

Datenbasierte Untergrundabschätzung für die Suche nach top-Squarks im vollhadronischen Zerfallskanal mit dem ATLAS-Detektor

Nicolas Köhler

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

27. März 2017

Signalregionoptimierung für

$$m_{ ilde{t}}\gg m_{ ilde{\chi}_1^0}$$
 (P. Mogg, T 8.3)

$$m_{ ilde{t}} - m_{ ilde{\chi}^0_1} \sim m_t$$
 (P. Mogg, T 8.3)

& gemischte Zerfälle (C. Lüdtke, T 8.4)

 \rightarrow Untergründe hängen stark von SR ab:

Z+Jets.
$$t\bar{t}+Z$$

Wt, W+Jets

- QCD Untergrundabschätzung (C. Lüdtke, T 8.4)
- Jetzt: Z+Jets, $t\bar{t} + V$, $t\bar{t}$, t-Quark Produktion und W+Jets

Datenbasierte Untergrundabschätzung

Definiere Kontrollregionen (CRs):

- SM Untergrund anreichern
- Statistisch unabhängig von Signalregionen (SR)
- Kinematisch ähnlich zu Signalregionen

Kontrollregion für tt Produktion:

Datenbasierte Untergrundabschätzung

Definiere Kontrollregionen (CRs):

- SM Untergrund anreichern
- Statistisch unabhängig von Signalregionen (SR)
- Kinematisch ähnlich zu Signalregionen

Minimiert Unsicherheiten von Untergrund in SR

Kontrollregion für tt Produktion:

→ Verwende Daten/MC-Verhältnis, um MC in SR zu skalieren

Z+Jets Kontrollregion

- Z+Jets Produktion trägt durch Z ightarrow
 u
 u bei
- Verwende 2ℓ Region
- → Erreicht hohe Reinheit in Z+Jets
 - ≥ 4 Jets und ≥ 2 *b*-Jets wie in Signalregion
- → Keine Extrapolation in Anzahl der Jets nötig
 - $86 \, \text{GeV} < m_{\ell\ell} < 96 \, \text{GeV}$
 - Entferne Leptonen aus E_T^{miss}-Berechnung
- $\rightarrow E_{\tau}^{\text{miss'}} > 100 \text{ GeV (da } Z \rightarrow \nu \nu)$

 \rightarrow Gute Modellierung von $E_{\mathsf{T}}^{\mathsf{miss'}}$

Z+Jets Kontrollregion

Separate Kontrollregion für verschiedene Signalregionen

$$\begin{array}{c} \mathsf{SRA_T0 / SRB_T0} \\ \tilde{t} \to t + \tilde{\chi}_1^0 \\ m_{\tilde{t}} \gg m_{\tilde{\chi}_1^0} / m_{\tilde{t}} - m_{\tilde{\chi}_1^0} \sim m_t \end{array}$$

Schnitt auf Masse von R = 1.2 Jet

SRD
$$\tilde{t} o b + \tilde{\chi}_1^{\pm}$$

Schnitte auf $m_{\mathrm{T}}^{\mathrm{min}}$ / $m_{\mathrm{T}}^{\mathrm{max}}$

$\overline{t}\overline{t}+Z$ Kontrollregion

- $t\bar{t} + Z$ trägt durch $Z \to \nu\nu$ bei Kontrollregion mit $Z \to \ell\ell$ Zerfällen:
 - Kleines Verzweigungsverhältnis
 - Hoher Beitrag von Z+Jets und $t\bar{t}$
- ightarrow Verwende $t\bar{t} + \gamma$ Region
 - Genau 1 Photon mit $p_{\rm T}>$ 150 GeV ($Z \to \nu \nu$ -Zerfall / Ähnlichkeit zu $t\bar{t}+Z$)
 - Genau 1 Lepton (Trigger)
 - ≥ 4 Jets und ≥ 2 *b*-Jets wie in Signalregion
- → Keine Extrapolation in Anzahl der Jets nötig

