Search for supersymmetry with displaced dileptons at the ATLAS experiment

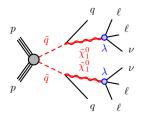
Dominik Krauss

Max-Planck-Institut für Physik

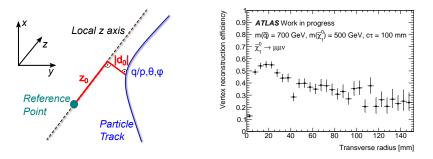
March 30, 2017

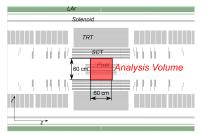
GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

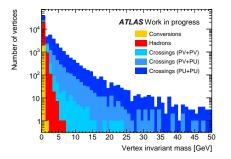


Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

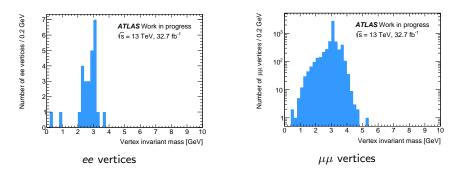

- Search for massive long-lived particles decaying to two charged leptons (e or μ)
- Sensitive to lifetimes of about 1 ps to 1 ns
- Model independent search interpreted in supersymmetric models, eg:


• Experimental signature: Displaced vertices with two lepton tracks

- Standard tracking reconstructs tracks up to $|d_0| = 10 \text{ mm}$
- Additional tracking optimised for tracks up to $|d_0| = 300 \text{ mm}$
- Secondary vertices reconstructed by standard ATLAS vertexer
- Tracking and vertexing very resource-intensive
 - \rightarrow Event preselection based on photon and muon spectrometer triggers


- Displaced vertex with at least two oppositely charged leptons
 - Lepton tracks: $p_T > 10 \text{ GeV}$ and $|d_0| > 2 \text{ mm}$
 - Displacement: 4 mm in transverse plane to all PVs
 - Fiducial volume:

- Vertices inside detector material are vetoed
- $m_{\rm DV} > 10 \, {
 m GeV}$
- Vertex has to pass at least one criterion used to preselect data events



- Plot shows origin of displaced vertices with two tracks in a $t\bar{t}$ Monte Carlo sample
- No leptons required and $p_{\rm T}$ cut on tracks lowered to 1 GeV
- $\bullet\,$ Random crossing of tracks dominant background for $m_{\rm DV}>10\,{\rm GeV}$

- Validation region on data with inverted mass cut and loosened vertex selection
- Most vertices originate from displaced J/ψ particles of *B*-hadron decays
- No dilepton vertex with $m_{\rm DV} > 5.5\,{\rm GeV}$ observed
 - \rightarrow Background from hadron decays negligible

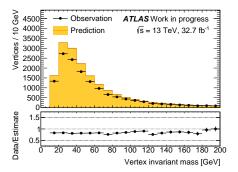
- Unrelated lepton tracks can randomly cross and form a vertex
- **Dominant** background of this search

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria
 - Randomly select a given number of lepton pairs ("seed pairs")

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria
 - Randomly select a given number of lepton pairs ("seed pairs")
 - Run vertex algorithm on each pair

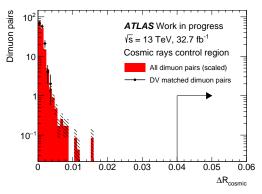
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria
 - Randomly select a given number of lepton pairs ("seed pairs")
 - Run vertex algorithm on each pair
 - Count number of vertices passing vertex selection


- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria
 - Randomly select a given number of lepton pairs ("seed pairs")
 - Run vertex algorithm on each pair
 - Count number of vertices passing vertex selection
 - Calculate crossing probability $p_{xing} = \frac{\text{Number of vertices found in this procedure}}{\text{Number of seed pairs}}$

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
 - Collect all electrons and muons in data passing our track selection criteria
 - Randomly select a given number of lepton pairs ("seed pairs")
 - Run vertex algorithm on each pair
 - Count number of vertices passing vertex selection
 - Calculate crossing probability $p_{\text{xing}} = \frac{\text{Number of vertices found in this procedure}}{\text{Number of seed pairs}}$
 - Estimate: Number of lepton pairs in data $\times p_{xing}$

- Validation region: Vertices with two tracks that fail lepton identification
- Enlarge statistics: No trigger and opposite charge requirements
- All other vertex selection criteria applied

	VR
Number of pairs	1.1×10^{8}
Avg. crossing prob.	1.6×10^{-4}
Predicted vertices	17947
Observed vertices	14775


SR	$N_{\ell\ell}$	$p_{ m xing}/10^{-5}$	$N_{\rm vx}^{est}/10^{-4}$
ee	$22 \ ^{+0.6}_{-8.9} \ ({\rm syst.})$	$0.52\pm 0.05~{\rm (stat.)}\pm 0.13~{\rm (syst.)}$	$1.2\pm0.1~{\rm (stat.)}~^{+0.3}_{-0.6}~{\rm (syst.)}$
$e\mu$	11 $^{+0}_{-2.7}$ (syst.)	$6.2\pm0.2~(\mathrm{stat.})\pm1.4~(\mathrm{syst.})$	$6.9\pm0.2~{\rm (stat.)}~^{+1.6}_{-2.3}~{\rm (syst.)}$
$\mu\mu$	$5^{+0}_{-2.6} ({ m syst.})$	$9.7\pm0.3~(\mathrm{stat.})\pm2.2~(\mathrm{syst.})$	$4.9\pm0.1~{\rm (stat.)}~^{+1.1}_{-2.8}~{\rm (syst.)}$

- $\bullet\,$ Random crossing background is of the order 10^{-4} for all SRs
- p_{xing} larger in VR due to missing trigger requirement
- p_{xing} smaller for *ee* than for $\mu\mu$ (also observed on MC)
- $\bullet\,$ Total uncertainties on the estimates not larger than $60\%\,$

Cosmic muons

Ar Ajait

- Cosmic muons sometimes reconstructed as a back-to-back muon pair
- Back-to-backness: $\Delta R_{\text{cosmic}} = \sqrt{(\eta_1 + \eta_2)^2 + (|\Delta \phi| \pi)^2}$
- Veto cosmic muons in signal regions by requiring: $\Delta R_{\text{cosmic}} > 0.04$
- Invert cosmic veto to study back-to-backness of cosmic muons:

- Search for displaced vertices with at least two lepton tracks
- Interpreted in supersymmetric models
- Dominant background from random crossings of leptons
- Data-driven estimate of random crossings
- Background is of the order 10^{-4} for all SRs
- Potential signal could be identified very clearly in data