Search for supersymmetry with displaced dileptons at the ATLAS experiment

Dominik Krauss

Max-Planck-Institut für Physik

March 30, 2017

GEFÖRDERT VOM

FSP 103 AThAS

$\Delta_{r}, \Delta_{q} \geqslant \frac{1}{2} t$

Search for displaced dileptons

- Search for massive long-lived particles decaying to two charged leptons (e or μ)
- Sensitive to lifetimes of about 1 ps to 1 ns
- Model independent search interpreted in supersymmetric models, eg:

- Experimental signature: Displaced vertices with two lepton tracks

Reconstruction of displaced vertices

- Standard tracking reconstructs tracks up to $\left|d_{0}\right|=10 \mathrm{~mm}$
- Additional tracking optimised for tracks up to $\left|d_{0}\right|=300 \mathrm{~mm}$
- Secondary vertices reconstructed by standard ATLAS vertexer
- Tracking and vertexing very resource-intensive
\rightarrow Event preselection based on photon and muon spectrometer triggers

Displaced vertex selection

- Displaced vertex with at least two oppositely charged leptons
- Lepton tracks: $p_{T}>10 \mathrm{GeV}$ and $\left|d_{0}\right|>2 \mathrm{~mm}$
- Displacement: 4 mm in transverse plane to all PVs
- Fiducial volume:

- Vertices inside detector material are vetoed
- $m_{\mathrm{DV}}>10 \mathrm{GeV}$
- Vertex has to pass at least one criterion used to preselect data events

Background sources of displaced vertices

- Plot shows origin of displaced vertices with two tracks in a $t \bar{t}$ Monte Carlo sample
- No leptons required and p_{T} cut on tracks lowered to 1 GeV
- Random crossing of tracks dominant background for $m_{\mathrm{DV}}>10 \mathrm{GeV}$

ee vertices

$\mu \mu$ vertices
- Validation region on data with inverted mass cut and loosened vertex selection
- Most vertices originate from displaced J / ψ particles of B-hadron decays
- No dilepton vertex with $m_{D V}>5.5 \mathrm{GeV}$ observed
\rightarrow Background from hadron decays negligible

Random crossings

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search

Random crossings

- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Randomly select a given number of lepton pairs ("seed pairs")
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Randomly select a given number of lepton pairs ("seed pairs")
- Run vertex algorithm on each pair
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Randomly select a given number of lepton pairs ("seed pairs")
- Run vertex algorithm on each pair
- Count number of vertices passing vertex selection
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Randomly select a given number of lepton pairs ("seed pairs")
- Run vertex algorithm on each pair
- Count number of vertices passing vertex selection
- Calculate crossing probability $p_{\text {xing }}=\frac{\text { Number of vertices found in this procedure }}{\text { Number of seed pairs }}$
- Unrelated lepton tracks can randomly cross and form a vertex
- Dominant background of this search
- Estimation procedure for signal regions:
- Collect all electrons and muons in data passing our track selection criteria
- Randomly select a given number of lepton pairs ("seed pairs")
- Run vertex algorithm on each pair
- Count number of vertices passing vertex selection
- Calculate crossing probability $p_{\text {xing }}=\frac{\text { Number of vertices found in this procedure }}{\text { Number of seed pairs }}$
- Estimate: Number of lepton pairs in data $\times p_{\text {xing }}$

Validation of random crossing estimation

- Validation region: Vertices with two tracks that fail lepton identification
- Enlarge statistics: No trigger and opposite charge requirements
- All other vertex selection criteria applied

	VR
Number of pairs	1.1×10^{8}
Avg. crossing prob.	1.6×10^{-4}
Predicted vertices	17947
Observed vertices	14775

Background estimate for signal regions

SR	$N_{\ell \ell}$	$p_{\text {xing }} / 10^{-5}$	$N_{v x}^{\text {est }} / 10^{-4}$
$e e$	$22{ }_{-8.9}^{+0.6}$ (syst.)	0.52 ± 0.05 (stat.) ± 0.13 (syst.)	1.2 ± 0.1 (stat.) ${ }_{-0.6}^{+0.3}$ (syst.)
$e \mu$	$111_{-2.7}^{+0}$ (syst.)	6.2 ± 0.2 (stat.) ± 1.4 (syst.)	6.9 ± 0.2 (stat.) ${ }_{-2.3}^{+1.6}$ (syst.)
$\mu \mu$	$5{ }_{-2.6}^{+0}$ (syst.)	9.7 ± 0.3 (stat.) ± 2.2 (syst.)	4.9 ± 0.1 (stat.) ${ }_{-2.8}^{+1.1}$ (syst.)

- Random crossing background is of the order 10^{-4} for all SRs
- $p_{\text {xing }}$ larger in VR due to missing trigger requirement
- $p_{\text {xing }}$ smaller for ee than for $\mu \mu$ (also observed on MC)
- Total uncertainties on the estimates not larger than 60%

Cosmic muons

- Cosmic muons sometimes reconstructed as a back-to-back muon pair
- Back-to-backness: $\Delta R_{\text {cosmic }}=\sqrt{\left(\eta_{1}+\eta_{2}\right)^{2}+(|\Delta \phi|-\pi)^{2}}$
- Veto cosmic muons in signal regions by requiring: $\Delta R_{\text {cosmic }}>0.04$
- Invert cosmic veto to study back-to-backness of cosmic muons:

- Search for displaced vertices with at least two lepton tracks
- Interpreted in supersymmetric models
- Dominant background from random crossings of leptons
- Data-driven estimate of random crossings
- Background is of the order 10^{-4} for all SRs
- Potential signal could be identified very clearly in data