ightarrow Hohe Reinheit

$t\bar{t} + Z$ Kontrollregion

Begrenzte Statistik

→ Dieselbe Kontrollregion für alle SRs

Gute Modellierung der Leptonen

Gute Modellierung der Anzahl der Jets

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- $ightarrow \,$ Genau 1 Lepton mit $ho_{
 m T} > 20$ GeV
- $\ge 4 \text{ Jets } (R = 0.4) \text{ mit}$
- $p_{\rm T} > (80, 80, 40, 40) \, {\rm GeV}$
- > 2 h- late
- ≥ 2 b-Jets
- Masse von R=1.2 Jet > 70 GeV
- \bullet $E_{\mathrm{T}}^{\mathrm{miss}} > 250 \,\mathrm{GeV}$
- 30 GeV $< m_{\mathrm{T}}(E_{\mathrm{T}}^{\mathrm{miss}},\ell) <$ 100 GeV
- Winkel zwischen b-Jets und Lepton

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

Lepton zerfällt, das

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist

\rightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$

- $ightharpoonup \geq 4$ Jets (R=0.4) mit $ho_{
 m T} > (80,80,40,40)$ GeV (betrachte Lepton als Jet)
- > 2 b-Jets
- Masse von R=1.2 Jet > 70 GeV
- $E_{\rm T}^{\rm miss} > 250 \,{\rm GeV}$
- 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
- Winkel zwischen b-Jets und Leptor

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $ho_{
 m T} > 20\,{
 m GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - > 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $E_{\rm T}^{\rm miss} > 250\,{
 m GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - Winkel zwischen b-Jets und Leptor

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - > 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $E_{\rm T}^{\rm miss} > 250\,{
 m GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - Winkel zwischen b-Jets und Leptor

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- ightarrow Genau 1 Lepton mit $p_{\rm T} > 20\,{\rm GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - ≥ 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $E_{\rm T}^{\rm miss} > 250 \,{\rm GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - Winkel zwischen b-Jets und Leptor

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- \rightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - > 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - $\quad \quad \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} > 250\,\mathrm{GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - Winkel zwischen b-Jets und Lepton

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- \rightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - > 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - \bullet $E_{\mathrm{T}}^{\mathrm{miss}} > 250\,\mathrm{GeV}$
 - lacksquare 30 GeV < $m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - Winkel zwischen b-Jets und Lepton

$t\bar{t}/Wt/W+$ Jets trägt bei, wenn t/W in

- nicht detektiert wird
- falsch identifiziert wird
- ein hadronisch zerfallendes au ist
- \rightarrow Genau 1 Lepton mit $p_{\rm T}>20\,{\rm GeV}$
 - ullet \geq 4 Jets (R=0.4) mit $ho_{
 m T}>(80,80,40,40)$ GeV (betrachte Lepton als Jet)
 - > 2 b-Jets
 - Masse von R=1.2 Jet > 70 GeV
 - \bullet $E_{\mathrm{T}}^{\mathrm{miss}} > 250\,\mathrm{GeV}$
 - 30 GeV $< m_{
 m T}(E_{
 m T}^{
 m miss},\ell) <$ 100 GeV
 - + Winkel zwischen b-Jets und Lepton

tt Kontrollregion

Dominierender Untergrund für $m_{ ilde t}-m_{ ilde \chi_1^0}\sim m_t$ und $ilde t o b+ ilde \chi_1^\pm$ Zerfälle

Separate Kontrollregionen für jede SR

Schnitt auf Masse von R = 1.2 Jet wie in SR

Schnitt auf $\Delta R(b^{0-1},\ell)_{\min}$ \rightarrow Orthogonal zu W+Jets Kontrollregion

Wt Kontrollregion

- Dominierender Untergrund für $\tilde{t} o b + \tilde{\chi}_1^\pm$
- Schwer von $t\bar{t}$ zu trennen
- ightarrow Verwende Schnitt auf Abstand zwischen b-Jets und Lepton, sowie $\Delta R_{bb} > 1.5$
 - Begrenzte Statistik
- → Dieselbe Kontrollregion f
 ür alle SRs

