40, 40)$ GeV (betrachte Lepton als Jet)
 - 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $\bullet \ {\it E}_{\rm T}^{\rm miss} > 250 \, {\rm GeV}$
 - 30 GeV $< m_{\mathrm{T}}(E_{\mathrm{T}}^{\mathrm{miss}},\ell) <$ 100 GeV
 - + Winkel zwischen b-Jets und Lepton

Dominierender Untergrund für $m_{ ilde{t}} - m_{ ilde{\chi}_1^0} \sim m_t$ und $ilde{t} o b + ilde{\chi}_1^{\pm}$ Zerfälle

Separate Kontrollregionen für jede SR

Wt Kontrollregion

- Dominierender Untergrund für $\tilde{t} \rightarrow b + \tilde{\chi}_1^{\pm}$
- ightarrow Verwende Schnitt auf Abstand zwischen *b*-Jets und Lepton, sowie $\Delta R_{bb} > 1.5$
 - Begrenzte Statistik
- → Dieselbe Kontrollregion f
 ür alle SRs

Begrenzte Statistik \rightarrow Dieselbe Kontrollregion für alle SRs

A+ Ay>it

- Datenbasierte Untergrundabschätzung für Suche nach hadronisch zerfallenden top-Squarks
 - -- Z+Jets: 2 Lepton Region
 - -- $t\bar{t} + Z$: $t\bar{t} + \gamma$ Region
 - -- tt, Wt, W+Jets: 1 Lepton Region
- ightarrow Hohe Reinheit und gute Übereinstimmung mit SM Prozessen
 - Angepasste Kontrollregionen für verschiedene Signalregionen
 - Veröffentlichung der Ergebnisse: ATLAS-CONF-2017-020

A+ Ay>it

- Datenbasierte Untergrundabschätzung für Suche nach hadronisch zerfallenden top-Squarks
 - -- Z+Jets: 2 Lepton Region
 - -- $t\bar{t} + Z$: $t\bar{t} + \gamma$ Region
 - -- tt, Wt, W+Jets: 1 Lepton Region
- ightarrow Hohe Reinheit und gute Übereinstimmung mit SM Prozessen
 - Angepasste Kontrollregionen für verschiedene Signalregionen
 - Veröffentlichung der Ergebnisse: ATLAS-CONF-2017-020

Vielen Dank für Ihre Aufmerksamkeit!

ANHANG

27.03.2017

Untergrund in Signalregionen

Ereignisraten in Kontrollregionen

	CRZAB_TT_TW	CRZAB_TO	CRZD
Total MC	57.6 ± 1.9	105.1 ± 2.8	84.7 ± 2.1
Data	68.0 ± 8.2	119.0 ± 10.9	90.0 ± 9.5
Purity of Z+jets	0.71 ± 0.03	0.80 ± 0.03	0.82 ± 0.03
Data/MC SF of Z+jets	1.25 ± 0.21	1.17 ± 0.14	1.08 ± 0.14

	CRTopA_TT	CRTopA_TW	CRTopA_T0	CRTopB_TT	CRTopB_TW	CRTopB_T0
Total MC	118.9 ± 3.5	213.3 ± 3.6	98.2 ± 2.0	114.1 ± 3.4	438.6 ± 6.4	479.2 ± 6.2
Data	125.0 ± 11.2	204.0 ± 14.3	83.0 ± 9.1	122.0 ± 11.0	394.0 ± 19.8	421.0 ± 20.5
Purity of $t\bar{t}$	0.85 ± 0.04	0.93 ± 0.02	0.88 ± 0.02	0.83 ± 0.04	0.94 ± 0.02	0.93 ± 0.02
Data/MC SF of tt	1.06 ± 0.12	0.95 ± 0.08	0.83 ± 0.11	1.08 ± 0.13	0.89 ± 0.05	0.87 ± 0.05

	CRST	CRW	CRttgamma
Total MC	134.4 ± 3.6	776.0 ± 11.6	133.8 ± 2.9
Data	134.0 ± 11.6	818.0 ± 28.6	161.0 ± 12.7
Purity	0.50 ± 0.02	0.55 ± 0.02	0.83 ± 0.02
Data/MC SF	0.99 ± 0.19	1.10 ± 0.08	1.24 ± 0.12