

Suche nach Gluinos in multi-leptonischen Endzuständen am ATLAS Detektor

Marian Rendel

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

30. März 2017

Bundesministerium für Bildung und Forschung

- Suche nach Supersymmetry (SUSY)
- Ereignisse mit vier Leptonen beiten eine exzellente Möglichkeit
 - -- Geringer Standardmodell Untergrund
 - ightarrow Gute Separierbarkeit des Signals vom Untergrund
- Zum Test wird ein SUSY modell mit \tilde{g} Produktion und subsequenten Zerfall in ℓ/ν verwendet
- Ziel: Finden einer Variablen mit best möglicher Sensitivität

Untersuchter Parameterraum: $m_{\tilde{g}} = 400\text{-}1800 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 100\text{-}1100 \text{ GeV}$

Verwendung von gut isolierten Leptonen

Elektron	Myon	Jet
$ ho_{ m T} > 7~{ m GeV}$	$\rho_{\rm T} > 5 { m GeV}$	$p_{\rm T} > 20 { m GeV}$
$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 2.8$

- Selektion von Ereignissen mit mindestens vier Leptonen
- Dominanter Untergrund mit Z-Bosonen
 - ightarrow Entferne Ereignisse mit $|m_{\ell^+\ell^-}-m_{\rm Z}|<10~{\rm GeV}$

Untersuchte Variablen:

30.0

•
$$m_{\text{eff}} = \sum_{\ell=e,\mu} p_{\text{T}}(\ell) + \sum_{p_{\text{T}}(j)>40 \text{ GeV}} p_{\text{T}}(j) + E_{\text{T}}^{\text{miss}}$$

• $m_{\text{T Lep}}^{\min} = \min\{M_{\text{T}}(p_{\text{T}}(\ell), E_{\text{T}}^{\text{miss}})\} = \min\{\sqrt{2p_{\text{T}}E_{\text{T}}^{\text{miss}}(1 - \cos(\Delta\phi))}\}$

Zwei Arten von Untergrund:

- Irreduzibler Untergrund (Prozesse mit vier Leptonen im Endzustand): z.B.
 ZZ, tt+Z,tttt, VV(V)
- Reduzibler Untergrund (mindestens ein Lepton aus Sekundärprozess): z.B. *tt*, *Z*+jets

Simuliertes Signal mit $m_{ ilde{g}} = 1600~{ m GeV}$ und $m_{ ilde{\chi}_1^0} = 1100~{ m GeV}$

ohne Z-veto

mit Z-veto

Höhere m_{eff} für den SUSY-Prozess

Nach Z-veto: gutes Signal zu Untergrund Verhältnis

$\text{Schnitt:} \textit{m}_{\rm eff} > 1100 \; {\rm GeV}$

ohne Z-veto

mit Z-veto

 Nach Z-veto: hohe Sensitivität f
ür fast den gesamten untersuchten Parameterraum

Niedrige Sensitiviät für $m_{ ilde{\chi}_1^0}$ nahe $m_{ ilde{g}}$

ohne Z-veto

mit Z-veto

- Verteilung fällt beim Untergrund deutlich stärker ab
- Ein Schnitt bei $m_{\rm T\,Lep}^{\rm min} > 100~{\rm GeV}$ mit Z-veto entfernt den Untergrund nahezu komplett

Schnitte: $m_{\rm T\,Lep}^{\rm min} < 100~{\rm GeV}, m_{\rm eff} < 600~{\rm GeV}$

ohne Z-veto

mit Z-veto

Gute Übereinstimmung zwischen Daten und MonteCarlo (MC)

Schnitt: $m_{\rm T\,Lep}^{\rm min} > 100~{\rm GeV}$

Hohe Sensitivität auch ohne Z-veto

ohne Z-veto

30.03

Parameterraum

mit Z-veto

Mit Z-veto: erwartete Signifikanz $> 3\sigma$ für nahezu den kompletten

Erwartete Anzahl an Ereignissen in 36.1 fb^{-1} :

	$4\mathrm{L}\:\mathrm{noZ}\:m_{\mathrm{eff}}>1100\:\mathrm{GeV}$	$4\mathrm{L}m_{\mathrm{TLep}}^{\mathrm{min}} > 100~\mathrm{GeV}$	$\rm 4L\ noZ\ m_T _{Lep}^{min} > 100\ GeV$
signal $m_{ ilde{g}} = 1600~{\rm GeV}$ $m_{ ilde{\chi}_1^0} = 1100~{\rm GeV}$	6.977 ± 0.299 (3.2 σ)	6.786 ± 0.280 (2.7 σ)	5.346 ± 0.246 (4.1 σ)
Irreduzibler Untergrund Reduzibler Untergrund	$\begin{array}{c} 1.466 \pm 0.089 \\ 0.136 \pm 0.052 \end{array}$	$\begin{array}{c} 2.328 \pm 0.115 \\ 0.031 \pm 0.031 \end{array}$	$\begin{array}{c} 0.349 \pm 0.046 \\ 0.031 \pm 0.031 \end{array}$
Gesamter Untergrund	1.690 ± 0.103	2.359 ± 0.119	0.380 ± 0.055

mit Z-veto

30.03.2017

$m_{\rm eff} > 1100~{\rm GeV}$

 $m_{\rm T\,Lep}^{\rm min} > 100~{\rm GeV}$

Höhere erwartete Signifikanz mit $m_{T \text{ Lep}}$ -Schnitt besonders für hohe $m_{\tilde{\chi}_1^0}$

- Suche nach Gluinos in Ereignissen mit vier Leptonen
- Aktuell: Vier Leptonen Analyse nutzt meff
- Höhere Sensitivität mit $m_{\mathsf{T}\,\mathsf{Lep}}^{\mathsf{min}}$ besonders wenn $m_{\tilde{\chi}_1^0}$ nahe $m_{\tilde{g}}$
- Ein m_{T Lep}-Schnitt reduziert den Untergrund sehr effektiv unabhängig vom Z-veto