W+Jets Kontrollregion

Entries / 0.50 units ATLAS Work in progress √s = 13 TeV, 36.1 fb Single Top Diboson E CRW (no ΔR cut) Z+iets 300 - Data 250 200 150 100 50 Data/MC 1.5 0.5 ΔR_{b.l} (MV2c10-sorted)

W+Jets ist schwer von $t\bar{t}$ zu trennen \rightarrow Fordere genau 1 b-Jet

Schnitt auf $\Delta \mathit{R}(\mathit{b}^{0-1},\ell)_{\min}>$ 2

Begrenzte Statistik \rightarrow Dieselbe Kontrollregion für alle SRs

Zusammenfassung & Ausblick

- Datenbasierte Untergrundabschätzung für Suche nach hadronisch zerfallenden top-Squarks
 - -- Z+Jets: 2 Lepton Region
 - -- $t\bar{t} + Z$: $t\bar{t} + \gamma$ Region
 - -- tt, Wt, W+Jets: 1 Lepton Region
- → Hohe Reinheit und gute Übereinstimmung mit SM Prozessen
 - Angepasste Kontrollregionen f
 ür verschiedene Signalregionen
 - Veröffentlichung der Ergebnisse: ATLAS-CONF-2017-020

Zusammenfassung & Ausblick

- Datenbasierte Untergrundabschätzung für Suche nach hadronisch zerfallenden top-Squarks
 - -- Z+Jets: 2 Lepton Region
 - -- $t\bar{t} + Z$: $t\bar{t} + \gamma$ Region
 - -- tt, Wt, W+Jets: 1 Lepton Region
- → Hohe Reinheit und gute Übereinstimmung mit SM Prozessen
 - Angepasste Kontrollregionen f
 ür verschiedene Signalregionen
 - Veröffentlichung der Ergebnisse: ATLAS-CONF-2017-020

Vielen Dank für Ihre Aufmerksamkeit!

ANHANG

Untergrund in Signalregionen

Ereignisraten in Kontrollregionen

	CRZAB_TT_TW	CRZAB_TO	CRZD
Total MC	57.6 ± 1.9	105.1 ± 2.8	84.7 ± 2.1
Data	68.0 ± 8.2	119.0 ± 10.9	90.0 ± 9.5
Purity of Z+jets	0.71 ± 0.03	0.80 ± 0.03	0.82 ± 0.03
Data/MC SF of Z+jets	1.25 ± 0.21	1.17 ± 0.14	1.08 ± 0.14

	CRTopA_TT	CRTopA_TW	CRTopA_T0	CRTopB_TT	CRTopB_TW	CRTopB_T0
Total MC	118.9 ± 3.5	213.3 ± 3.6	98.2 ± 2.0	114.1 ± 3.4	438.6 ± 6.4	479.2 ± 6.2
Data	125.0 ± 11.2	204.0 ± 14.3	83.0 ± 9.1	122.0 ± 11.0	394.0 ± 19.8	421.0 ± 20.5
Purity of tt	0.85 ± 0.04	0.93 ± 0.02	0.88 ± 0.02	0.83 ± 0.04	0.94 ± 0.02	0.93 ± 0.02
Data/MC SF of tt	1.06 ± 0.12	0.95 ± 0.08	0.83 ± 0.11	1.08 ± 0.13	0.89 ± 0.05	0.87 ± 0.05

	CRST	CRW	CRttgamma
Total MC	134.4 ± 3.6	776.0 ± 11.6	133.8 ± 2.9
Data	134.0 ± 11.6	818.0 ± 28.6	161.0 ± 12.7
Purity	0.50 ± 0.02	0.55 ± 0.02	0.83 ± 0.02
Data/MC SF	0.99 ± 0.19	1.10 ± 0.08	1.24 ± 0.12